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Abstract: Precision agriculture (PA), leveraging wireless sensor networks (WSNs) for efficient data
collection, is set to revolutionize intelligent farming. However, challenges such as energy efficiency,
data collection time, data quality, redundant data transmission, latency, and limited WSN lifespan
persist. We propose a novel edge computing-driven WSN framework (ECDWF) for PA, designed to
enhance network longevity by optimizing data transmission to the base station (BS) and enhancing
energy dissipation by abolishing data redundancy through aggregation. This framework involves a
two-step data aggregation process: within clusters, where the cluster head (CH) aggregates data, and
at a central network point, where an edge computing-enabled gateway node (GN) performs further
aggregation. Our MATLAB simulation evaluates the proposed ECDWF against the Low-energy
adaptive clustering hierarchy (LEACH) protocol and two classic sensing strategies, Effective Node
Sensing (ENS) and Periodically Sensing with All Nodes (PSAN). Results reveal significant energy
efficiency, quality of data (QoD) transmission, and network lifespan improvements. Due to reduced
long-range transmissions, nodes in our scheme dissipate energy over 2500 rounds, compared to
1000 rounds in LEACH. Our method sends data packets to the CH and base station (BS) for 2500
rounds at 3.6 × 1010 bits, while LEACH stops at 1000 rounds at 2 × 1010 bits data transmission rate.
Our approach improves network stability and lifetime, with the first node dying at 2070 rounds,
versus 999 rounds in LEACH, and the last node remaining functional until 2476 rounds compared to
1000 rounds in LEACH. Our proposed system, ECDWF, outperforms PSAN and ENS in latency, data
collection time (DCT), and energy usage. At 50 Mbps, the communication latency of ECDWF is just
8 s, compared to 24 s for ENS and 45 s for PSAN. ECDWF maintains a QoD of 100% across various
valid sensor and node counts, surpassing ENS and PSAN. Our contribution integrates edge comput-
ing with WSN for PA, enhancing energy utilization and data aggregation. This approach effectively
tackles data redundancy, transmission efficiency, and network longevity, providing a robust solution
for precision agriculture.

Keywords: precision agriculture; wireless sensor networks; edge computing; energy efficiency;
latency; data aggregation; network longevity; MATLAB

1. Introduction

Precision agriculture (PA) has garnered significant interest in both academic and in-
dustrial spheres, being regarded as a promising approach to enhancing food production [1].
Since data serve as the cornerstone of agricultural artificial intelligence, the process of data
collection and recording represents the initial phase in PA-related scientific research and
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applications [2]. Typically, data acquisition occurs within the network device domain, often
referred to as the sensing layer. Among the enabling technologies, agricultural WSNs play
a pivotal role, frequently assuming responsibility for data collection [3,4].

WSNs utilize sensor nodes to monitor environmental factors, such as temperature, air
quality, water conditions, soil composition, etc. Such ad-hoc networks are characterized by
an evolving topology that regularly alters due to the addition or removal of nodes [5,6].
WSNs are generally tailored for particular applications and are hampered by restricted
memory and power resources. Energy efficiency is a critical concern in WSNs, as replac-
ing failed nodes, particularly in harsh environments, presents a significant challenge [7].
Although wireless sensor networks provide significant benefits in numerous applications,
they also encounter specific limits. A number of studies have examined issues related to
network architecture, efficiency, and the level of services, which are often exacerbated by
the restricted power supply in WSNs [8–10]. Therefore, optimizing energy consumption is
essential for extending the network’s operational lifetime. The primary energy-consuming
tasks in WSNs include data collection, interpretation, and transportation [11].

In WSNs, transportation of data is one of the most energy-intensive processes, ac-
counting for approximately 70% of total energy consumption [12]. Reducing transmission
frequency and employing data aggregation techniques are effective strategies to conserve
energy [13]. In a WSN, sensor nodes are typically organized into clusters, with nodes
classified as either CH nodes or member nodes. The CH node aggregates data before trans-
mitting them to the sink rather than relying on direct node-to-node communication. The
basic structure of WSN clustering involves three essential components: (1) Sensor nodes
(SNs), (2) GN, (3) Base station (BS). SNs are linked to the corresponding CH, the central
data transmission hub. Instead of delivering data directly to the BS via address-centric
routing, SNs collect and relay data to the CH, thereby reducing data redundancy. The CH
then aggregates data from its cluster’s member nodes and sends them to the BS [14,15].
Although this clustering technique minimizes redundancy, energy consumption within
each cluster gradually diminishes the network’s lifespan.

Recent studies have suggested various strategies for addressing hardware require-
ments, task scheduling, and optimization for handling multiple sensor data tasks [16,17].
At the sensor level, data-gathering methods are divided into two key categories: PSAN
and ENS. The PSAN method involves equipping network nodes with numerous sensors
and regularly collecting data from all nodes to manage multiple jobs. In contrast, the
ENS method involves selecting nodes relevant to a specific task before collecting data [18].
Compared to traditional WSNs, modern WSNs face several challenges in handling multiple
data collection tasks. First, WSNs are controlled by inadequate computational power,
bandwidth, energy and storage capacities, creating a significant tension between these
limitations and the demands of multiple tasks, particularly in ensuring the acquisition of
valid sensor data. Second, the increasing complexity of applications has heightened the
need for efficient task management, especially in data acquisition, requiring that multiple
tasks be completed within a single system. Relying on traditional data collection methods
in WSNs increases time and energy consumption as more data, including invalid data,
are sensed and transmitted, negatively affecting the system’s QoD and latency [19,20].
Therefore, QoD and latency have emerged as critical metrics for managing multiple data
collection tasks in WSNs used in intelligent agriculture.

Numerous studies have been conducted on WSNs; however, few have explored
integrating factors such as data collection time (DCT), QoD, energy efficiency, latency, and
network lifetime [21,22]. Current data acquisition frameworks and strategies often overlook
these critical metrics, causing agricultural WSNs or IoT systems to invest significant time
in fusing or analyzing raw data [23]. To address these challenges and enhance QoD while
meeting the latency requirements for data collection, we developed an edge computing-
enabled WSN for intelligent agriculture. Our strategy aims to extend the network’s lifetime
by employing data aggregation techniques that reduce the number of transmissions and
consolidate them into a single transmission from GN to the BS. Two key aggregation points
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are introduced: the CHs within each cluster and the GN, which leverages edge computing.
This dual-level aggregation enables a single transmission of aggregated data with the
required QoD, optimizing power consumption and promoting more efficient resource
utilization throughout the network.

The key contributions of this work are as follows:

1. We developed a framework for edge computing-enabled WSNs considering QoD and
DCT constraints.

2. We proposed an edge computing-enabled technique for collecting valid data based on
parameters such as node position and data type, ensuring high QoD with real-time
execution.

3. We introduced a dual-level data aggregation approach, utilizing CHs and GNs to min-
imize data redundancy and reduce transmission frequency. This approach optimizes
energy efficiency and extends network lifetime by consolidating data into a single
long-range transmission from the GN to BS.

The structure of this paper is organized as follows: Section 2 details the proposed
algorithm, which introduces a two-tier data aggregation method designed to reduce energy
consumption and extend network lifespan. Section 3 provides an evaluation of the proposed
approach, with the results and discussion presented in Section 4. The paper concludes with
a summary of key findings and insights in the final section.

2. Proposed Edge Computing-Enabled WSN Framework

The proposed WSN framework consists of three layers: the WSN layer, the edge
computing layer, and the application layer, as illustrated in Figure 1.
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The framework’s operational process is as follows: First, various data-gathering duties
are allocated to either edge servers or WSN nodes according to the users’ requirements.
Next, the initial data aggregation occurs at the selected CHs. Following this, edge com-
puting performs a second round of data aggregation at the GNs. Finally, the data are
transmitted from BS to the cloud computing server. An overview of this procedure is
presented in Algorithm 1.
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Algorithm 1: Edge Computing-Enabled Data Aggregation

Input: Number of Sensors: S, Sensor Indices: sensors, Nodes: Nodes, Node Indices: V,
Sensor Weights: w (for each task), Incidence Matrix: Incidence Matrix (for each
aggregation), Energy: E, PCH.
Output: Dead Nodes, CHs, Clusters, Amount of Data Transmission
Procedure:

1. Initialization of Nodes, GN, and Base Station (BS) Placement:

(a) Initialize all sensor nodes S.
(b) Determine the locations of the GN and the BS.

2. CH Selection Based on Probability:

(a) Select CH nodes based on the probability PCH.

3. Formation of Clusters and Data Aggregation Assignment:

(a) Assign sensor nodes to the selected CHs to form clusters.
(b) CH nodes are responsible for aggregating the data received from the

Sensor Nodes (SNs) within their respective clusters.

4. Sensing and Data Transmission to CH:

(a) All sensor nodes sense the designated phenomenon.
(b) Transmit the sensed data to the corresponding CHs.

5. Data Aggregation at CH:

(a) CHs consolidate the data obtained from the sensor nodes within their
cluster.

6. Data Transmission to GN:

(a) CHs relay the consolidated data to the GN node upon concluding the data
aggregation procedure.

7. Data Aggregation at GN (Edge Server):

(a) Upon receiving data from all CHs, the edge server at GN performs
additional data aggregation to reduce redundancy and minimize data
transmission.

(b) Calculate the Node Correlation Degree (NCD) for each node’s aggregation.
(c) Discard irrelevant or less relevant sensor data.
(d) Recalculate the NCD to assess the quality of the collected data using the

node’s data weight and the incidence matrix.
(e) Activate necessary nodes and put other nodes into sleep mode after

completing data aggregation.

8. Data Transmission to BS:

(a) The data, processed at the GN node by the edge server, are transmitted to
the BS.

2.1. Working Procedure of Proposed Framework

The proposed protocol operates in two key phases: (1) Cluster Formation and CH
Selection, (2) Data Aggregation and Transmission.

2.1.1. Cluster Formation and CH Selection

At this stage, CHs are designated, and clusters are established. The protocol functions
in rounds, with each round denoting a time unit. In the initial round, CHs are chosen
at random. In the following iterations, CH selection is determined by comparing the
energy levels of nodes to a computed threshold value. Equation (1) is used to establish
the threshold (Th). Once selected, the CHs broadcast their status to the other nodes within
the cluster via notification messages, inviting nodes to join their cluster. The CHs then
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await responses from the nodes expressing their intent to join. Nodes exhibiting higher
Received Signal Strength accept join requests, and the CH establishes associations with
these nodes for the duration of the round. Upon the conclusion of this phase, the clusters
are constituted, and cluster heads (CHs) are appointed.

Th ≤ p

1 − p × rmod
(

1
p

) (1)

2.1.2. Data Aggregation and Transmission

In this phase, SNs transmit the detected data to the CH using TDMA technique.
Implementing this technique is essential to prevent data collisions that could occur if all
nodes within the cluster are sent simultaneously. Once CHs are selected in the initial phase,
they assign TDMA schedules for sending data within clusters. Upon receiving data from
the nodes, the CH aggregates and forwards the information to the GN. At the GN, further
data aggregation is performed using edge computing to eliminate duplicate data potentially
received from neighboring CHs. This dual-level aggregation strategy reduces redundant
data transmission to the BS, significantly improving the network’s energy efficiency and
overall performance.

3. Performance Evaluation
3.1. Simulation Parameters

For the simulation of the proposed scheme, a square area measuring 100 m × 100 m
is considered, within which 100 nodes are installed arbitrarily. The GN is positioned at
the center of the area (50 m × 50 m), while the BS is just outside (120 m × 120 m). The
simulation assumes ideal conditions, including minimal channel interference with no loss
of data and no constraints on bandwidth. The specific parameters used in the simulation
are detailed in Table 1.

Table 1. Simulation parameters for the proposed WSN framework.

Parameters Value

Number of sensor nodes (n) 100

The energy of node Eo 0.5 J

CH selection probability (p) 0.1

Transmitter’s energy ETx 50 × 10−10 J

Receiver’s energy ERx 50 × 10−10 J

Energy (free space) Efs 10 × 10−11 J

Energy (Multipath fading) Emp 0.0013 × 10−12 J

Energy (Data aggregation) EDA 5 × 10−9 J

Maximum rounds Rmax 5000

Distance Threshold (free space) d0 87 m

Data Rate 250 Kbps

Minimum Residual Energy (Eth) 10 J

Frequency 25 kHz

Sensing Range of Each Meter (sensing range) 20 m

Latency Rates 0–50 Mbps

Simulation Time (t) 10 s
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3.2. Radio Energy Dissipation Model

The model for radio energy dissipation encompasses essential elements, including the
transmitter, amplifier, and receiver. The proposed model quantifies the energy necessary to
send an “M” bit message across a distance of “d” by employing a radio energy dissipation
model from [24], as outlined in Equation (2). The amount of power expended to operate
the transceiver circuitry is denoted as Eelec, whereas free space (E f s) and multi-path fading
(Emp) serve as parameters that characterize energy dissipation per bit, contingent upon
the transmission distance. The threshold distance, d0, is computed in Equation (3), which
establishes the suitable energy model in relation to distance.

The simulation incorporates two distinct propagation channels: (1) E f s; (2) Emp. The
channel selection is contingent upon the spatial separation between the sender and the
receiver. For distances less than the threshold d0, the E f s model is utilized, whereas the
Emp model is employed for distances that surpass the threshold. Equation (4) specifies
the amount of power necessary for the receiver, ERx, to process a message consisting of
“M” bits.

d =

{
ETx(M, d)M × Eelec + M × E f s × d2 when (d < d0)
M × Eelec + M × Emp × d4 when (d ≥ d0)

(2)

d0 =

√
E f s

Emp
(3)

ERx(M) = M × Eelec (4)

4. Results and Discussion

In our proposed system, nodes are randomly distributed in a 100 × 100 farming area,
with some nodes marked as dead due to insufficient energy (energy below a threshold).
Figure 2 shows connections between non-aggregating nodes and their respective cluster
heads with dashed lines, and between cluster heads and the gateway with solid lines. This
simulates the data forwarding process in the network. Nodes with sufficient energy are
considered alive, and among them, some are selected as candidate aggregator nodes based
on a threshold probability. One aggregator node is chosen from each sub-farming region to
aggregate data from non-aggregating nodes within that region. Following the aggregation
of data at the CHs, the compiled information is transmitted to the GNs. Figure 3 displays
the aggregated data (in Kbps) received by the gateway from the cluster heads. The data
received at the gateway highlight the amount of information that the gateway will process
and store.
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4.1. Comparison with LEACH

We compared the performance of our proposed system with the LEACH protocol,
focusing on energy dissipation, data transmission to the BS, QoD, and network stability.
Figure 4 illustrates how the energy lost by nodes in the LEACH and Proposed protocols
is distributed. Nodes expend energy after roughly 1000 rounds in LEACH; this happens
after about 2500 rounds in our proposed ECDWF. The proposed system’s reduced energy
dissipation is attributed to fewer long-range transmissions, with data aggregation at both
the CHs and GNs minimizing redundant data transmissions.
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Figure 5 shows the number of data packets sent to the BS. In the proposed scheme,
more packets are sent than in LEACH. Instead of directly transmitting data to the BS,
as in LEACH, our protocol aggregates data first at the CHs and then at the GNs before
sending them to the BS. LEACH sends data until about 1000 rounds, with a data rate of
up to 2 × 1010, while the proposed scheme transmits data until 2500 rounds at a rate of
3.5 × 1010. The proposed protocol enhances energy efficiency by using the GNs for edge
computing and data aggregation, achieving a higher data rate and longer transmission
period to the BS than LEACH. Figure 6 further demonstrates that our framework improves
QoD, enabling an additional 1500 rounds of data transmission at a higher rate.
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Figure 7 compares network lifetime and stability. The very first node passes away
after 999 rounds in LEACH, and by the time 1000 rounds have passed, all of the nodes
have passed away. In contrast, the first node in our scheme dies after 2070 rounds and the
last node by 2500 rounds, indicating superior network stability and lifetime. Simulation
results show that our protocol outperforms LEACH regarding data transmission, energy
dissipation, QoD, stability, and overall network lifespan. Minimum long-distance trans-
missions to the BS are more efficient for homogeneous networks. Data aggregation at two
distinct stages minimizes transmissions and optimizes energy usage by merging several
transmissions into a single lengthy GN-BS transmission.
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4.2. Comparison with Sensing Algorithms

We also compared our proposed system with the prominent sensing algorithms PSAN
and ENS in terms of DCT, latency, and energy consumption. DCT and latency were used to
assess the performance of the proposed WSN framework.

Figure 8 depicts communication lag at various data speeds. As illustrated, latency
lowers across every technique as the data rate increases, since greater data rates reduce
transmission time. With varying numbers of covering nodes, Figure 9 displays the DCT
findings. Although DCT increases with the number of nodes in all algorithms, the proposed
algorithm consistently achieves lower DCT than PSAN and ENS. The proposed algorithm
minimizes communication latency and DCT by collecting and transmitting only valid
data, effectively reducing the amount of invalid data in the network. PSAN shows the
highest communication latency and DCT, as it collects data from all nodes and sensors. ENS
performs better than PSAN since it selects specific sensor nodes rather than involving the
entire network. At a 50 Mbps data rate, the proposed algorithm achieves a communication
latency of just 8 s, compared to 24 s for ENS and 45 s for PSAN.
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Figure 10 compares energy consumption across different numbers of valid sensors.
Energy consumption increases with the rise in the valid sensor numbers. However, the pro-
posed framework consumes significantly less energy than PSAN and ENS. This is because
the proposed algorithm selects sensors and nodes based on their validity, optimizing energy
usage. In contrast, PSAN reaches the highest and most consistent energy consumption level
since it does not account for valid sensors, leading to inferior energy efficiency compared
to the proposed algorithm.
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5. Conclusions

This research presents a novel framework to improve energy efficiency in wireless
sensor networks by employing data aggregation techniques. By consolidating redundant
data at the aggregator nodes, the number of transmissions is reduced, leading to lower
energy consumption across the network. The proposed system introduces a gateway node
that performs secondary data aggregation using edge computing after receiving data from
cluster heads. These optimized data are then sent to the sink through a single, long-range
transmission, further minimizing energy use. The proposed WSN framework markedly
prolongs the network’s lifespan by optimizing energy conservation. We evaluated the
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efficacy of our suggested method against a renowned clustering technique and two sensing
algorithms. Our solution outperforms the LEACH protocol in energy dissipation, stability,
data transfer to the base station, and network longevity, as evidenced by the comparative
analysis. Furthermore, our framework surpasses the commonly utilized sensing algorithms,
ENS and PSAN, in terms of communication latency, DCT, and energy usage. It is important
to emphasize that this study concentrates on homogenous networks. Future study will seek
to expand the dual data aggregation approach to heterogeneous networks and investigate
additional performance indicators, including overhead, bandwidth consumption, and
packet loss.
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