The Effect of Preconditioning Temperature on Gas Permeability of Alkali-Activated Concretes †
Abstract
:1. Introduction
2. Materials
3. Methods
4. Results and Discussion
5. Conclusions
- The drying temperature of the samples significantly affects the obtained permeability values.
- The effect of temperature on AAC permeability is strongly related to the precursor used and especially to the slag content.
- All permeability test reports have to include sample preconditioning conditions to enable correct interpretation of results.
- The gas permeability value of materials with the same binder can be compared under the same conditions, taking into account the impact of the aggregate and the quality of the zone between aggregate and paste.
- The results of permeability tests carried out on AAC samples with different binders under different sample moisture conditions should not be compared.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernal, S.A.; Bílek, V.; Criado, M.; Fernández-Jiménez, A.; Kavalerova, E.; Krivenko, P.V.; Winnefeld, F. Durability and testing—Degradation via mass transport. In RILEM State-of-the-Art Reports: Alkali Activated Materials; Provis, J.L., van Deventer, J.S.J., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2014; Volume 13, pp. 223–276. [Google Scholar]
- Li, K.F. Durability Design of Concrete Structure: Phenomena, Modeling and Application; Wily & Sons: London, UK, 2016. [Google Scholar]
- Beushausen, H.; Luco, L.F. Performance-Based Specifications and Control of Concrete Durability, RILEM State-of-the-Art Reports RILEM TC 230-PSC; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Stanish, K.D.; Hooton, R.D.; Thomas, M.D. Testing the Chloride Penetration Resistance of Concrete: A Literature Review; FHWA Contract DTFH61-97-R-00022; Department of Civil Engineering University of Toronto: Toronto, ON, Canada, 2001. [Google Scholar]
- AKatz, J.; Thompson, A. Quantitative prediction of permeability. Phys. Rev. 1986, 34, 8179–8181. [Google Scholar]
- Kropp, J. Permeability of Concrete as a Criterion of its Durability. Mater. Struct. 1999, 32, 5. [Google Scholar]
- Cather, R.; Figg, J.W.; Marsden, A.F.; O’Brien, T.P. Improvements to the figg method for determining the air permeability of concrete. Mag. Concr. Res. 2015, 36, 241–245. [Google Scholar] [CrossRef]
- Kropp, J.; Hilsdorf, H.K. Performance Criteria for Concrete Durability, State-of-the-Art Report of RILEM TC116-PCD; E&FN Spon: London, UK, 1995. [Google Scholar]
- Yang, K.; Basheer PA, M.; Bai, Y.; Magee, B.J.; Long, A.E. Development of a new in situ test method to measure the air permeability of high performance concretes. NDT Int. 2014, 64, 30–40. [Google Scholar] [CrossRef]
- Romer, M. Effect of moisture and concrete composition on the Torrent permeability measurement. Mater. Struct. 2005, 38, 541–547. [Google Scholar] [CrossRef]
- Zhang, D.; Li, K. Concrete gas permeability from different methods: Correlation analysis. Cem. Concr. Compos. 2019, 104, 103379. [Google Scholar] [CrossRef]
- Alexander, M.G. Service life design and modelling of concrete structures–background, developments, and implementation. Revista Alconpat 2018, 8, 224–245. [Google Scholar] [CrossRef] [Green Version]
- XP P18-463; French Standards, Concretes–Gas Permeability Test on Hardened Concrete. AFNOR: St. Denis, France, 2011.
- Sitarz, M.; Hager, I.; Kochanek, J. Effect of High Temperature on Mechanical Properties of Geopolymer Mortar. MATEC Web Conf. 2018, 163, 06004. [Google Scholar] [CrossRef]
- Criado, M.; Palomo, A.; Fernández-Jiménez, A. Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel 2005, 84, 2048–2054. [Google Scholar] [CrossRef]
- Dudek, M.; Sitarz, M. Analysis of changes in the microstructure of geopolymer mortar after exposure to high temperatures. Materials 2020, 13, 4263. [Google Scholar] [CrossRef]
- Poornima, N.; Revathi, T.; Sivasakthi, M.; Jeyalakshmi, R. Effect of curing on mechanical strength and microstructure of fly ash blend GGBS geopolymer, Portland cement mortar and its behavior at elevated temperature. Mater. Today Proc. 2021, 47, 863–870. [Google Scholar] [CrossRef]
- Runci, A.; Serdar, M. Effect of curing time on the chloride diffusion of alkali-activated slag. Case Stud. Constr. Mater. 2022, 16, e00927. [Google Scholar] [CrossRef]
- Noushini, A.; Castel, A. The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Constr. Build. Mater. 2016, 112, 464–477. [Google Scholar] [CrossRef]
- Chi, M. Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr. Build. Mater. 2012, 35, 240–245. [Google Scholar] [CrossRef]
- Swanepoel, J.C.; Strydom, C.A. Utilisation of fly ash in a geopolymeric material. Appl. Geochem. 2022, 17, 1143–1148. [Google Scholar] [CrossRef]
- Fernandez-Timenez, A.; Palomo, A. Alkali-activated fly ashes: Properties and characteristics. In Proceedings of the 11th ICCC 3, Durban, South Africa, 11–16 May 2003; pp. 1332–1340. [Google Scholar]
- Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes, a cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Jiang, W.; Roy, D. Hydrothermal processing of new fly ash cement. Ceram. Bull. 1990, 71, 642–647. [Google Scholar]
- Bakharev, T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 2005, 35, 1224–1232. [Google Scholar] [CrossRef]
- ASTM C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- Hager, I.; Sitarz, M.; Mróz, K. Fly-ash based geopolymer mortar for high-temperature application–Effect of slag addition. J. Clean. Prod. 2021, 316, 128168. [Google Scholar] [CrossRef]
- Kollek, J.J. The determination of the permeability of concrete to oxygen by the Cembureau method—A recommendation. Mater. Struct. 1989, 22, 225–230. [Google Scholar] [CrossRef]
- Lide, D.R.; Frederikse, H.P.R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press LLC: New York, NY, USA, 2003; p. 1004. [Google Scholar]
- Zhang, J.; Jin, T.; He, Y.; Wang, Y.; Gao, Y.; Zhang, Y. The slippage effect of concrete gas permeability and the influence of its microstructure. Constr. Build. Mater. 2022, 333, 127384. [Google Scholar] [CrossRef]
- Choinska, M. Effets de la Température, du Chargement Mécanique et de Leurs Interactions sur la Perméabilité du Béton de Structure; Matériaux. Ecole Centrale de Nantes (ECN); Université de Nantes: Nantes, France, 2006; p. 185. [Google Scholar]
wt.% | SiO2 | Al2O3 | FexOy | CaO | MgO | SO3 | K2O | Na2O | P2O5 | TiO2 | Mn3O4 | Cl− |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FA | 52.30 | 28.05 | 6.32 | 3.05 | 1.71 | 0.28 | 2.51 | 0.76 | 0.69 | 1.35 | 0.07 | - |
GGBFS | 39.31 | 7.61 | 1.49 | 43.90 | 4.15 | 0.51 | 0.36 | 0.47 | - | - | - | 0.04 |
AAC5B | AAC20B | AAC35B | AAC5D | AAC20D | AAC35D | |
---|---|---|---|---|---|---|
k20 [m2] | 3.53 × 10−18 | 1.08 × 10−17 | 6.07 × 10−17 | 3.81 × 10−18 | 6.00 × 10−18 | 4.65 × 10−17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duży, P.; Choinska Colombel, M.; Hager, I.; Amiri, O. The Effect of Preconditioning Temperature on Gas Permeability of Alkali-Activated Concretes. Mater. Proc. 2023, 13, 38. https://doi.org/10.3390/materproc2023013038
Duży P, Choinska Colombel M, Hager I, Amiri O. The Effect of Preconditioning Temperature on Gas Permeability of Alkali-Activated Concretes. Materials Proceedings. 2023; 13(1):38. https://doi.org/10.3390/materproc2023013038
Chicago/Turabian StyleDuży, Patrycja, Marta Choinska Colombel, Izabela Hager, and Ouali Amiri. 2023. "The Effect of Preconditioning Temperature on Gas Permeability of Alkali-Activated Concretes" Materials Proceedings 13, no. 1: 38. https://doi.org/10.3390/materproc2023013038
APA StyleDuży, P., Choinska Colombel, M., Hager, I., & Amiri, O. (2023). The Effect of Preconditioning Temperature on Gas Permeability of Alkali-Activated Concretes. Materials Proceedings, 13(1), 38. https://doi.org/10.3390/materproc2023013038