Lightweight Geopolymer Composites: The Impact of the Aggregate †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Geopolymer Spheres
2.3. Synthesis of the Geopolymer Composites
2.4. Materials Characterization
3. Results and Discussion
3.1. Geopolymer Spheres Characterization
3.2. Geopolymer Composites Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer Foam Concrete: An Emerging Material for Sustainable Construction. Constr. Build. Mater. 2014, 56, 113–127. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Ascensão, G.; Seabra, M.P.; Labrincha, J.A. Porous Biomass Fly Ash-Based Geopolymers with Tailored Thermal Conductivity. J. Clean. Prod. 2016, 119, 99–107. [Google Scholar] [CrossRef]
- Novais, R.M.; Ascensão, G.; Buruberri, L.H.; Senff, L.; Labrincha, J.A. Influence of Blowing Agent on the Fresh- and Hardened-State Properties of Lightweight Geopolymers. Mater. Des. 2016, 108, 551–559. [Google Scholar] [CrossRef]
- Novais, R.M.; Senff, L.; Carvalheiras, J.; Seabra, M.P.; Pullar, R.C.; Labrincha, J.A. Sustainable and Efficient Cork—Inorganic Polymer Composites: An Innovative and Eco-Friendly Approach to Produce Ultra-Lightweight and Low Thermal Conductivity Materials. Cem. Concr. Compos. 2019, 97, 107–117. [Google Scholar] [CrossRef]
- Colangelo, F.; Roviello, G.; Ricciotti, L.; Ferrándiz-Mas, V.; Messina, F.; Ferone, C.; Tarallo, O.; Cioffi, R.; Cheeseman, C.R. Mechanical and Thermal Properties of Lightweight Geopolymer Composites. Cem. Concr. Compos. 2018, 86, 266–272. [Google Scholar] [CrossRef]
- Wongsa, A.; Sata, V.; Nematollahi, B.; Sanjayan, J.; Chindaprasirt, P. Mechanical and Thermal Properties of Lightweight Geopolymer Mortar Incorporating Crumb Rubber. J. Clean. Prod. 2018, 195, 1069–1080. [Google Scholar] [CrossRef]
- Ye, N.; Chen, Y.; Yang, J.; Liang, S.; Hu, Y.; Hu, J.; Zhu, S.; Fan, W.; Xiao, B. Transformations of Na, Al, Si and Fe Species in Red Mud during Synthesis of One-Part Geopolymers. Cem. Concr. Res. 2017, 101, 123–130. [Google Scholar] [CrossRef]
- Rashad, A.M. Insulating and Fire-Resistant Behaviour of Metakaolin and Fly Ash Geopolymer Mortars. Proc. Inst. Civ. Eng. Constr. Mater. 2019, 172, 37–44. [Google Scholar] [CrossRef]
- Novais, R.M.; Carvalheiras, J.; Seabra, M.P.; Pullar, R.C.; Labrincha, J.A. Innovative Application for Bauxite Residue: Red Mud-Based Inorganic Polymer Spheres as PH Regulators. J. Hazard. Mater. 2018, 358, 69–81. [Google Scholar] [CrossRef] [PubMed]
- EN 1015-11:1999; Methods of Test for Mortar for Masonary. Determination of Flexural and Compressive Strength of Hardened Mortar. British Standards Institution: London, UK, 1999.
- ASTM C518-04; Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM International: West Conshohocken, PA, USA, 2004.
- Karakaş, H.; İlkentapar, S.; Durak, U.; Örklemez, E.; Özuzun, S.; Karahan, O.; Atiş, C.D. Properties of Fly Ash-Based Lightweight-Geopolymer Mortars Containing Perlite Aggregates: Mechanical, Microstructure, and Thermal Conductivity Coefficient. Constr Build. Mater. 2023, 362, 129717. [Google Scholar] [CrossRef]
- Koukouzas, N.K.; Dunham, A.C.; Scott, P.W. Suitability of Greek Perlite for Industrial Applications. Appl. Earth Sci. Trans. Inst. Min. Metall. 2000, 109, 105–111. [Google Scholar] [CrossRef]
Oxides (wt.%) | MK | RM | Slag |
---|---|---|---|
SiO2 | 54.40 | 9.20 | 26.92 |
Al2O3 | 39.40 | 18.19 | 8.36 |
CaO | 0.10 | 9.12 | 3.04 |
K2O | 1.03 | 0.12 | 0.16 |
Fe2O3 | 1.75 | 40.66 | 51.27 |
MgO | 0.14 | 0.27 | 0.93 |
Na2O | - | 4.72 | 1.97 |
TiO2 | 1.55 | 5.68 | 0.32 |
SO3 | - | 0.41 | 0.73 |
P2O5 | 0.06 | 0.11 | 0.71 |
MnO | 0.01 | 0.05 | 0.77 |
LOI | 2.66 | 10.71 | 0.08 |
Lightweight Aggregate | vol.% | Thermal Conductivity (W/m K) |
---|---|---|
Expanded perlite | 70 | 0.240 ± 0.017 |
75 | 0.215 ± 0.017 | |
80 | 0.130 ± 0.009 | |
Spheres | 75 | 0.234 ± 0.012 |
80 | 0.215 ± 0.007 | |
85 | 0.175 ± 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, Z.; Labrincha, J.A.; Novais, R.M. Lightweight Geopolymer Composites: The Impact of the Aggregate. Mater. Proc. 2023, 13, 30. https://doi.org/10.3390/materproc2023013030
Alves Z, Labrincha JA, Novais RM. Lightweight Geopolymer Composites: The Impact of the Aggregate. Materials Proceedings. 2023; 13(1):30. https://doi.org/10.3390/materproc2023013030
Chicago/Turabian StyleAlves, Zélia, João A. Labrincha, and Rui M. Novais. 2023. "Lightweight Geopolymer Composites: The Impact of the Aggregate" Materials Proceedings 13, no. 1: 30. https://doi.org/10.3390/materproc2023013030
APA StyleAlves, Z., Labrincha, J. A., & Novais, R. M. (2023). Lightweight Geopolymer Composites: The Impact of the Aggregate. Materials Proceedings, 13(1), 30. https://doi.org/10.3390/materproc2023013030