Investigation of the Electrical Properties of Graphene-Reinforced Geopolymer Composites †
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. GRGC Fabrication
2.3. Testing Methods
Solid State Impedance Spectroscopy
- Cp = capacitance of the specimen;
- t = thickness of the specimen;
- ε0 = permittivity of free space constant (8.854 × 10−12 F/m);
- εr = dielectric constant
- εr″ = dielectric loss
- A = area of the electrode (113.09 mm2);
- f = frequency;
- = angular frequency;
- σ = conductivity.
3. Results and Discussion
3.1. Solid-State Impedance Spectroscopy
3.1.1. Capacitance and Impedance/Resistance
3.1.2. Dielectric Constant, Dielectric Loss and Tangent Loss/Tan Delta
3.1.3. Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishna, R.S.; Mishra, J.; Meher, S.; Das, S.K.; Mustakim, S.M.; Singh, S.K. Industrial Solid Waste Management through Sustainable Green Technology: Case Study Insights from Steel and Mining Industry in Keonjhar, India. In Proceedings of the 2nd International Conference on Processing and Characterization of Materials, Rourkela, India, 12–14 December 2019; Volume 33, pp. 5243–5249. [Google Scholar]
- Mishra, J.; Kumar Das, S.; Krishna, R.S.; Nanda, B.; Kumar Patro, S.; Mohammed Mustakim, S. Synthesis and Characterization of a New Class of Geopolymer Binder Utilizing Ferrochrome Ash (FCA) for Sustainable Industrial Waste Management. Mater Today Proc. 2020, 33, 5001–5006. [Google Scholar] [CrossRef]
- Cai, J.; Pan, J.; Li, X.; Tan, J.; Li, J. Electrical Resistivity of Fly Ash and Metakaolin Based Geopolymers. Constr. Build. Mater. 2020, 234, 117868. [Google Scholar] [CrossRef]
- Essaidi, N.; Nadir, H.; Martinod, E.; Feix, N.; Bertrand, V.; Tantot, O.; Lalande, M.; Rossignol, S. Comparative Study of Dielectric Properties of Geopolymer Matrices Using Different Dielectric Powders. J. Eur. Ceram Soc. 2017, 37, 3551–3557. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F.; Ma, G. Effect of Carbon Fibres on Electromagnetic-Interference-Shielding Properties of Geopolymer Composites. Polymers 2022, 14, 3750. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.V.; Le, V.S.; Louda, P.; Szczypiński, M.M.; Ercoli, R.; Růžek, V.; Łoś, P.; Prałat, K.; Plaskota, P.; Pacyniak, T.; et al. Low-Density Geopolymer Composites for the Construction Industry. Polymers 2022, 14, 304. [Google Scholar] [CrossRef]
- Long, W.-J.; Zhang, X.-H.; Dong, B.-Q.; Fang, Y.; Ye, T.-H.; Xie, J. Investigation of Graphene Derivatives on Electrical Properties of Alkali Activated Slag Composites. Materials 2021, 14, 4374. [Google Scholar] [CrossRef] [PubMed]
- Mizerová, C.; Kusák, I.; Rovnaník, P. Electrical properties of fly ash geopolymer composites with graphite conductive admixtures. Acta Polytech CTU Proc. 2019, 22, 72–76. [Google Scholar] [CrossRef]
- Farhan, K.Z.; Johari, M.A.M.; Demirboğa, R. Impact of Fiber Reinforcements on Properties of Geopolymer Composites: A Review. J. Build. Eng. 2021, 44, 102628. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-Reinforced Geopolymer Composites: A Review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Su, Z.; Hou, W.; Sun, Z. Recent Advances in Carbon Nanotube-Geopolymer Composite. Constr. Build. Mater. 2020, 252, 118940. [Google Scholar] [CrossRef]
- Payakaniti, P.; Pinitsoontorn, S.; Thongbai, P.; Amornkitbamrung, V.; Chindaprasirt, P. Electrical Conductivity and Compressive Strength of Carbon Fiber Reinforced Fly Ash Geopolymeric Composites. Constr. Build. Mater. 2017, 135, 164–176. [Google Scholar] [CrossRef]
- Payakaniti, P.; Pinitsoonthorn, S.; Thongbai, P.; Amornkitbamrung, V.; Chindaprasirt, P. Effects of Carbon Fiber on Mechanical and Electrical Properties of Fly Ash Geopolymer Composite. Mater. Today Proc. 2018, 5, 14017–14025. [Google Scholar] [CrossRef]
- Górski, M.; Czulkin, P.; Wielgus, N.; Boncel, S.; Kuziel, A.W.; Kolanowska, A.; Jędrysiak, R.G. Electrical Properties of the Carbon Nanotube-Reinforced Geopolymer Studied by Impedance Spectroscopy. Materials 2022, 15, 3543. [Google Scholar] [CrossRef]
- Kusak, I.; Lunak, M.; Rovnanik, P. Electric Conductivity Changes in Geopolymer Samples with Added Carbon Nanotubes. Procedia Eng. 2016, 151, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Krishna, R.S.; Mishra, J.; Nanda, B.; Patro, S.K.; Adetayo, A.; Qureshi, T.S. The Role of Graphene and Its Derivatives in Modifying Different Phases of Geopolymer Composites: A Review. Constr. Build. Mater. 2021, 306, 124774. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Chindaprasirt, P.; Pimraksa, K. Electrical Conductivity and Dielectric Property of Fly Ash Geopolymer Pastes. Int. J. Miner. Metall. Mater. 2011, 18, 94–99. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Hunpratub, S.; Thongbai, P.; Maensiri, S.; Sata, V.; Chindaprasirt, P. Effects of NaOH Concentrations on Physical and Electrical Properties of High Calcium Fly Ash Geopolymer Paste. Cem. Concr. Compos. 2014, 45, 9–14. [Google Scholar] [CrossRef]
- Sellami, M.; Barre, M.; Toumi, M. Synthesis, Thermal Properties and Electrical Conductivity of Phosphoric Acid-Based Geopolymer with Metakaolin. Appl. Clay Sci. 2019, 180, 105192. [Google Scholar] [CrossRef]
- Saafi, M.; Tang, L.; Fung, J.; Rahman, M.; Liggat, J. Enhanced Properties of Graphene/Fly Ash Geopolymeric Composite Cement. Cem. Concr. Res. 2015, 67, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Chuewangkam, N.; Nachaithong, T.; Chanlek, N.; Thongbai, P.; Pinitsoontorn, S. Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites. Polymers 2022, 14, 1140. [Google Scholar] [CrossRef]
- Malkawi, A.B.; Al-Mattarneh, H.; Achara, B.E.; Mohammed, B.S.; Nuruddin, M.F. Dielectric Properties for Characterization of Fly Ash-Based Geopolymer Binders. Constr. Build. Mater 2018, 189, 19–32. [Google Scholar] [CrossRef]
- Krishna, R.S.; Mishra, J.; Das, S.K.; Mustakim, S.M. An Overview of Current Research Trends on Graphene and It’s Applications. Worls Sci. News 2019, 132, 206–219. [Google Scholar]
- Krishna, R.S.; Mishra, J.; Adetayo, A.; Das, S.K.; Mustakim, S.M. Green Synthesis of High-Performance Graphene Reinforced Geopolymer Composites: A Review on Environment-Friendly Extraction of Nanomaterials. Iranian J. Mater. Sci. Eng. 2020, 17, 10–24. [Google Scholar]
- Krishna, R.S.; Mishra, J.; Das, S.K.; Nanda, B.; Patro, S.K.; Mustakim, S.M. A Review on Potential of Graphene Reinforced Geopolymer Composites. In Tailored Functional Materials; Mukherjee, K., Layek, R.K., De, D., Eds.; Springer: Singapore, 2022; Volume 15, pp. 43–60. [Google Scholar]
- Das, S.K.; Krishna, R.S.; Mishra, S.; Mustakim, S.M.; Jena, M.K.; Tripathy, A.K.; Sahu, T. Future Trends Nanomaterials in Alkali-Activated Composites. In Handbook of Sustainable Concrete and Industrial Waste Management; Colangelo, F., Cioffi, R., Farina, I., Eds.; Woodhead Publishing: Cambridge, UK, 2021. [Google Scholar]
Mixture | FA (g) | NaOH Soln. (g) | Na2SiO3 Soln. (g) | NaOH/Na2SiO3 | Liquid/Binder | GO (wt.%) |
---|---|---|---|---|---|---|
GRGC0 | 100 | 16.66 | 33.33 | 0.5 | 0.5 | 0 |
GRGC1 | 100 | 16.66 | 33.33 | 0.5 | 0.5 | 0.1 |
GRGC2 | 100 | 16.66 | 33.33 | 0.5 | 0.5 | 0.2 |
GRGC3 | 100 | 16.66 | 33.33 | 0.5 | 0.5 | 0.3 |
GRGC4 | 100 | 16.66 | 33.33 | 0.5 | 0.5 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishna, R.S.; Saha, S.; Korniejenko, K.; Qureshi, T.S.; Mustakim, S.M. Investigation of the Electrical Properties of Graphene-Reinforced Geopolymer Composites. Mater. Proc. 2023, 13, 34. https://doi.org/10.3390/materproc2023013034
Krishna RS, Saha S, Korniejenko K, Qureshi TS, Mustakim SM. Investigation of the Electrical Properties of Graphene-Reinforced Geopolymer Composites. Materials Proceedings. 2023; 13(1):34. https://doi.org/10.3390/materproc2023013034
Chicago/Turabian StyleKrishna, R. S., Suman Saha, Kinga Korniejenko, Tanvir S. Qureshi, and Syed Mohammed Mustakim. 2023. "Investigation of the Electrical Properties of Graphene-Reinforced Geopolymer Composites" Materials Proceedings 13, no. 1: 34. https://doi.org/10.3390/materproc2023013034
APA StyleKrishna, R. S., Saha, S., Korniejenko, K., Qureshi, T. S., & Mustakim, S. M. (2023). Investigation of the Electrical Properties of Graphene-Reinforced Geopolymer Composites. Materials Proceedings, 13(1), 34. https://doi.org/10.3390/materproc2023013034