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Abstract: State of Charge (SoC) estimation is important for improving performance and longevity of
lithium-ion batteries in electric vehicles (EVs). Traditional methods such as voltage measurements
and Coulomb counting lie in the inability to account for factors like battery aging and operational
conditions variations, leading to potential errors in SoC estimation. Accordingly, this work overcomes
these limitations by utilizing Ensemble Projected Gated Recurrent Units (E-PGRUs) for enhancing SoC
estimation. Traditional methods often struggle with the non-linear dynamics and transient behaviors
of battery systems, leading to suboptimal predictions. The proposed E-PGRU model leverages
the adaptability of GRU, which efficiently handles time-series data, while employing an ensemble
strategy to mitigate the risks of overfitting and improve generalization. In our methodology, we
employed a publicly available dataset specifically dedicated to the particular topic of real-world EV
operations involving driving cycles and capturing varying operating conditions. E-PGRU architecture
consists of multiple GRU networks, with projected layer features, each trained on different subsets of
the data, and their outputs are aggregated to produce a more reliable SoC estimate. This ensemble
technique targets specific variability in prediction (i.e., standard deviation minimization), increasing
prediction confidence and allowing the model to learn complex patterns in the battery’s operational
behavior. The experiments revealed a higher coefficient of determination, providing an explanation of
the variance in dependent variables by independent variables in the SoC estimation model. The curve
fit results also clearly demonstrate improvements in prediction performance compared to baseline
models of recurrent neural networks in both the coefficient of determination (i.e., due to ensemble
learning) and computational time (i.e., due to projection layers) indicating a strong alignment with
SoC values. Furthermore, E-PGRU showed superior adaptability to different usage scenarios and
conditions, suggesting the potential for its application in battery management systems.

Keywords: electric vehicles; gated recurrent unit; lithium-ion batteries; state of charge

1. Introduction

SoC estimation is important in managing lithium-ion batteries for EVs, as accurate
predictions affect battery performance, safety, and longevity. Traditional methods like
voltage measurements and Coulomb counting face limitations in accounting for non-linear
battery behavior, aging, and varying operational conditions, leading to inaccuracies [1,2].
These issues are exacerbated in real-world EV applications, where factors such as rapid load
changes and temperature variations significantly impact SoC predictions. This has shifted
research in this field toward machine learning, specifically deep learning [3]. However,
while deep learning models like recurrent neural networks and their variants offer some
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improvement, they often suffer from overfitting and high computational demands. To
address these challenges, this research introduces an Ensemble Projected Gated Recurrent
Unit (E-PGRU) model [4]. By combining ensemble learning with GRU networks that use
projected layers, the model improves generalization, reduces computational complexity,
and offers more accurate SoC predictions. The E-PGRU model successfully balances accu-
racy and efficiency, demonstrating superior performance compared to traditional methods
and existing machine learning models. It mitigates overfitting, enhances generalization
across varying operating conditions, reduces prediction variability, and increases con-
fidence in SoC estimates. The incorporation of projected layers reduces computational
complexity, making the model more efficient while maintaining high accuracy. The model’s
effectiveness is validated using a real-world EV driving cycle dataset, ensuring its prac-
tical relevance and adaptability to diverse conditions [5]. Overall, this work presents a
practical, accurate, and computationally efficient solution for deployment in EV battery
management systems.

This paper is organized as follows: Section 1 provides the introduction. Section 2
focuses on the materials, describing the datasets used. Section 3 covers the methods,
explaining the GRU and PGRU models in detail. Finally, Section 4 presents the results
and discussion.

2. Materials

This work adopts a lithium-ion battery dataset derived from tests conducted at the
University of Wisconsin–Madison [5]. The dataset focuses on the performance evaluation of
the Panasonic 18650PF cell. These tests were conducted in an 8-cubic feet thermal chamber
using a 25 ampere, and 18-volt Digatron Firing Circuits Universal Battery Tester. The
experiments involved multivariate conditions, including different ambient temperatures
across multiple experimental scenarios, to assess the battery’s characteristics. The dataset
includes detailed records from several types of tests: pulse discharge tests, electrochemical
impedance spectroscopy (EIS) tests, and drive cycles under varying temperature conditions.
Among many tests conducted at different temperatures, including −20 ◦C, −10 ◦C, 0 ◦C,
and 10 ◦C, this work utilized the test related to 0 ◦C as an initial step in our experiments.
This means that two subsets are used. The first subset provides detailed results from the five-
pulse discharge Hybrid Pulse Power Characterization (HPPC) test performed at an ambient
temperature of 0 ◦C. The Hybrid Pulse Power Characterization test involves applying a
series of high-rate discharge pulses to the battery at varying currents (0.5, 1, 2, 4, and 6 times
the capacity of the battery, also known as C) to evaluate its performance under different
SoCs. This file captures critical data, including the voltage and current responses of the
battery during these pulses. The second subset focuses on the discharges occurring between
the pulses of the HPPC test. This file includes data on the battery’s performance during
the intervals between high-rate discharge pulses. The first subset is vital for assessing the
battery’s behavior under high-power conditions and at low temperatures, offering insights
into its dynamic performance and efficiency. Meanwhile, the second subset helps analyze
the battery’s performance during periods of lower discharge rates and its ability to handle
successive high-power demands. Together, these datasets are essential for understanding
the battery’s response to rapid discharge conditions and its recovery behavior, particularly
at low temperatures. Table 1 summarizes the subsets used in our analysis, detailing their
specific test conditions, key data components, and overall purpose.
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Table 1. Summary of datasets used in the analysis of Panasonic 18650PF cell performance. The
table outlines the file names, descriptions, test conditions, key data components, and the purpose of
each dataset.

Data Label
(This Work) File Name Description Test Conditions Key Data Purpose

Data 1 05-20-17_10.44
0degC_5pulse_HPPC_Pan18650PF.mat

Contains
results from
the five-
pulse
discharge
HPPC test.

Ambient
temperature:
0 ◦C

High-rate discharge
pulses at 0.5, 1, 2, 4,
6C; includes voltage
and current
responses at various
states of charge
(SOC).

Assess battery
performance under
high-power
conditions and low
temperatures.

Data 2 05-20-17_12.07 3619_dis5_10p.mat

Includes
data on the
discharges
between the
pulses of the
HPPC test.

Ambient
temperature:
0 ◦C

Discharge
performance data
during intervals
between HPPC
pulses; provides
information on
recovery and
capacity.

Evaluate how the
battery recovers from
high-power pulses
and its efficiency
during lower
discharge rates.

3. Methods

In this work, PGRU is incorporated into ensemble learning to enhance model perfor-
mance [4]. The PGRU extends the traditional GRU by introducing projected layers, which
improve computational efficiency and accuracy. GRU is described by Equations (1)–(4),
where α denotes the sigmoid function, and W and b represent weight matrices and biases,

respectively. zt, rt,
∼
ht, and a ht, are update gate, reset gate, candidate activation, and hidden

state, accordingly. The PGRU introduces projected layers to modify these equations. Specif-
ically, the PGRU incorporates a projection step to reduce the dimensionality of the hidden
state, improving both the efficiency and generalization of the model. This modification is
achieved by adding a projection matrix P to the update and reset gate calculations as in
(5)–(7). By projecting the hidden states into a lower-dimensional space before applying the
activation functions, the PGRU enhances the model’s efficiency while maintaining high
accuracy. This adaptation allows for faster training and better performance, particularly
when integrated into ensemble learning frameworks.

zt = σ(Wz [ht−1, xt] + bz) (1)

r_t = σ(Wr[ht−1, xt] + br) (2)

∼
ht = tanh(Wh[rtht−1, x_t] + bh) (3)

ht = (1 − zt)ht−1 + zt
∼
ht

)
(4)

zt = σ(P(Wz[ht−1, xt] + bz)) (5)

rt = σ(P(Wr[ht−1, xt] + br) (6)

∼
ht = tanh(P(Wh[rtht−1, xt] + bh) (7)

4. Results

The results presented in Figure 1 highlight the predictive performance of the E-PGRU
and PGRU models for SoC prediction, using the coefficient of determination. For Data
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1, the coefficient of determination indicates that the E-PGRU model performs better than
the PGRU model, with values of 0.9943 and 0.9940 for training and testing, respectively,
compared to 0.9829 and 0.9817 for PGRU. This suggests that E-PGRU accounts for a
greater proportion of the variability in SoC and demonstrates slightly better generalization
to new data. In Data-2, both models exhibit high coefficients of determination, with E-
PGRU achieving 0.9961 and 0.9941 for training and testing, respectively, while PGRU
records 0.9958 and 0.9919. These results indicate that both models are robust, with E-
PGRU consistently showing superior predictive accuracy. Overall, the data underscore the
effectiveness of the E-PGRU model in capturing and predicting SoC, as evidenced by its
higher coefficient of determination compared to the PGRU model.
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Figure 1. Curve fit and coefficient of determination results.

5. Conclusions

In this study, we compared the performance of two predictive models, E-PGRU and
PGRU, for estimating the SoC of lithium-ion batteries using two different datasets. The
results demonstrated that the E-PGRU model consistently outperformed the PGRU model,
showing superior accuracy in predicting SoC. The E-PGRU model’s enhanced perfor-
mance across the datasets highlighted its potential for more effective battery management.
Given its robust predictive accuracy, the E-PGRU model proved particularly well-suited
for applications in EVs, where precise SoC estimation is crucial for optimizing battery
performance and extending vehicle range. Consequently, we recommend adopting the
E-PGRU model for EV battery management systems to improve reliability and efficiency in
real-world applications.
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