Three-Dimensional, Printable Paving Stone: A Preliminary Study †
Abstract
:1. Introduction
2. Past Studies
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results and Discussion
4.1. Cement-Based Mortar Design
4.2. Results of the Compressive Strength Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghanbari-Ghazijahani, T.; Kasebahadi, M.; Hassanli, R.; Classen, M. 3D printed honeycomb cellular beams made of composite materials (plastic and timber). Constr. Build. Mater. 2022, 315, 125541. [Google Scholar] [CrossRef]
- Ulubeyli, S. Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies. Acta Astronaut. 2022, 195, 318–343. [Google Scholar] [CrossRef]
- Alqenaee, A.; Memari, A. Experimental study of 3D printable cob mixtures. Constr. Build. Mater. 2022, 324, 126574. [Google Scholar] [CrossRef]
- Wolf, A.; Rosendahl, P.L.; Knaack, U. Additive manufacturing of clay and ceramic building components. Autom. Constr. 2022, 133, 103956. [Google Scholar] [CrossRef]
- Ma, G.; Li, Z.; Wang, L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr. Build. Mater. 2018, 162, 613–627. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Parisi, F.; Fieni, F.; Parisi, N. The new boundaries of 3D-printed clay bricks Design: Printability of complex internal geometries. Sustainability 2022, 14, 598–613. [Google Scholar] [CrossRef]
- Paul, S.C.; Tay, Y.W.D.; Panda, B.; Tan, M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [Google Scholar] [CrossRef]
- Lim, S.; Buswell, R.A.; Le, T.T.; Austin, S.A.; Gibb, A.G.F.; Thorpe, T. Developments in construction-scale additive manufacturing processes. Autom. Constr. 2012, 21, 262–268. [Google Scholar] [CrossRef]
- Marais, H.; Christen, H.; Cho, S.; De Villiers, W.; Van Zijl, G. Computational assessment of thermal performance of 3D printed concrete wall structures with cavities. J. Build. Eng. 2021, 41, 102431. [Google Scholar] [CrossRef]
- Andrew Ting, G.H.; Noel Quah, T.K.; Lim, J.H.; Daniel Tay, Y.W.; Tan, M.J. Extrudable region parametrical study of 3D printable concrete using recycled glass concrete. J. Build. Eng. 2022, 50, 104091. [Google Scholar] [CrossRef]
- Gomaa, M.; Jabi, W.; Veliz Reyes, A.; Soebarto, V. 3D printing system for earth-based construction: Case study of cob. Autom. Constr. 2021, 124, 103577. [Google Scholar] [CrossRef]
- Hojati, M.; Li, Z.; Memari, A.M.; Zahabi, M.; Nazarian, S.; Duarte, J.P.; Radlińska, A. 3D-printable quaternary cementitious materials towards sustainable development: Mixture design and mechanical properties. Results Eng. 2022, 13, 100341. [Google Scholar] [CrossRef]
- Gunatilake, D.; Mampearachchi, W.K. Finite element modelling approach to determine optimum dimensions for interlocking concrete blocks used for road paving. Road Mater. Pavement Des. 2019, 20, 280–296. [Google Scholar] [CrossRef]
- Bakis, A. Interlocking paving stones made of limestone sand and volcanic ash aggregates. Road Mater. Pavement Des. 2022, 23, 1505–1522. [Google Scholar] [CrossRef]
- TS 2824 EN 1338; Concrete Paving Blocks-Requirements and Test Methods. Turkish Standards Institution (TSE): Ankara, Turkey, 2005.
- TS EN 12390-3; Testing Hardened Concrete Compressive Strength of Test Specimens. Turkish Standards Institution (TSE): Ankara, Turkey, 2010.
- Bos, F.; Wolfs, R.; Ahmed, Z.; Salet, T. Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual Phys. Prototyp. 2016, 11, 209–225. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, J.; Wang, Q.; Shi, J.; Wang, H. PVA fibre reinforced high-strength cementitious composite for 3D printing: Mechanical properties and durability. Addit. Manuf. 2022, 49, 102500. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arslan, V.; Dogan, Z. Three-Dimensional, Printable Paving Stone: A Preliminary Study. Mater. Proc. 2023, 13, 18. https://doi.org/10.3390/materproc2023013018
Arslan V, Dogan Z. Three-Dimensional, Printable Paving Stone: A Preliminary Study. Materials Proceedings. 2023; 13(1):18. https://doi.org/10.3390/materproc2023013018
Chicago/Turabian StyleArslan, Volkan, and Zekeriya Dogan. 2023. "Three-Dimensional, Printable Paving Stone: A Preliminary Study" Materials Proceedings 13, no. 1: 18. https://doi.org/10.3390/materproc2023013018
APA StyleArslan, V., & Dogan, Z. (2023). Three-Dimensional, Printable Paving Stone: A Preliminary Study. Materials Proceedings, 13(1), 18. https://doi.org/10.3390/materproc2023013018