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Abstract: Geopolymer composites provide an environmentally friendly alternative to cement-based
composites in the construction industry. Due to their distinctive material composition, geopolymers
also exhibit electrically conductive properties, which permit their application as a functional material.
The current work aims to study the distinctive electrical properties of fly-ash-based geopolymer
composites. Varying dosages of graphene oxide (i.e., 0, 0.1, 0.2, 0.3, 0.4% (by wt. of binder)) were
introduced into the geopolymer matrix to enhance electrical conductivity. While GO (graphene
oxide) is typically less conductive, the interaction of GO sheets with the alkaline solution during
geopolymerisation reduced the functional groups and produced cross-linked rGO (reduced graphene
oxide) sheets with increased mechanical and electrical conductivity properties. Solid-state impedance
spectroscopy was used to characterize the electrical properties of geopolymer composites in terms of
several parameters, such as impedance, electrical conductivity and dielectric properties, within the
frequency ranging from 101 to 105 Hz. The relationship between the electrical properties and graphene
oxide reinforcement can effectively establish geopolymer composite development as smart materials
with desirable functionality. The results suggest an effective enhancement in electrical conductivity
of up to 7.72 × 10−13 Ω·mm−1 and the dielectric response performance of graphene-reinforced
fly-ash-based geopolymer composites.

Keywords: geopolymer composite; graphene; electrical conductivity; electrical property; microstructure

1. Introduction

Geopolymers—at the micro-level—are primarily composed of amorphous materials
of the long matrix, cross-linked polymer chains of tetrahedral AlO4 and SiO4 units [1,2].
Geopolymers are usually dielectric materials due to the silica content and alkali metal ions,
which could work as ionic conductors via an applied electric field [3,4]. Although pure
geopolymers are electrically conductive due to the availability of water molecules and
hydroxide in their composition, the open pore networks in the matrix produce conductiv-
ity [5,6]. Therefore, the introduction of filler materials becomes predominately necessary
to improve electrical conductivity [7,8]. The most common additives preferred for the
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fabrication of conductive geopolymer composites include carbon and metallic fillers, such
as carbon fibres [5,9], nanotubes [10,11], graphite [8], graphene derivatives [7,8], steel
fibres, etc.

Several research projects have been carried out to study and comprehend the influence
of conductive fillers in the geopolymer matrix system. In one such examination, Payakaniti
et al. optimized the inclusion of carbon fibre and stated that 0.5 wt.% provided superior
electrical conductivity as well as mechanical properties [12,13]. Similar examinations
were also carried out with carbon nanotubes [11,14]. The incorporation of 1 wt.% carbon
nanotube in the geopolymer matrix enhanced the electrical conductivity performance by
almost three times. Carbon nanotubes also reduce the electric resistance and impedance of
associated composites [11,15]. Thus, it can be argued that the physical characteristics and
the synthesis mechanisms of the conductive fillers play a vital role in the enhancement of
geopolymer properties.

Research on the electrical properties of geopolymer composites is still a novel, diverse
and challenging area, resulting in a lack of a universal approach and indicating the high
complexity of the underlying problem [16]. Presently, one of the most promising multi-
functional composites seems to be geopolymers incorporating graphene derivatives. The
current study is therefore focused on the investigation of different effects of GO dosages
(0, 0.1, 0.2, 0.3 and 0.4 wt.%) on the electrical properties and the dielectric response of
fly-ash-based GRGC (graphene-reinforced geopolymer composite) specimens.

2. Experimental Procedure
2.1. Materials

Fly ash was procured from NTPC, Kaniha, in Odisha. The chemical composition of
the FA (fly ash) mostly contained SiO2 and Al2O3 with 60.34 and 30.83 wt.%, respectively.
The particle size of FA was 19.18804 µm (median) and 36.73520 µm (mean). Low-cost GO
synthesized via mechanical exfoliation with a layer thickness (>10 stacking layers) was
given by CSIR-IMMT, Odisha. The particle size of the GO varied from 3 to 200 nm. NaOH
flakes were of 99.6% purity, and the Na2SiO3 solution consisted of Na2O (15.85 wt.%), SiO2
(32.15 wt.%), and H2O (52 wt.%).

2.2. GRGC Fabrication

A NaOH solution of 12M was prepared by mixing 480 g of NaOH flakes and 1000 mL
of tap water, resulting in an exothermic reaction. GRGC specimens were prepared in
5 different batches with varying GO additions (0, 0.1, 0.2, 0.3 and 0.4) wt.% of FA, as shown
in Table 1. The alkali activator solution was mixed via a magnetic stirrer at low rpm. GO
was consequently introduced to the solution carefully to achieve maximum dispersion
and to avoid the agglomeration phenomenon. Later, the solution was ultrasonicated for
30 min and mixed with FA for 10-15 min. The geopolymer slurry was poured into custom
molds (10 × 3) mm3 and cured at 25 ◦C (±3 ◦C) for 24 hr. The GRGC specimens were de-
molded and cured in ambient conditions for 28 days. Figure 1a illustrates the cured GRGC
specimens prior to SSIS (solid state impedance spectroscopy) characterization studies. The
specimens were polished with emery paper at different grift sizes to obtain the necessary
dimensions for the experimental setup, as shown in Figure 1a,b, for precise results.

Table 1. GRGC mixture composition.

Mixture FA (g) NaOH Soln. (g) Na2SiO3 Soln. (g) NaOH/Na2SiO3 Liquid/Binder GO (wt.%)

GRGC0 100 16.66 33.33 0.5 0.5 0
GRGC1 100 16.66 33.33 0.5 0.5 0.1
GRGC2 100 16.66 33.33 0.5 0.5 0.2
GRGC3 100 16.66 33.33 0.5 0.5 0.3
GRGC4 100 16.66 33.33 0.5 0.5 0.4
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Figure 1. GRGC characterization process: (a) specimen specifications and (b) SSIS measurement 
methodology. 
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Figure 1. GRGC characterization process: (a) specimen specifications and (b) SSIS measurement
methodology.

2.3. Testing Methods
Solid State Impedance Spectroscopy

The SSIS results were obtained from HIOKI IMPEDANCE ANALYZER IM3570 (AC)
using LCR sample application software. The GRGC specimens were investigated using the
two-probe method with electrodes, as depicted in Figure 1b, in a dry state under ambient
laboratory conditions. The values for different parameters, such as impedance, capacitance
and tan delta over a frequency range of 101 to 105 Hz, were obtained from the instrument.
The values of the dielectric constant, dielectric loss and conductivity were calculated from
Equations (1) to (4) [17–19]:

εr =
CPt
ε0 A

(1)

D =
ε
′′
r

εr
(2)

ω= 2π f (3)

σ = ε0ε
′′
r ω (4)

where

Cp = capacitance of the specimen;
t = thickness of the specimen;
ε0 = permittivity of free space constant (8.854 × 10−12 F/m);
εr = dielectric constant
εr
′′ = dielectric loss

A = area of the electrode (113.09 mm2);
f = frequency;
ω = angular frequency;
σ = conductivity.

3. Results and Discussion
3.1. Solid-State Impedance Spectroscopy
3.1.1. Capacitance and Impedance/Resistance

The degree of (Cp) and (Z) of the GRGC specimens can be perceived in Figure 2a,b.
At a lower frequency (101 Hz), higher capacitance values ranging from 9.26 × 10−10 to
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4.5 × 10−9 were obtained, but the (Cp) values tend to drop and become constant (almost
zero) at higher frequencies (i.e., specifically after 103 Hz). The incorporation of GO in
the geopolymer composites results in higher (Cp) values, whereas in an opposite trend,
lower (Z) was observed with a higher dosage of GO (4.36 × 105 Ω). The impedance
of all geopolymer composites became almost constant at higher frequencies, but higher
impedance values were observed at lower frequencies for GRGC0 specimens with no
addition of GO (5.32 × 106 Ω). This could suggest that GRGC4 specimens offer minimal
resistance and accelerate the movement of ions in the GRGC matrix in contrast with the
GRGC0 specimen. This could also be signified by the acceleration effect of GO on the
polycondensation reaction of the geopolymer composites [7]. The reduction in functional
groups from GO may have enhanced the electrical conductivity properties of reduced GO
(i.e., rGO), as similarly noted in the study by Saffi et al. [20].

3.1.2. Dielectric Constant, Dielectric Loss and Tangent Loss/Tan Delta

Figure 2c,d show the resulting values of dielectric constant (εr) and dielectric loss
(εr
′′) for different GRGC specimens when measured at different frequencies. The incorpo-

ration of GO in the geopolymer mix leads to higher (εr) and (εr
′′) values of (10−5–10−4)

and (10−4–10−3) at low frequencies, respectively. Both (εr) and (εr
′′) show a significant

decrease with the increase in frequency initially. However, the decrease rate of (εr) and (εr
′′)

was reduced at a higher frequency range and reached an approximately constant value.
This phenomenon of the dielectric properties of GRGC specimens can be attributed to the
polarization relaxation of molecules in the GRGC matrix. Initially, at lower frequencies,
the molecules in the matrix have sufficient time and start orienting in the direction of the
applied current. Consequently, at higher frequencies, the re-orientation is limited due to
which the values of both (εr) and (εr

′′) are reduced drastically [21]. The polarization of
the molecules can be firmly influenced by different aspects of the geopolymer mix, i.e.,
alumino-silicate gel, unreacted particles, impurities available in the composite mix, etc. A
study by Hanjitsuwan et al. observed a similar phenomenon and described the rationale as
electrode/specimen interfacial polarization and double-layer polarization [17,18]. Alterna-
tive polarization mechanisms include ionic, dipolar or molecular, electronic and atomic
mechanisms [22].

The (D) curves for the GRGC specimens are exhibited in Figure 2e. The (D) curve peaks
ranged between 3.06 and 12.7 and ought to be related to the trend of the dielectric properties.
However, GRGC3 obtained the highest (D) value: 101 Hz. The (D) values decreased with
an increase in frequency, and the curves became almost constant at higher frequencies
for all GRGC specimens. This exception can be closely related to the compactness of the
specimens and the function of GO in enhancing the strength of the composites primarily
via their pore-filling characteristics. Earlier investigations also indicated the limit of GO
(0.1–0.3 wt.%) in improving the strength of geopolymer composites, as higher dosages tend
to decrease the compactness due to the consequence of agglomeration [16,23–26].

3.1.3. Conductivity

Figure 2f illustrates the conductivity (σ) results of the GRGC specimens. The conduc-
tivity values increase with the increase in GO dosage and range between 6.05 × 10−14 and
7.72 × 10−13 Ω·mm−1 for GRGC0 and GRGC4 at low frequencies of (101) Hz, respectively.
The in situ reduction of GO improved electrical conductivity properties and contributed to en-
hancing GRGC conductive properties. At higher frequencies (i.e., 105 Hz), (σ) increased for all
GRGC specimens, and the corresponding values include 1.18 × 10−12–2.27 × 10−12 Ω·mm−1.
At lower frequencies, the (σ) of the GRGC specimens remained approximately constant.
However, the increment in conductivity is significantly higher when the frequency is more
than 104 Hz. This occurrence could be associated with the geopolymerisation reaction.
The study by Hanjitsuwan et al. detected the same trend of increased conductivity for the
geopolymer pastes with increased frequencies [17,18]. The molecular structure of geopoly-
meric gel is attributed to the increment of electrical conductivity at higher frequencies, mostly
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via the Na+ ion hopping mechanism between the cation sites. A higher dosage of graphene in
geopolymer composites leads to higher conductivity. Still, a significant increase in conductiv-
ity was observed at higher frequencies, which could be explained via the combination of Na+

ion hopping and the electronic conductivity of in situ reduced GO, leading to the shortening
of conduction distance. Thus, GO could be considered an effective agent for improving the
(σ) of geopolymer composites for different applications [12]. The relationship between the
(Z) and (σ) curves demonstrates the homogenous dispersion of GO in the geopolymer matrix
since the agglomeration of GO could lead to improper conductivity in the GRGC specimens.
The results also suggest that there might be a percolation threshold between 0.1 and 0.2 wt.%
GO addition in the GRGC matrix. The manifestation is evident via the slight difference in
the behaviour of curves in Figure 2b,f. Therefore, it can be considered that conductive fillers
such as GO largely facilitate conductivity in geopolymer composites and can be tailored for
appropriate piezoresistive responses according to the required applications.

Figure 2. Cont.
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Figure 2. Influence of GO on different electrical parameters of geopolymer composites: (a) capacitance,
(b) impedance, (c) dielectric constant, (d) dielectric loss, (e) tan delta and (f) conductivity.

4. Conclusions

In this study, different dosages of low-cost GO were incorporated in geopolymer
composites to fabricate sustainable GRGC specimens for various smart applications. SSIS
investigations were conducted at room temperature to characterize and assess the signifi-
cant dielectric properties of GRGC specimens, which are concluded as follows.

The interaction of the GO sheets with the alkaline activator in geopolymeric reactions
produced highly reduced and cross-linked GO sheets, enhancing the electrical conductivity
properties of the composites.

At 101 Hz, GRGC specimens with 0.4 wt.% GO obtained a maximum ionic/electrical
conductivity of 7.72 × 10−13 Ω·mm−1 and a minimum impedance of 4.36 × 105 Ω, sug-
gesting desirable low-frequency-based applications.

A percolation threshold was observed between 0.1 and 0.2 wt.% of GO introduction in
the geopolymer matrix.

Increasing the GO dosage up to 0.4 wt.% aided in reducing the electrical impedance of
GRGC specimens up to 91.81%.
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