Physico-Chemical Modelling of Chloride Migration in Cement-Based Materials Considering Electrode Processes †
Abstract
:1. Introduction
- The ion profiles in the material that can be used for the calculation of the ion diffusion coefficients in the non-steady state (from the ion-penetration depth), with and without the electrode processes.
- The electroneutrality in the sample tested with and without integrating the electrode processes in order to highlight the need for the consideration of the electrode processes in the chloride migration modelling proposed.
2. Methodology
2.1. Modelling Principle
2.2. Case Study
3. Results and Discussion
4. Conclusions
- The modelling proposed allowed us to simulate the standard migration test at the steady and non-steady states considering the real pore solution of the material tested and the dissolution/precipitation phenomena during the migration. The modelling was applied to OPC-based materials.
- Outputs of the modelling proposed are the ion profiles in the material tested during the migration test.
- The numerical results show the need of considering the electrode processes in the chloride migration modelling in order to better simulate the standard migration test. The model proposed could be improved by considering more solid phases of the material such as C-S-H, oxychloride, etc.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poupard, O.; Aït-Mokhtar, A.; Dumargue, P. Impedance spectroscopy in reinforced concrete: Experimental procedure for monitoring steel corrosion part II: Polarization effect. J. Mat. Sci. 2003, 38, 3521–3526. [Google Scholar] [CrossRef]
- Amiri, O.; Aït-Mokhtar, A.; Seigneurin, A. A complement to the discussion of Xu A. and Chandra S. about the paper ‘’Calculation of chloride coefficient diffusion in concrete from ionic migration measurements’’ by Andrade C. Cem. Concr. Res. 1997, 27, 951–957. [Google Scholar] [CrossRef]
- Truc, O.; Ollivier, J.P.; Carcassès, M. A new way for determining the chloride diffusion coefficient in concrete from steady state migration test. Cem. Concr. Res. 2000, 30, 217–226. [Google Scholar] [CrossRef]
- Castellote, M.; Andrade, C.; Alonso, C. Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests. Cem. Concr. Res. 2001, 31, 1411–1420. [Google Scholar] [CrossRef]
- Yang, C.C.; Cho, S.W.; Chi, J.M.; Huang, R. An electrochemical method for accelerated chloride migration test in cement-based materials. Mater. Chem. Phys. 2003, 77, 461–469. [Google Scholar] [CrossRef]
- Aït-Mokhtar, A.; Amiri, O.; Poupard, O.; Dumargue, P. A new method for determination of chloride flux in ce-ment-based materials from chronoamperometry. Cem. Concr. Compos. 2004, 26, 339–345. [Google Scholar] [CrossRef]
- Friedmann, H.; Amiri, O.; Aït-Mokhtar, A.; Dumargue, P. A direct method for determining chloride diffusion coefficient by using migration test. Cem. Concr. Res. 2004, 34, 1967–1973. [Google Scholar] [CrossRef]
- Cherif, R.; Hamami, A.E.A.; Aït-Mokhtar, A.; Siddique, R. Chemical properties of pore solution of hardened cement pastes with mineral additions. Adv. Cem. Res. 2021, 33, 331–341. [Google Scholar] [CrossRef]
- Li, Y.L.; Page, C.L. Modelling of electrochemical chloride extraction from concrete: Influence of ionic activity coefficients. Comput. Mater. Sci. 1998, 9, 303–308. [Google Scholar] [CrossRef]
- Samson, E.; Marchand, J. Numerical Solution of the Extended Nernst–Planck Model. J. Colloid Interface Sci. 1999, 215, 1–8. [Google Scholar] [CrossRef]
- Amiri, O.; Aït-Mokhtar, A.; Dumargue, P.; Touchard, G. Electrochemical modelling of chloride migration in cement-based materials: Part I: Theoretical basis at microscopic scale. Electrochim. Acta 2001, 46, 1267–1275. [Google Scholar] [CrossRef]
- Amiri, O.; Aït-Mokhtar, A.; Dumargue, P.; Touchard, G. Electrochemical modelling of chlorides migration in cement-based materials. Part II: Experimental study—Calculation of chlorides flux. Electrochim. Acta 2001, 46, 3589–3597. [Google Scholar] [CrossRef]
- Amiri, O.; Friedmann, H.; Aït-Mokhtar, A. Modelling of chloride-binding isotherm by multi-species approach in cement mortars submitted to migration test. Mag. Concr. Res. 2006, 58, 93–99. [Google Scholar] [CrossRef]
- Samson, E.; Marchand, J. Modeling the transport of ions in unsaturated cement-based materials. Comput. Struct. 2007, 85, 1740–1756. [Google Scholar] [CrossRef]
- Friedmann, H.; Amiri, O.; Aït-Mokhtar, A. Modeling of the Electrical Double Layer Effects on Multispecies Ions Transport in Cement-based Materials. Cem. Concr. Res. 2008, 38, 1394–1400. [Google Scholar] [CrossRef]
- Friedmann, H.; Amiri, O.; Aït-Mokhtar, A. Shortcomings of geometrical approach in multi-species modelling of chloride migration in cement-based materials. Mag. Concr. Res. 2008, 60, 119–124. [Google Scholar] [CrossRef]
- Bourbatache, K.; Millet, O.; Aït-Mokhtar, A. Ionic transfer in charged porous media. Periodic homogenization and parametric study on 2D microstructures. Int. J. Heat Mass Transf. 2012, 55, 5979–5991. [Google Scholar] [CrossRef]
- Bourbatache, K.; Millet, O.; Aït-Mokhtar, A.; Amiri, O. Modeling the Chlorides Transport in Cementitious Materials By Periodic Homogenization. Transp. Por. Med. 2012, 94, 437–459. [Google Scholar] [CrossRef]
- Andrade, C.; Prieto, M.; Tanner, P.; Tavares, F.; Andrea, R. Testing and modelling chloride penetration into concrete. Constr. Build. Mater. 2013, 39, 9–18. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Amiri, O. Study of the chloride transport in unsaturated concrete: Highlighting of electrical double layer, temperature and hysteresis effects. Constr. Build. Mater. 2016, 122, 284–293. [Google Scholar] [CrossRef]
- Xia, J.; Li, L. Numerical simulation of ionic transport in cement paste under the action of externally applied electric field. Constr. Build. Mater. 2013, 39, 51–59. [Google Scholar] [CrossRef]
- Fenaux, M.; Reyes, E.; Gálvez, J.C.; Moragues, A. Modelling the transport of chloride and other ions in cement-based materials. Cem. Concr. Compos. 2019, 97, 33–42. [Google Scholar] [CrossRef]
- Mao, L.; Hu, Z.; Xia, J.; Feng, G.L.; Azim, I.; Yang, J.; Liu, Q.F. Multi-phase modelling of electrochemical rehabilitation for ASR and chloride affected concrete composites. Compos. Struct. 2019, 207, 176–189. [Google Scholar] [CrossRef]
- Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; et al. Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 2015, 19, 445–478. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Hong, Y.; Qiao, G.; Ou, J.; Li, Z. Thermodynamic modeling of the essential physicochemical interactions between the pore solution and the cement hydrates in chloride-contaminated cement-based materials. J. Colloid Interface Sci. 2018, 531, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, T.; Henocq, P.; Millet, O.; Aït-Mokhtar, A. Coupling PhreeqC with electro-diffusion tests for an accurate de-termination of the diffusion properties on cementitious materials. J. Electroanal. Chem. 2020, 858, 113791. [Google Scholar] [CrossRef]
- Sanchez, T.; Conciatori, D.; Laferriere, F.; Sorelli, L. Modelling capillary effects on the reactive transport of chloride ions in cementitious materials. Cem. Concr. Res. 2020, 131, 106033. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.X. Coupling of chemical kinetics and thermodynamics for simulations of leaching of cement paste in ammonium nitrate solution. Cem. Concr. Res. 2017, 95, 95–107. [Google Scholar] [CrossRef]
- Tran, V.Q.; Soive, A.; Baroghel-Bouny, V. Modelisation of chloride reactive transport in concrete including thermodynamic equilibrium, kinetic control and surface complexation. Cem. Concr. Res. 2018, 110, 70–85. [Google Scholar] [CrossRef]
- Tran, V.; Soive, A.; Bonnet, S.; Khelidj, A. A numerical model including thermodynamic equilibrium, kinetic control and surface complexation in order to explain cation type effect on chloride binding capability of concrete. Constr. Build. Mater. 2018, 191, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.M.; De Weerdt, K.; Johannesson, B.; Geiker, M.R. Framework for reactive mass transport: Phase change modeling of concrete by a coupled mass transport and chemical equilibrium model. Comput. Mater. Sci. 2014, 92, 213–223. [Google Scholar] [CrossRef]
- Jensen, M.M.; De Weerdt, K.; Johannesson, B.; Geiker, M.R. Use of a multi-species reactive transport model to simulate chloride ingress in mortar exposed to NaCl solution or sea-water. Comput. Mater. Sci. 2015, 105, 75–82. [Google Scholar] [CrossRef]
- Cherif, R.; Hamami, A.E.A.; Aït-Mokhtar, A.; Bosschaerts, W. Thermodynamic equilibria-based modelling of reactive chloride transport in blended cementitious materials. Cem. Concr. Res. 2022, 156, 106770. [Google Scholar] [CrossRef]
- Andersson, K.; Allard, B.; Bengtsson, M.; Magnusson, B. Chemical composition of cement pore solutions. Cem. Concr. Res. 1989, 19, 327–332. [Google Scholar] [CrossRef]
- Bogas, J.A.; Gomes, A. Non-steady-state accelerated chloride penetration resistance of structural lightweight aggregate concrete. Cem. Concr. Compos. 2015, 60, 111–122. [Google Scholar] [CrossRef]
- Castellote, M.; Andrade, C.; Alonso, M.C. Changes in Concrete pore size distribution due to electrochemical chloride migration trials. Mater. J. 1999, 96, 314–319. [Google Scholar]
- Huang, Q.; Wang, C.; Zeng, Q.; Yang, C.; Luo, C.; Yang, K. Deterioration of mortars exposed to sulfate attack under electrical field. Constr. Build. Mater. 2016, 117, 121–128. [Google Scholar] [CrossRef] [Green Version]
Cement [kg∙m−3] | Sand [kg∙m−3] | Coarse Aggregate [kg∙m−3] | Water [kg∙m−3] | W/C | |
---|---|---|---|---|---|
Concrete | 300 | 710 | 1242 | 180 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kribes, Z.-E.; Cherif, R.; Aït-Mokhtar, A. Physico-Chemical Modelling of Chloride Migration in Cement-Based Materials Considering Electrode Processes. Mater. Proc. 2023, 13, 37. https://doi.org/10.3390/materproc2023013037
Kribes Z-E, Cherif R, Aït-Mokhtar A. Physico-Chemical Modelling of Chloride Migration in Cement-Based Materials Considering Electrode Processes. Materials Proceedings. 2023; 13(1):37. https://doi.org/10.3390/materproc2023013037
Chicago/Turabian StyleKribes, Zine-Eddine, Rachid Cherif, and Abdelkarim Aït-Mokhtar. 2023. "Physico-Chemical Modelling of Chloride Migration in Cement-Based Materials Considering Electrode Processes" Materials Proceedings 13, no. 1: 37. https://doi.org/10.3390/materproc2023013037
APA StyleKribes, Z. -E., Cherif, R., & Aït-Mokhtar, A. (2023). Physico-Chemical Modelling of Chloride Migration in Cement-Based Materials Considering Electrode Processes. Materials Proceedings, 13(1), 37. https://doi.org/10.3390/materproc2023013037