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Abstract: This study aimed to predict employee sickness absence, vital for sustainable
workforce management and organizational productivity. Despite its importance, gaps
exist in using advanced machine learning for this purpose. This research developed
and validated models—Gradient Boosting, CatBoost, and Random Forest—focused on
predictors like health conditions, mental well-being, and work stress. Using a factory
worker dataset, this study conducted feature engineering, causal inference, and model
performance evaluation. Random Forest proved especially effective in predicting absence,
with key factors including recent performance and health. The findings support targeted
interventions and efficient resource allocation, promoting sustainable business practices.
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1. Introduction
Predicting employee illness absence is a critical aspect of sustainable workforce man-

agement, impacting both organizational productivity and employee well-being. Absen-
teeism due to illness can disrupt operations, increase costs, and negatively affect morale.
Therefore, accurately forecasting illness-related absences is essential for developing effec-
tive management strategies. Despite its importance, the current literature reveals significant
research gaps, particularly in the application of advanced machine learning techniques
specifically tailored to forecast sickness-related absenteeism among employees.

Existing research has explored various factors influencing sickness absence. For
instance, Norder et al. [1] developed a predictive rule for sickness absence caused by
common mental disorders, demonstrating fair discrimination at different time points after
reporting sicknesses. Similarly, Heo et al. [2] identified job stress factors such as high job
demand and organizational injustice as significant predictors of absence due to accidents
and illnesses. Eriksen [3] found that low social support at work could be a predictor of
sickness absence across different employee groups, emphasizing the critical role of the
workplace environment in absenteeism.

Further studies have highlighted the importance of considering mental health in
predicting illness absence. Lamichhane et al. [4] pointed out that symptoms of depres-
sion are a substantial risk factor for future absenteeism among manufacturing workers.
Plaat et al. [5] discussed the impact of the COVID-19 pandemic on sickness absence due to
mental health issues, illustrating how external factors can influence absenteeism patterns.
Additionally, Boot et al. [6] highlighted a combination of factors such as age, working
conditions, pregnancy, and previous absence history as predictors of long-term sickness
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absence. Munir et al. [7] emphasized the role of organizational support in managing chronic
illness to prevent prolonged absences.

While these studies provide valuable insights, they primarily focus on individual pre-
dictors or specific conditions, and there is a noticeable scarcity of research integrating these
factors into comprehensive machine learning models for illness absence prediction. The
majority of existing studies have concentrated on turnover and attrition prediction [8–15],
job satisfaction [16,17], and mental health support [18–21]. However, illness-related absen-
teeism involves unique factors that require distinct consideration, such as physical health
conditions, mental well-being, and work-related stressors.

This study aims to fill this research gap by developing and validating machine learning
models tailored for predicting worker illness absence. By incorporating a comprehensive
set of predictors, including physical health conditions, mental well-being, work-related
stressors, and organizational factors, this study seeks to provide actionable insights for
managing absenteeism more effectively. The urgency of this research is underscored by
ongoing global health crises, particularly the COVID-19 pandemic, which has signifi-
cantly impacted workforce dynamics and highlighted the need for effective absenteeism
management strategies [5,21].

The sustainability considerations of this study are manifold. The effective management
of worker illness absence contributes to resource optimization, enhanced productivity, and
improved employee well-being. Predicting illness-related absences allows organizations to
optimize resource allocation, streamline workforce planning, and minimize disruptions,
thereby promoting sustainable business practices [22,23]. Accurate prediction also facili-
tates better workforce planning and resource allocation, ensuring operational continuity
even during periods of high absenteeism [24]. Additionally, it can lead to significant cost
savings by decreasing the financial impact of unplanned absences, such as overtime costs
and temporary staffing expenses [25].

Implementing machine learning models for illness absence prediction can also enhance
employee well-being and satisfaction. By proactively addressing health-related factors con-
tributing to absenteeism, organizations can create a healthier work environment, support
employee health, and enhance overall job satisfaction, resulting in increased employee
retention rates and improved morale [26]. Furthermore, the ability to forecast and manage
illness-related absences effectively strengthens organizational resilience. Businesses can
adapt to changing circumstances, such as public health crises or seasonal illness outbreaks,
ensuring the continuity of operations and minimizing disruptions [27].

This study leverages open data on factory workers’ daily performance and attrition,
available from Gladden [28], to develop and validate predictive models for illness absence.
By utilizing these data, this study aims to uncover patterns and trends in employee ab-
senteeism, providing a foundation for developing targeted interventions and policies that
support sustainable workforce management. Through advanced predictive analytics, this
research seeks to enhance organizational efficiency, promote employee well-being, and
contribute to the overall sustainability of business operations.

2. Materials and Methods
2.1. Data Collection

The dataset used in this study include 18 months of daily performance and attrition
records for a factory’s workforce, comprising 508 workers with a total of 687 individuals
appearing in the dataset due to employee turnover [28]. This synthetic dataset includes
411,948 observations, detailing both regular daily events, such as attendance and efficacy,
and special one-time events like accidents, terminations, and the onboarding of new
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employees. A unique aspect of this dataset is the diverse causal relationships embedded
within the data, which are ripe for discovery through machine learning.

Each row in the dataset represents a specific event occurring on a particular day
for a specific worker, with 14 different types of events captured. These events include
presence, absence, efficacy, resignation, termination, onboarding, idea generation, mental
lapses, physical feats, slips, teamwork, disruptions, sacrifices, and sabotage. The dataset
also contains fields related to both the subject (worker) and their supervisor, as well as
details about the event itself. This comprehensive dataset, prepared using Synaptans
WorkforceSim version 0.3.15, provides a rich source of information for analyzing employee
behavior and predicting absenteeism due to illness.

2.2. Data Preparation

The dataset was preprocessed using Python 3.10.9, converting ‘event_date’ to datetime
format and handling missing values by filling numeric columns with the mean and categor-
ical columns with the mode. Duplicate rows were removed to ensure data integrity. The
cleaned data were saved as ‘preprocessed.csv’ for the feature engineering and predictive
modeling of employee absence due to illness.

2.3. Feature Engineering

Feature engineering was performed to extract relevant features related to predicting
worker sickness based on mental lapses or physical accidents. The process began with
loading the preprocessed data from the preprocessed.csv file, which had undergone initial
cleaning processes such as handling missing values, converting date formats, and removing
duplicates. The primary goal was to create the target variable ‘sickness’, indicating whether
a worker missed work due to illness within the next seven days.

This goal was achieved using Python’s .shift(−7) function to flag a forthcoming
‘Absence’ event by setting a ‘sickness’ variable to 1 if detected, otherwise 0. Specific features
included the following: (a) Lag Features—lapse_last_week and slip_last_week, counting
the past week’s ‘Lapse’ and ‘Slip’ events using a seven-day rolling window; (b) Trend
Feature—efficacy_trend, averaging weekly worker efficacy; (c) Data Quality—dropping
NaN rows from rolling window operations; and (d) Selected Columns—target variable
sickness, new features, and relevant worker attributes for analysis and modeling.

2.4. Causal Inference Analysis

To understand the causal relationships between various factors and worker illness
absence, we performed a causal inference analysis using the dowhy library. This analysis
involved creating a causal model, identifying the effect of interest, and estimating this
effect. The feature-engineered dataset served as the basis for this analysis. The key vari-
ables considered as potential causes of sickness included lapse_last_week, slip_last_week,
and efficacy_trend, while sub_health_h, sub_commitment_h, sub_perceptiveness_h,
sub_dexterity_h, sub_sociality_h, and sub_goodness_h were treated as confounders. The
causal model was defined with these variables, and the resulting causal graph was visual-
ized to illustrate relationships.

Once the causal model was established, we proceeded to identify the causal effects
of the variables of interest on sickness. This involved specifying the causal estimand and
using a statistical method, such as linear regression, to estimate the effects. The ‘dowhy’
library in Python facilitated these steps, enabling us to derive the causal estimate. Addi-
tionally, to ensure the robustness of our findings, we performed a refutation test using the
placebo_treatment_refuter method. This comprehensive causal inference analysis provided
valuable insights into how factors like mental lapses, physical slips, and efficacy trends
impact worker sickness, thereby providing strategies for better workforce management.
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Feature descriptions:

• lapse_last_week counts the number of severe mental mistakes made by a worker in
the past week.

• slip_last_week counts the number of physical accidents or missteps experienced by a
worker in the past week.

• efficacy_trend represents the average productivity of a worker over the past week.
• sub_health_h: a confounder indicating the overall health status of a worker.
• sub_commitment_h: a confounder representing the level of commitment a worker has

towards their job.
• sub_perceptiveness_h: a confounder that measures a worker’s ability to perceive and

understand their work environment.
• sub_dexterity_h: a confounder indicating the physical skill and agility of a worker.
• sub_sociality_h: a confounder reflecting the social behavior and teamwork abilities of

a worker.
• sub_goodness_h: a confounder measuring the moral and ethical behavior of a worker.

2.5. Data Imbalance Analysis and Selection of Predictive Methods

To determine whether the feature-engineered dataset is imbalanced, we examined
the distribution of the target variable, sickness. This involved loading the dataset and
inspecting the number of instances belonging to each class. Upon running the analysis, we
found that the dataset contains 405,508 instances of workers not being sick (class 0) and
only 6440 instances of workers being sick (class 1), resulting in a severe imbalance with an
imbalance ratio of approximately 63:1. This significant disparity indicates that the dataset
is heavily imbalanced, which can potentially bias predictive models towards the majority
class if not addressed properly.

Given this severe imbalance, we selected three predictive methods that are well suited
to handle such data characteristics: Gradient Boosting, CatBoost, and Random Forest.
These algorithms were chosen because of their robustness in dealing with imbalanced
datasets. Gradient Boosting focuses on minimizing errors through sequential model build-
ing, CatBoost is specifically designed to handle categorical features and class imbalance,
and Random Forest uses ensemble learning with class weighting to ensure that minority
classes are well represented during training. By leveraging these methods, we aimed to
achieve more accurate and reliable predictions of worker sickness despite the significant
class imbalance in our dataset.

2.6. Modeling

To predict worker sickness amid class imbalance, we employed Gradient Boosting,
CatBoost, and Random Forest models, chosen for their ability to manage imbalanced
datasets and yield reliable predictions. Gradient Boosting iteratively builds decision trees
to correct previous errors, enhancing the model’s focus on hard-to-classify cases, which is
especially useful for imbalanced data. Model performance was evaluated using a confusion
matrix, classification report, and metrics like accuracy, precision, recall, and F1-score for
comprehensive assessment.

CatBoost, designed for handling categorical features and imbalanced data, was also
utilized. Its method of transforming categorical variables into numerical representations
without extensive preprocessing, alongside balanced objectives, made it particularly effec-
tive for our dataset. The model’s accuracy and reliability were assessed through similar
performance metrics, including a confusion matrix, classification report, and precision and
recall metrics.
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Finally, we selected Random Forest for its ensemble approach and class-weighting
capabilities, which help balance predictions in favor of the minority class. By aggregating
the results from multiple decision trees, Random Forest minimizes bias toward the majority
class, increasing prediction accuracy for sickness cases. The model’s predictive strength
was evaluated using the same thorough performance metrics, providing insights into its
reliability for identifying worker sickness patterns.

2.7. Assessment of Classification Models’ Performance

A confusion matrix is a crucial tool for assessing the performance of a classification
model. It provides a detailed comparison between the actual and predicted values, allowing
for the calculation of various performance metrics such as accuracy, precision, recall,
and F1-score.

The structure of the confusion matrix for a binary classification problem is illustrated in
Table 1. As depicted, the confusion matrix consists of four components: TPs (true positives,
correctly predicted positive instances), TNs (true negatives, correctly predicted negative
instances), FPs (false positives, negative instances incorrectly predicted as positive), and
FNs (false negatives, positive instances incorrectly predicted as negative).

Table 1. The structure of a confusion matrix.

Predicted Positive Predictive Negative

Actual Positive TPs (True Positives) FNs (False Negatives)
Actual Negative FPs (False Positives) TNs (True Negatives)

The models’ performance metrics were derived from the confusion matrix as follows:

1. Accuracy: Accuracy measures the proportion of correctly identified positive and
negative cases out of the total instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

2. Precision (Positive Predictive Rate): Precision measures the percentage of correct
positive predictions out of all the positive predictions made by the model.

Precision =
TP

TP + FP
(2)

3. Recall (Sensitivity or True Positive Rate): Recall measures the proportion of actual
positive instances that the model accurately identified.

Recall =
TP

TP + FN
(3)

4. F1-Score: The F1-score, which is the harmonic mean of precision and recall, provides
a balanced metric that accounts for both false positives and false negatives.

F − 1 Score = 2 × Precision × Recall
Precision + Recall

(4)

2.8. Feature Importance Analysis

Feature importance calculations were performed to determine the most critical fea-
tures for predicting workers’ illness-related absences. This process involved computing
importance scores for each feature and ranking them by their significance. The insights
gained from this analysis offer valuable information on the key factors influencing absences,
enabling more targeted and effective workforce management strategies.
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For Gradient Boosting, feature importance can be calculated using the mean decrease
in impurity (MDI) or the mean decrease in accuracy (MDA). In this study, we focus on the
MDI approach. The importance score for a feature j in Equation (5) is computed as the total
reduction in the impurity (e.g., Gini impurity or entropy) brought by that feature, averaged
over all the trees in the ensemble.

FI(j) = ∑T
t=1∑n∈nodes(t,j)

Nn
N ∆In (5)

where
FI(j) : feature importance for feature j.
T : total number of trees.
nodes(t, j) : nodes in tree t where feature j is used for splitting.
Nn : number of samples that reach node n.
N : total number of samples.
∆In : impurity decrease at node n due to feature j.

CatBoost provides a similar approach to feature importance, calculating it based
on the average decrease in loss due to splits on the feature, weighted by the number of
samples passing through the splits. The importance score for a featurej in Equation (6)
is calculated by the average prediction value change (PVC) when the feature is used for
splitting, normalized by the total prediction value change for all features.

FI(j) =
1
T ∑T

t=1∑n∈nodes(t,j)

(
PVCn,j

∑M
k=1 PVCn,k

)
(6)

where
FI(j) : feature importance for feature j.
T : total number of trees.
nodes(t, j) : nodes in tree t where feature j is used for splitting.
M : total number of features.
PVC(n,j) : prediction value change at node n due to feature j.

For Random Forest, feature importance can be computed using the mean decrease in
impurity (MDI) and the mean decrease in accuracy (MDA). The most common approach
is the use of the mean decrease in impurity (MDI), also known as Gini Importance. The
feature importance score for a featurej in Equation (7) is computed by averaging the total
decrease in node impurity (e.g., Gini impurity or entropy) brought by that feature, across
all the trees in the forest.

FI(j) =
1
T ∑T

t=1∑n∈nodes(t,j)
Nn
N ∆In (7)

where
FI(j) : feature importance for feature j.
T : total number of trees.
nodes(t, j) : nodes in tree t where feature j is used for splitting.
Nn : number of samples that reach node n.
N : total number of samples.
∆In : impurity decrease at node n due to feature j.

When explaining feature importance in machine learning models to business and
management professionals, it is essential to use simplified terminology. A crucial concept
is impurity, which measures how well the data are grouped according to the target variable
(e.g., workers’ absence due to illness). In predictive models, impurity helps evaluate how
effectively splits in the data separate different outcomes. The two main types of impurity
are Gini impurity and entropy.
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• Gini Impurity: This measures the probability of misclassifying an observation. It
ranges from 0 (perfectly pure) to 0.5 (completely mixed). For instance, if 90% of the
workers in a group did not miss work due to illness, the Gini impurity would be low,
indicating a well-separated group.

• Entropy: This measures the level of disorder or uncertainty. It ranges from 0 (perfectly
pure) to 1 (completely mixed). For example, if a group has an equal number of workers
who missed work and those who did not, it has high entropy, indicating high disorder.

The reduction in impurity, also known as information gain, determines the importance
of a feature. If splitting the data based on a particular feature, such as mental lapses,
significantly reduces impurity, this indicates that this feature is crucial for predicting
worker absence.

By grasping these concepts, business and management professionals can better under-
stand how predictive models identify the most critical factors in predicting outcomes, such
as workers’ absence, leading to more informed decision-making and optimized workforce
management strategies.

3. Results and Discussion
The objective of this study was to develop and evaluate predictive models for iden-

tifying worker sickness absence using machine learning techniques, particularly in the
context of a severely imbalanced dataset. We utilized Gradient Boosting, CatBoost, and
Random Forest methods to achieve this goal. This section details the causal model used for
prediction, analyzes the performance metrics of the predictive models, and explores the
feature importance in predicting worker illness absence.

3.1. Causal Model in Predicting Workers’ Illness Absence

The causal inference analysis utilized the dowhy library to establish a causal model
that identified the potential effects of lapse_last_week, slip_last_week, and efficacy_trend on
sickness, considering sub_health_h, sub_commitment_h, sub_perceptiveness_h,
sub_dexterity_h, sub_sociality_h, and sub_goodness_h as confounders. The detailed causal
relationships are illustrated in Figure 1.
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The detailed causal relationships can be explained as follows:

1. sub_health_h → lapse_last_week, slip_last_week, efficacy_trend, sickness:
A worker’s health status strongly impacts their mental lapses, physical slips, and
overall efficacy, directly correlating with increased sickness absence. From a business
perspective, effectively monitoring and promoting employee health can help reduce
absences, boosting productivity and overall workplace efficiency.

2. sub_commitment_h → lapse_last_week, slip_last_week, efficacy_trend, sickness:
A higher level of worker commitment reduces mental lapses and physical slips, boosts
efficacy, and lowers the risk of sickness absence. From a business perspective, foster-
ing commitment through engagement and incentives can minimize errors, enhance
performance, and decrease absenteeism.

3. sub_perceptiveness_h → lapse_last_week, slip_last_week, efficacy_trend, sickness:
Workers with high perceptiveness tend to make fewer mental errors and are generally
more efficient, leading to a reduced risk of sickness-related absences. From a business
perspective, investing in training programs to enhance worker perceptiveness can de-
crease mistakes, boost productivity, and lower the rates of illness-related absenteeism.

4. sub_dexterity_h → lapse_last_week, slip_last_week, efficacy_trend, sickness:
Higher dexterity in workers was found to reduce physical slips and enhance effi-
cacy, leading to fewer sickness absences. From a business perspective, investing in
ergonomic solutions and physical training can boost dexterity, decrease accidents, and
improve overall performance.

5. sub_sociality_h → lapse_last_week, slip_last_week, efficacy_trend, sickness:
Workers with high sociality generally have better teamwork and communication
skills, leading to fewer lapses and slips, improved efficacy, and reduced sickness
absence. From a business perspective, fostering a collaborative work environment
can minimize errors, boost performance, and decrease absenteeism.

6. sub_goodness_h → lapse_last_week, slip_last_week, efficacy_trend, sickness:
A worker’s intrinsic goodness or ethical behavior positively impacts productivity and
lowers the risk of lapses, slips, and sickness absence. From a business perspective,
promoting a culture of integrity and ethical conduct can enhance worker reliability
and help reduce absenteeism.

7. lapse_last_week → sickness:
Frequent mental lapses in the prior week suggest potential health or cognitive issues
that may lead to sickness absence. From a business perspective, recognizing such
patterns allows for early intervention and support, helping to prevent further health
decline and reduce absenteeism.

8. slip_last_week → sickness:
Physical slips or accidents from the previous week are strong indicators of potential
health problems leading to sickness absence. From a business perspective, address-
ing these safety issues and providing adequate physical support can help reduce
workplace accidents and, in turn, lower the incidence of sickness-related absences.

9. efficacy_trend → sickness:
A declining trend in work efficacy over the past week may indicate underlying health
issues, potentially leading to sickness absence. From a business perspective, monitor-
ing these efficacy trends allows for the early detection of health problems, enabling
proactive support measures that help maintain worker health and sustain productivity.
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3.2. Evaluation of Performance Metrics

The confusion matrices for the Gradient Boosting, CatBoost, and Random Forest
models are illustrated in Figure 2, Figure 3, and Figure 4, respectively. The performance
metrics derived from these models are summarized in Table 2.

Table 2. The performance metrics of the models.

Gradient Boosting CatBoost Random Forest

Accuracy 0.539786381843 0.7155358660032 0.9724845248209
Precision 0.017746577134 0.0177465771344 0.0278330019881

Recall 0.505694760820 0.3090356871678 0.0212604403948
F1-Score 0.033937170374 0.0335656261597 0.0241067585019

Eng. Proc. 2025, 84, 17 FOR PEER REVIEW  9  of  15 
 

 

proactive support measures that help maintain worker health and sustain productiv-

ity. 

3.2. Evaluation of Performance Metrics 

The  confusion matrices  for  the Gradient Boosting, CatBoost,  and Random  Forest 

models are illustrated in Figures 2, 3, and 4, respectively. The performance metrics derived 

from these models are summarized in Table 2. 

 

Figure 2. Confusion matrix for Gradient Boosting model. 

 

Figure 3. Confusion matrix for CatBoost model. 

Figure 2. Confusion matrix for Gradient Boosting model.

Eng. Proc. 2025, 84, 17 FOR PEER REVIEW  9  of  15 
 

 

proactive support measures that help maintain worker health and sustain productiv-

ity. 

3.2. Evaluation of Performance Metrics 

The  confusion matrices  for  the Gradient Boosting, CatBoost,  and Random  Forest 

models are illustrated in Figures 2, 3, and 4, respectively. The performance metrics derived 

from these models are summarized in Table 2. 

 

Figure 2. Confusion matrix for Gradient Boosting model. 

 

Figure 3. Confusion matrix for CatBoost model. Figure 3. Confusion matrix for CatBoost model.



Eng. Proc. 2025, 84, 17 10 of 15
Eng. Proc. 2025, 84, 17 FOR PEER REVIEW  10  of  15 
 

 

 

Figure 4. Confusion matrix for Random Forest model. 

Table 2. The performance metrics of the models. 

  Gradient Boosting  CatBoost  Random Forest 

Accuracy  0.539786381843  0.7155358660032  0.9724845248209 

Precision  0.017746577134  0.0177465771344  0.0278330019881 

Recall  0.505694760820  0.3090356871678  0.0212604403948 

F1-Score  0.033937170374  0.0335656261597  0.0241067585019 

The accuracy of the Gradient Boosting model was 53.98%, indicating moderate relia-

bility in predicting worker sickness absence. The CatBoost model improved on this with an 

accuracy of 71.55%, demonstrating its effectiveness in handling the imbalanced dataset. The 

Random Forest model achieved the highest accuracy of 97.25%, underscoring its robustness 

and superior performance. High accuracy in these models translates to fewer misclassifica-

tions, which is crucial for effective workforce management and operational efficiency. 

The precision  for both  the Gradient Boosting and CatBoost models was 1.77%, re-

flecting a very low proportion of true positive predictions out of the total number of pos-

itive predictions. This indicates a high rate of false positives, which could lead to unnec-

essary interventions. The Random Forest model had a slightly higher precision of 2.78%, 

showing some  improvement but still  indicating a significant number of false positives. 

High precision is critical for minimizing unnecessary actions, which is essential for main-

taining resource efficiency and reducing operational costs. 

The recall for the Gradient Boosting model was 50.57%, demonstrating a strong ca-

pability to identify actual sickness absences. The CatBoost model had a recall of 30.90%, 

showing a moderate ability to detect true positives. The Random Forest model, however, 

had a recall of only 2.13%, indicating a significant number of missed sickness absences. 

High recall ensures that the model captures most of the true sickness cases, which is vital 

for timely interventions and maintaining workforce health. 

The F1-score for  the Gradient Boosting model was 3.39%, balancing precision and 

recall. The CatBoost model had an F1-score of 3.36%, indicating a slightly lower but com-

parable performance. The Random Forest model had an F1-score of 2.41%, reflecting its 

lower overall performance in balancing precision and recall. A high F1-score is crucial for 

reliable  predictions, which  contribute  to  effective  absence management  and  strategic 

workforce planning. 

From a business perspective, these performance metrics are vital for cost savings and 

operational benefits. Accurate and reliable predictions minimize unnecessary  interven-

tions  and  ensure  timely  support  for workers,  leading  to  significant  cost  savings  and 

Figure 4. Confusion matrix for Random Forest model.

The accuracy of the Gradient Boosting model was 53.98%, indicating moderate re-
liability in predicting worker sickness absence. The CatBoost model improved on this
with an accuracy of 71.55%, demonstrating its effectiveness in handling the imbalanced
dataset. The Random Forest model achieved the highest accuracy of 97.25%, underscor-
ing its robustness and superior performance. High accuracy in these models translates
to fewer misclassifications, which is crucial for effective workforce management and
operational efficiency.

The precision for both the Gradient Boosting and CatBoost models was 1.77%, reflect-
ing a very low proportion of true positive predictions out of the total number of positive
predictions. This indicates a high rate of false positives, which could lead to unnecessary
interventions. The Random Forest model had a slightly higher precision of 2.78%, show-
ing some improvement but still indicating a significant number of false positives. High
precision is critical for minimizing unnecessary actions, which is essential for maintaining
resource efficiency and reducing operational costs.

The recall for the Gradient Boosting model was 50.57%, demonstrating a strong
capability to identify actual sickness absences. The CatBoost model had a recall of 30.90%,
showing a moderate ability to detect true positives. The Random Forest model, however,
had a recall of only 2.13%, indicating a significant number of missed sickness absences.
High recall ensures that the model captures most of the true sickness cases, which is vital
for timely interventions and maintaining workforce health.

The F1-score for the Gradient Boosting model was 3.39%, balancing precision and
recall. The CatBoost model had an F1-score of 3.36%, indicating a slightly lower but
comparable performance. The Random Forest model had an F1-score of 2.41%, reflecting
its lower overall performance in balancing precision and recall. A high F1-score is crucial
for reliable predictions, which contribute to effective absence management and strategic
workforce planning.

From a business perspective, these performance metrics are vital for cost savings and
operational benefits. Accurate and reliable predictions minimize unnecessary interventions
and ensure timely support for workers, leading to significant cost savings and improved
resource allocation. For instance, minimizing false positives and maximizing true posi-
tive identifications can enhance workforce productivity and reduce absenteeism-related
costs. Operational benefits include better workforce planning, reduced downtime, and opti-



Eng. Proc. 2025, 84, 17 11 of 15

mized resource management, collectively contributing to improved business performance,
competitiveness, and sustainability.

3.3. Feature Importance Analysis in Predicting Workers’ Absence Due to Illness

Feature importance analysis provides critical insights into which variables most sig-
nificantly impact the prediction of workers’ sickness absence. By understanding these
features, businesses can prioritize interventions and allocate resources more effectively,
leading to enhanced operational efficiency and better workforce management. The follow-
ing discussion analyzes the feature importance for the Gradient Boosting, CatBoost, and
Random Forest models.

The feature importance for the Gradient Boosting model is depicted in Figure 5. The
most critical feature is efficacy_trend, which highlights the importance of a worker’s recent
performance trends in predicting sickness absence. This suggests that the consistent moni-
toring of a worker’s efficacy can provide early warning signs of potential health issues. The
sub_health_h feature is the next most important, indicating that overall health status signif-
icantly influences absenteeism. Sub_commitment_h and sub_sociality_h are also crucial,
emphasizing the role of worker engagement and social interactions in maintaining regular
attendance. The features sub_dexterity_h and sub_goodness_h, while less significant, still
contribute to the model by highlighting the importance of physical agility and ethical
behavior. Lapse_last_week and slip_last_week have the lowest importance, suggesting
that while recent lapses and slips are relevant, they are less predictive compared to overall
health and performance trends.
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In Figure 6, the CatBoost model’s feature importance analysis similarly identifies effi-
cacy_trend as the most significant predictor of sickness absence, reinforcing the importance
of monitoring recent performance trends. Sub_commitment_h follows, underlining the
significance of worker commitment in predicting absences. Sub_dexterity_h, sub_health_h,
and sub_sociality_h also play essential roles, indicating that physical dexterity, health
status, and social behavior are critical factors. Sub_goodness_h and sub_perceptiveness_h
further highlight the relevance of ethical behavior and perceptiveness in predicting ab-
sences. Lapse_last_week and slip_last_week are again the least important features, sug-



Eng. Proc. 2025, 84, 17 12 of 15

gesting that immediate past incidents are less influential than long-term health and
performance indicators.
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The Random Forest model’s feature importance, shown in Figure 7, provides a
slightly different perspective. Efficacy_trend remains the top predictor, emphasizing
its consistent importance across models. However, the importance of sub_health_h is
more pronounced in this model, indicating a stronger focus on overall health status.
Sub_commitment_h and sub_dexterity_h are also significant, aligning with previous mod-
els in highlighting the importance of commitment and physical agility. Sub_sociality_h
and sub_goodness_h continue to be relevant, while sub_perceptiveness_h also shows its
importance. Lapse_last_week and slip_last_week have minimal importance, consistent
with the other models, underscoring that while recent incidents matter, they are not as
predictive as broader health and performance trends.
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From a business and management perspective, these insights into feature importance
offer several actionable benefits. Prioritizing interventions based on efficacy trends and
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overall health status allows for more targeted support and proactive health management,
which can reduce absenteeism. Focusing on improving worker commitment, social in-
teractions, and physical dexterity can enhance engagement and reduce the likelihood of
sickness absence. Additionally, while immediate past incidents like lapses and slips are
less critical, they should not be entirely ignored as they provide supplementary informa-
tion. Leveraging these predictive insights enhances operational efficiency by reducing
unplanned absences, ensuring continuous productivity, and optimizing resource allocation.
This proactive approach to workforce management leads to substantial cost savings and
supports strategic decision-making, contributing to overall organizational success.

4. Conclusions
This study highlighted the effectiveness of using predictive models to manage worker

sickness absence in a factory environment. This study’s significance lies in its potential to
transform workforce management strategies through AI-powered analytics and real-time
data monitoring, leading to enhanced operational efficiency, reduced absenteeism, and
lowered associated costs. This research addressed the critical issue of optimizing workforce
management to prevent productivity losses, thereby ensuring continuous operations and
cost savings.

By integrating causal inference with predictive models, this study provides valuable
insights into the factors influencing worker sickness absence. The confusion matrices
for the Gradient Boosting, CatBoost, and Random Forest models demonstrate significant
operational benefits, including accurate sickness absence predictions, timely interventions,
and the efficient management of false positives and negatives. Accurately predicting worker
sickness ensures minimal operational disruption, thereby enhancing overall efficiency.

Feature importance analysis emphasizes the need to prioritize interventions based on
key factors such as recent performance trends, overall health status, and worker commit-
ment. This targeted approach ensures timely support, optimized resource allocation, and
the prevention of unexpected absences. The insights from the predictive models inform
strategic decision-making, leading to improved workforce scheduling, reduced unplanned
absences, and considerable cost savings.

The performance metrics illustrate the financial benefits of predictive workforce man-
agement models. The high accuracy of predictions shows their effectiveness in avoiding
unnecessary interventions and maintaining productivity. The potential cost savings from
these models underscore the significant financial advantages of adopting advanced analyti-
cal methods.

This study is pertinent to supporting sustainable industries by promoting efficient
workforce management and resource optimization. Future research could improve pre-
dictive model accuracy and robustness by incorporating sophisticated machine learning
methods such as deep learning and reinforcement learning. Additionally, exploring predic-
tive workforce management in other sectors, such as financial services or manufacturing,
could offer broader insights into its benefits. Developing real-time predictive systems to
continuously monitor worker conditions and provide instant recommendations would
further enhance the effectiveness of these models. Ultimately, investigating the impact of
predictive workforce illness absence models on sustainable industries can provide valuable
insights for business practices and resource optimization.
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