Surface Modification of Photocatalytic Cementitious Composites with Polyacrylic Superabsorbent Polymers (SAP) †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Modifying the surface of the composite solely with water dispersion of TiO2 increased the efficiency of the photocatalytic reactions. However, due to the low viscosity of the modifying agent, this method of modification did not provide a homogenous distribution of TiO2 on the surface of the cementitious composite (the coefficient of variation for that solution increased significantly);
- Surface modification with SAP, either in non-saturated or hydrogel form, increases efficiency in air purification from NO and NOx pollutants under considered UV-A and visible light irradiance and allowed for the homogenous distribution of TiO2 over the surface of cementitious material;
- Surface modification with the SAP hydrogel contributed to the highest reductions in concentrations of NO and NOx under all considered light sources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coelho, S.; Ferreira, J.; Rodrigues, V.; Lopes, M. Source apportionment of air pollution in European urban areas: Lessons from the Clair City project. J. Environ. Manag. 2022, 320, 115899. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 978-1-118-94740-1. [Google Scholar]
- Witkowski, H.; Jarosławski, J.; Tryfon-Bojarska, A. Application of Photocatalytic Concrete Paving Blocks in Poland—Verification of Effectiveness of Nitric Oxides Reduction and Novel Test Method. Materials 2020, 13, 5183. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.L.; Pirola, C.; Galli, F.; Cerrato, G.; Morandi, S.; Capucci, V. Pigmentary TiO2: A challenge for its use as photocatalyst in NOx air purification. Chem. Eng. J. 2015, 261, 76–82. [Google Scholar] [CrossRef]
- Rhee, I.; Lee, J.-S.; Kim, J.B.; Kim, J.-H. Nitrogen Oxides Mitigation Efficiency of Cementitious Materials Incorporated with TiO2. Materials 2018, 11, 877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowski, H.; Jackiewicz-Rek, W.; Jarosławski, J.; Chilmon, K.; Szkop, A. Ozone Formation during Photocatalytic Oxidation of Nitric Oxides under UV Irradiation with the Use of Commercial TiO2 Photocatalytic Powders. Materials 2022, 15, 5905. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, H.; Jackiewicz-Rek, W.; Chilmon, K.; Jarosławski, J.; Tryfon-Bojarska, A.; Gąsiński, A. Air Purification Performance of Photocatalytic Concrete Paving Blocks after Seven Years of Service. Appl. Sci. 2019, 9, 1735. [Google Scholar] [CrossRef] [Green Version]
- Shafaei, D.; Yang, S.; Berlouis, L.; Minto, J. Multiscale pore structure analysis of nano titanium dioxide cement mortar composite. Mater. Today Commun. 2020, 22, 100779. [Google Scholar] [CrossRef]
- Kalinowski, M.; Woyciechowski, P. Chloride Diffusion in Concrete Modified with Polyacrylic Superabsorbent Polymer (SAP) Hydrogel—The Influence of the Water-to-Cement Ratio and SAP-Entrained Water. Materials 2021, 14, 4064. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Hong, S.G.; Moon, J. Absorption kinetics of superabsorbent polymers (SAP) in various cement-based solutions. Cem. Concr. Res. 2017, 97, 73–83. [Google Scholar] [CrossRef]
- Kalinowski, M.; Woyciechowski, P. The course of water absorption and desorption from superabsorbent polymers (SAP) in cementitious environment. In Proceedings of the ICSBM 2019—The 2nd International Conference on Sustainable Building Materials, Eindhoven, The Netherlands, 12–15 August 2019; Volume 5, pp. 44–54. [Google Scholar]
- EN 197-1:2011; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2011.
- EN 13139:2002; Aggregates for Mortar. European Committee for Standardization: Brussels, Belgium, 2002.
- EN 1008:2002; Mixing Water for Concrete—Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete. European Committee for Standardization: Brussels, Belgium, 2002.
- EN 934-2:2009+A1:2012; Admixtures for Concrete, Mortar and Grout—Part 2: Concrete Admixtures—Definitions, Requirements, Conformity, Marking and Labelling. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2016.
- EN 1015-3:1999; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). European Committee for Standardization: Brussels, Belgium, 1999.
- Liu, J.; Farzadnia, N.; Shi, C. Microstructural and micromechanical characteristics of ultra-high performance concrete with superabsorbent polymer (SAP). Cem. Concr. Res. 2021, 149, 106560. [Google Scholar] [CrossRef]
- Snoeck, D.; Velasco, L.F.; Mignon, A.; Van Vlierberghe, S.; Dubruel, P.; Lodewyckx, P.; De Belie, N. The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments. Cem. Concr. Res. 2015, 77, 26–35. [Google Scholar] [CrossRef]
Photocatalyst | Phase [%] | Size of Crystallites [nm] | Specific Surface Area [m2/g] | ||
---|---|---|---|---|---|
Rutile | Anatase | Rutile | Anatase | ||
TiO2 (A) | - | 100 | - | 10 | 246.8 ± 2.9 |
TiO2 (B) | 13 | 87 | 54 | 33 | 53.8 ± 0.2 |
ID | Description | Cement [kg/m3] | Water [kg/m3] | 0.1/0.05 [kg/m3] | 0.5/1.2 [kg/m3] | TiO2 Water Dispersion [kg/m3] | SP [kg/m3] |
---|---|---|---|---|---|---|---|
REF | Reference—no modification | 780 | 255 | 574 | 574 | 72 | 3.3 |
REF—D | Reference—a layer of water TiO2 dispersion | ||||||
SAP D | A layer of non-saturated (‘dry’) SAP covered in TiO2 dispersion | ||||||
SAP H | A layer of water-saturated SAP hydrogel covered in TiO2 dispersion |
Consistency—Free Flow [mm] | Compressive Strength [MPa] | Tensile Strength [MPa] |
---|---|---|
300 | 39.3 (CV = 4.4%) | 5.9 (CV = 4.0%) |
ID | Description | The Relative Reduction in the Concentration of NO [%] | |||||
---|---|---|---|---|---|---|---|
UV-A | CV [%] | Visible Light | CV [%] | UV-A + Visible Light | CV [%] | ||
REF | No modification | 26.85 | 10.58 | 3.50 | 16.85 | 30.87 | 9.36 |
REF—D | Water dispersion layer | 33.64 | 18.02 | 5.67 | 24.95 | 37.77 | 18.75 |
SAP D | Non-saturated SAP with TiO2 dispersion layer | 48.05 | 7.11 | 24.41 | 16.89 | 52.93 | 6.01 |
SAP H | SAP hydrogel with TiO2 dispersion layer | 53.47 | 4.90 | 26.15 | 11.13 | 59.09 | 2.23 |
ID | Description | The Relative Reduction in the Concentration of NOx [%] | |||||
---|---|---|---|---|---|---|---|
UV-A | CV [%] | Visible Light | CV [%] | UV-A + Visible Light | CV [%] | ||
REF | No modification | 19.31 | 10.07 | 3.05 | 15.91 | 25.39 | 8.46 |
REF—D | Water dispersion layer | 23.37 | 37.12 | 4.31 | 33.52 | 30.25 | 29.54 |
SAP D | Non-saturated SAP with TiO2 dispersion layer | 37.73 | 12.63 | 22.83 | 20.36 | 45.86 | 9.02 |
SAP H | SAP hydrogel with TiO2 dispersion layer | 44.23 | 12.01 | 24.12 | 13.31 | 51.88 | 4.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinowski, M.; Woyciechowski, P.; Jackiewicz-Rek, W. Surface Modification of Photocatalytic Cementitious Composites with Polyacrylic Superabsorbent Polymers (SAP). Mater. Proc. 2023, 13, 23. https://doi.org/10.3390/materproc2023013023
Kalinowski M, Woyciechowski P, Jackiewicz-Rek W. Surface Modification of Photocatalytic Cementitious Composites with Polyacrylic Superabsorbent Polymers (SAP). Materials Proceedings. 2023; 13(1):23. https://doi.org/10.3390/materproc2023013023
Chicago/Turabian StyleKalinowski, Maciej, Piotr Woyciechowski, and Wioletta Jackiewicz-Rek. 2023. "Surface Modification of Photocatalytic Cementitious Composites with Polyacrylic Superabsorbent Polymers (SAP)" Materials Proceedings 13, no. 1: 23. https://doi.org/10.3390/materproc2023013023
APA StyleKalinowski, M., Woyciechowski, P., & Jackiewicz-Rek, W. (2023). Surface Modification of Photocatalytic Cementitious Composites with Polyacrylic Superabsorbent Polymers (SAP). Materials Proceedings, 13(1), 23. https://doi.org/10.3390/materproc2023013023