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Abstract: Current research in home automation focuses on integrating emerging technologies like
Internet of Things (IoT) and machine learning to create smart home solutions that offer enhanced
convenience, efficiency, and security. Benefits include remote control of household devices, opti-
mized energy usage through automated systems, and improved user experience with real-time
monitoring and alerts. In this study, a TinyML (Tiny Machine Learning)-based keyword spotting
machine learning model and system is proposed which enables voice-based home automation. The
proposed system allows users to control household devices through voice commands with minimal
computational resources and real-time performance. The main objective of this research is to develop
the TinyML model for resource-constrained devices. The system enables home systems to efficiently
recognize specific keywords or phrases by integrating voice control for enhanced user convenience
and accessibility. In this research, the different voice keywords of users of different age groups have
been collected in the home environment and trained using machine learning algorithms. An IoT-
based system is then developed utilizing the TinyML model to recognize a specific voice command
and perform home automation tasks. The model has achieved 98% accuracy with an F1 score of
1.00 and 92% recall. The quantized model uses Latency of 5 ms, 7.9 K of RAM and 43.7 K of flash
for keyword classification, which is the best fit for any resource-constrained devices. The proposed
system demonstrates the viability of deploying a keyword spotting model for home automation on
resource-constrained IoT devices. The research helps in building efficient and user-friendly smart
home solutions, enhancing the accessibility and functionality of home automation systems.

Keywords: embedded AI; TinyML; home automation; keyword spotting; Internet of Things

1. Introduction

TinyML is a technology that brings intelligence to small, embedded devices. In smart
homes, TinyML-powered appliances can operate more efficiently and autonomously. These
devices can make smart decisions on their own, without needing constant connection
to the internet. This improves privacy, speeds up responses, and provides more real-
time experience.

Keyword Spotting (KWS) is a crucial technology in smart home automation. It allows
devices to identify specific voice commands, enabling users to interact with their homes
using natural language. TinyML is a powerful approach that makes KWS possible on
small, embedded devices. By incorporating TinyML, smart home devices can recognize
and respond to voice commands locally, without needing to send data to the cloud. This
not only improves privacy but also reduces reliance on internet connectivity.

In essence, KWS with TinyML empowers smart home devices to understand and react
to spoken instructions, providing a more intuitive and convenient user experience.
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Traditional smart home automation systems rely on centralized cloud-based pro-
cessing systems (e.g., Amazon Echo, Alexa and Google home) [1], which can introduce
latency, privacy concerns and dependency on continuous internet connections. To address
these limitations, researchers are exploring the concept of embedded intelligence using
TinyML [2], which involves placing machine learning capabilities directly in the home
appliances. This enables making decisions locally on the device, leading to faster response
times and allowing devices to function without an internet connection. TinyML models
are lightweight and designed for resource-constrained devices like microcontrollers. This
allows the deployment of intelligent functionalities without compromising on performance
calibration. Overall, embedded intelligence powered by TinyML offers a promising future
for smart homes. It provides a faster, more private, and reliable user experience compared
to traditional cloud-based systems.

Despite the potential benefits of using TinyML for KWS in smart home automation,
there are challenges to overcome, such as the following:

• Optimized Model Size: TinyML models need to be compact to fit on resource-constrained
devices. This can sometimes lead to trade-offs in accuracy.

• Robustness: Ensuring that KWS models are accurate in noisy environments and do
not trigger false positives is crucial for a seamless user experience.

This research focused on developing a TinyML-based KWS system for smart home
automation. To achieve this, the following steps were taken:

• Data Collection: Real-time voice data were gathered from various Indian families,
representing different genders, ages, and home environments. These data were used
to train the keyword spotting model.

• Model Development: A lightweight TinyML model was created. This model is de-
signed for efficient processing on resource-constrained devices.

• Model Quantization: The model was optimized to reduce its size and computational
requirements, making it suitable for deployment on IoT devices.

By following these steps, the research aimed to create a user-friendly smart home
solution capable of accurately recognizing voice commands.

2. Related Work

Steven Guamán et al. [1] developed voice-controlled home automation using Amazon
Echo, Alexa and Google Home. This system was based on cloud computing using more
data and more memory. S Somesh et al. [3] developed a real-time smart home automation
system by using Alexa, Amazon Echo dot and ESP2866 Node MCU.

Tomi Kinnunen et al. [4] presented voice activity detection using MFCC feature extrac-
tion and SVM. A deep neural network-based keyword spotting system is developed by
Guoguo Chen et al. [5]. Pete Warden et al. [6] described necessary requirements of data
collection, its properties and previous version of the data.

Urvi Singh et al. [7] presented an IoT-based smart home automation system. ESP8266
Wi-Fi technology and the Blynk app had been used in this system to switch on/off all the
home appliances, while Danyar N Karim et al. [8] designed a multilingual keyword spotting
system which recognized the emergency keyword “help” in four different languages,
including English, Arabic, Kurdish and Malay. A deep convolutional spiking neural
network-based keyword spotting system was presented by Emre Yilmaz et al. [9].

William Hartmann et al. [10] presented a systematic comparative study to spot key-
words, which was used for techniques of multiple system combination. Maria t. Nya-
mukuru et al. [11] proposed a GRU architecture for tiny eats. It was implemented on Arm
Cortex M0+ for detecting the number of tiny meals taken.

Hilmat Yar et al. [12] presented a cost-effective integrated smart home automation
system on IoT and concept of edge computing. Akshata Kamble et al. [13] developed a
smart home using Raspberry Pi which was based on Google Assistant. Andreas Kamilaris
et al. [14] developed a web application for controlling a smart home. A similar approach
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was presented by Chinmay Bepery et al. [15]. Vaishnavi S. Gunge et al. [16] presented
a comparison of various home automation systems, which were based on web systems,
e-mail, blue-tooth, SMS, android, dual-tone multi-frequency, Zig-bee, cloud and Internet.

Dr. E. Chandra et al. [17] presented the concept of keyword spotting, its types, its
processes, various applications and different approaches used for the implementation
of keyword spotting. Sumedha Rai et al. [18] developed a keyword spotting system by
using MFCC, Hidden Markov Model (HMM) with Gaussian Mixture, CNN and variants of
RNN including LSTM. They achieved 93.9% accuracy by using RNN with BiLSTM. For a
keyword spotting system, Takuya Higuchi et al. [19] proposed a stacked 1D convolutional
network (S1DCNN).

3. Materials and Methods
3.1. Dataset

We use the real-time voice datasets of 10 Indian family members of different ages and
genders in the English language for examining experiments on neural network architecture.
The total duration of the voice dataset is 4 h and 58 s. After cleaning and processing the data,
we obtained a dataset of 14,521 audio samples, each lasting 1 s. These samples included
14 different keywords spoken by 10 members of an Indian family, representing a variety of
ages and genders. Each voice sample in the dataset contains only one keyword. The neural
network model was trained to identify specific keywords from a list of 14 options, including
“hello”, “hi”, “welcome”, “yes”, “no”, “on”, “off”, “start”, “stop”, “wake”, “sleep”, “open”,
“close” and “silence” (when no words were spoken).

The entire dataset was split into training and testing sets in an 80:20 ratio and the
audio clips from the same family member were kept together within the same set. The
training set contained 11,632 audio clips, while the testing set had 2889. Figure 1 illustrates
the frequency distribution of 1 s samples for the keyword “close” spoken by a single
family member.
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Figure 1. Raw data representing ‘close’ keyword.

The following Figure 2 shows data for all 14 class labels (i.e., “close”, “hello”, “hii”,
“welcome”, “yes”, “on”, “off”, “start”, “stop”, “no”, “wake”, “sleep”, “open” and “silence”).

The voice data were collected using a 1 s window size and a 16,000 Hz sampling rate.
To extract features from the audio data, the MFCC method was applied. The parameters
(i.e., 13 coefficients, a 0.05 s frame length, a 0.025 s frame stride, 32 filters, a 256-point
FFT, a 101-point normalization window, a low frequency of 0, a high frequency of the
cepstral coefficient (0.98), and a single shift) were used. Using these settings, 11,632 training
windows were generated, totaling 3 h, 13 min, and 2 s of data across 14 classes. During
this processing, the device utilized an average of 80 milliseconds of processing time and
13 kilobytes of peak RAM.
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Figure 2. Audio data for 14 classes of keywords.

3.2. Methodology

The KWS system is designed to detect various keywords, enabling control of IoT de-
vices through voice commands. To build the proposed system, the data using a microphone
from individuals of different genders and age groups speaking English were collected.
These data are then preprocessed by resampling at 1 ms intervals and accurately labeled
into 14 classes before training. Mel Frequency Cepstral Coefficient (MFCC) is used for
feature extraction from the voice dataset. This research utilizes a Convolutional Neural
Network (CNN) model and a C++ library for keyword spotting, which is deployed on a
Cortex-M7 480 MHz processor (Arduino, Turin, Italy).

Figure 3 shows the overall workflow of the keyword spotting system for smart home
automation.
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3.3. Neural Network Architecture

The neural network model was trained using 100 training epochs with a learning rate
of 0.005. To evaluate the model’s performance during training, 20% of the dataset was set
aside for validation, and a batch size of 32 was used.

The network architecture (as shown in Figure 4) designed for this study takes a
1 × 39 × 13 input. The first convolutional layer applies 16 filters, each with a size of
1 × 3 × 13. This layer extracts local features from the input image. A ReLU activation
function is applied to introduce non-linearity. A max pooling layer downsamples the
output of the convolutional layer to reduce dimensionality and computational cost. The
shape is reduced to 1 × 20 × 1 × 16. The second convolutional layer applies 32 filters, each
with a size of 1 × 3 × 16. This layer extracts more complex features from the previous layer’s
output. Another ReLU activation function is applied. The output of the final convolutional
layer is flattened into a one-dimensional vector of size 1 × 320. A fully connected layer with
14 neurons is used to map the flattened features to the output classes. The softmax layer
applies the softmax activation function to normalize the output probabilities, ensuring that
they sum to 1. The final output is a 1 × 14 vector, representing the predicted probabilities
for each of the 14 classes.
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After training the keyword spotting model using the described neural network ar-
chitecture, it achieved 99.1% accuracy with a minimal loss of 0.03%. When tested on the
sampled voice data, the model demonstrated strong performance across all 14 target key-
words.

4. Results and Discussion

To test the proposed model on-device, experiments were conducted by deploying
the KWS model on the target device. The following hardware components were used
for testing the on-device performance of the proposed KWS model. Figure 5 shows the
microcontroller board used for the experiment.
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Figure 5. Arduino Nicla Vision.

Arduino Nicla Vision (Arduino, Turin, Italy) [20] consists of a dual-core STM32H747
(Cortex-M7 at 480 MHz and Cortex-M4 at 240 MHz) processor, 2 MP Camera, 6-Axis IMU
(LSM6DSOX), and Microphone (MP34DT05). The hardware is compact and can be easily
integrated into various home appliances. Its built-in microphone makes it well suited for
this keyword spotting experiment.

Table 1 represents the performance of a keyword spotting model on a training dataset
of 14 keywords. The model achieved an overall F1 score of 0.99, indicating strong perfor-
mance. The highest accuracy was observed for the keywords “Silence” and “Wake” at
100%. The lowest accuracy was observed for the keyword “Hi” at 0.6%. Overall, the model
demonstrated high accuracy and precision in recognizing the target keywords.

Table 1. Confusion matrix (training dataset).

Close Hello Hi No Off On Open Silence Sleep Start Stop Wake Welcome Yes

Close 99.4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.6%
Hello 0% 98.7% 0% 0.9% 0% 0% 0.4% 0% 0% 0% 0% 0% 0% 0%
Hi 0% 0.6% 97.8% 0% 0.6% 0% 0.6% 0% 0% 0.6% 0% 0% 0% 0%
No 0.6% 0% 0% 98.9% 0% 0% 0% 0% 0% 0% 0% 0% 0.6% 0%
Off 0% 0% 0% 0% 99.4% 0.6% 0% 0% 0% 0% 0% 0% 0% 0%
On 0% 0% 0.6% 0% 1.7% 97.8% 0% 0% 0% 0% 0% 0% 0% 0%
Open 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
Silence 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
Sleep 0% 0% 0% 0% 0% 0% 0% 0% 99.4% 0% 0% 0.6% 0% 0%
Start 0% 0% 1.2% 0% 0% 0% 0% 0% 0% 98.8% 0% 0% 0% 0%
Stop 0.5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 99.5% 0% 0% 0%
Wake 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
Welcome 0% 0.6% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 99.4% 0%
Yes 0.6% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 99.4%
F1 Score 0.99 0.99 0.98 0.99 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.99

Table 2 presents the real-time classification results of a KWS model on a test dataset.
Each row represents a time stamp, and each column corresponds to a specific keyword.
The values in the table represent the probability assigned by the model to each keyword at
a given time.

Table 3 visualizes the performance of a KWS classification model on the test dataset.
Each row represents a true class (the actual keyword spoken) and each column represents
a predicted class (the keyword the model thought was spoken). The diagonal elements
show the correct classifications (e.g., the model correctly identified “Close” 98.2% of the
time) and the off-diagonal elements show the misclassifications (e.g., the model incorrectly
identified “No” as “Open” 0.5% of the time).
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Table 2. Live classification.

Timestamp Close Hello Hi No Off On Open Silence Sleep Start Stop Wake Welcome Yes

0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0
2000 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0
3000 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0
4000 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0
5000 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0
6000 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0
7000 0 0 0 0.95 0.03 0 0 0 0 0 0 0.02 0 0
8000 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0
9000 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0

Table 3. Confusion matrix for test dataset.

Close Hello Hii No Off On Open Silence Sleep Start Stop Wake Welcome Yes Uncertain

Close 98.2% 0% 0% 1.4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.5% 0%
Hello 0% 98.9% 0.4% 0% 0% 0% 0.4% 0% 0% 0% 0% 0% 0.4% 0% 0%

Hi 0% 0% 99.6% 0% 0% 0% 0% 0% 0% 0% 0% 0.4% 0% 0% 0%
No 0% 0% 0% 99.0% 0% 0% 0.5% 0% 0% 0% 0% 0.5% 0% 0% 0%
Off 0% 0.5% 0% 0.5% 95.0% 1.4% 0.9% 0% 0% 0% 0% 0% 0% 0% 1.8%
On 0% 0% 0% 0% 0.9% 99.1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Open 0% 0% 0% 0% 0% 0% 99.5% 0% 0% 0% 0% 0% 0.5% 0% 0%
Silence 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
Sleep 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
Start 0% 0% 0% 0% 0% 0% 0% 0% 0% 98.3% 1.3% 0% 0% 0.4% 0%
Stop 0.8% 0% 0% 0.4% 0% 0% 0% 0% 0% 0.8% 97.5% 0% 0% 0% 0.4%
Wake 0% 0% 0.5% 0% 0% 0% 0% 0% 0% 0% 0% 99.0% 0% 0.5% 0%

Welcome 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.5% 99.5% 0% 0%
Yes 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.0% 0% 99.0% 0%

F1 Score 0.99 0.99 0.99 0.98 0.97 0.99 0.99 1.00 1.00 0.99 0.98 0.98 0.99 0.99

Table 4 summarizes the on-device performance of the quantized keyword spotting
model for smart home automation on the target device. It includes the inference time, the
maximum RAM usage, and the peak flash utilization observed. Table 4 also presents a side-
by-side analysis of the quantized and un-optimized versions of the model. Quantization is
a technique that reduces the model’s size, memory footprint, and power consumption, mak-
ing it more suitable for deployment on resource-constrained devices. The table compares
various parameters, including:

• Latency: The total processing time required for the model to make a prediction.
• RAM Usage: The amount of RAM consumed by the model during operation.
• Flash Memory Usage: The amount of flash memory required to store the model.
• Accuracy: The highest achieved accuracy for the model.

Table 4. Comparison of quantized and un-optimized model.

Parameters Quantized (int8) Unoptimized (float32)

Latency 5 ms. 9 ms.
RAM 7.9 K 22.3 K
Flash 43.7 K 79.9 K
Accuracy 98.65% 98.55%

By examining these metrics, we can assess the trade-offs between model size, perfor-
mance, and accuracy when using quantization.

5. Conclusions

This research successfully developed a novel keyword spotting model developed for
resource-constrained devices. The model achieved high accuracy while maintaining mini-
mal computational requirements. The model’s ability to accurately recognize keywords
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in real time demonstrates its potential for practical applications in smart home automa-
tion and other voice-controlled devices. The model achieved an accuracy of 99.1% on the
training dataset and 98.65% on the test dataset for the quantized version. The quantized
model is optimized to address latency, memory footprint and accuracy associated with
the deployment on resource-limited devices. The model demonstrated real-time capabil-
ities, enabling prompt responses to voice commands. Future research could explore the
model’s ability to handle more complex scenarios, such as background noise and multiple
simultaneous speakers.
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