Influence of Environmental Conditions on Steel Corrosion in Concrete Exposed to Gamma Radiation †
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials and Specimens
2.2. Specimen Conditioning and Gamma Radiation Exposure
2.3. Test Methods
- frequency range of 5 × 105–5 × 10−1 Hz;
- amplitude of the sine wave perturbation—10 mV.
- Rpas—the ohmic resistance in the defects of passive layer;
- Rct—the charge transfer resistance;
- Y,n—parameters of a constant phase element (CPEm—mortar constant phase element; CPEpas—passive surface constant phase element; CPEdl—double layer on the steel constant phase element).
- potential range from −100 mV, with respect to the corrosion potential, to 800 mV, with respect to the reference electrode,
- rate of potential change—1 mV/s.
- Parameters determined based on the recorded polarization curve:
- Ecor—corrosion potential,
- Ep—passivation potential,
- Etr—transpassivation potential,
- jcor—corrosion current density,
- jp—passivation current density.
3. Results and Discussion
4. Conclusions
- The increasing RH from 50% to 100% resulted in the intensification of the deterioration of the protective properties of the passive layer on the steel and the accelerated corrosion of the steel in non-irradiated specimens. The effect of gamma radiation on the corrosion of steel in the mortar is significantly greater in an atmosphere of 1% CO2 and moderate RH (50%) than 1% CO2 and fully saturated conditions (RH = 100%);
- Steel in mortar stored in closed, low-volume cans had a better passive layer and lower corrosion rate than steel in mortar stored in a laboratory atmosphere.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tcherner, J.; Vaithilingam, L.; Han, M. Effective aging management of NPP concrete structures. J. Adv. Concr. Technol. 2017, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lindqvist, J.A.; Flansbjer, M.; Hansson, E. Analysis of Irradiated Concrete; Report 2016:239; Energiforsk: Stockholm, Sweden, 2016. [Google Scholar]
- Field, K.G.; Remec, I.; Le Pape, Y. Radiation effects in concrete for nuclear power plants—Part I: Quantification of radiation exposure and radiation effects. Nucl. Eng. Des. 2015, 282, 126–143. [Google Scholar] [CrossRef] [Green Version]
- Soo, P.; Milian, L.M. The effect of gamma radiation on the strength of Portland cement mortars. J. Mater. Sci. Lett. 2001, 20, 1345–1348. [Google Scholar] [CrossRef]
- Robira, M.; Hilloulin, B.; Loukili, A.; Potin, G.; Bourbon, X.; Abdelouas, A. Multi-scale investigation of the effect of γ irradiations on the mechanical properties of cementitious materials. Constr. Build. Mater. 2018, 186, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Mobasher, N.; Bernal, S.; Kinoshita, H.; Sharrad, C.; Provis, J. Gamma irradiation resistance of an early age slag-blended cement matrix for nuclear waste encapsulation. J. Mater. Res. 2015, 30, 1563–1571. [Google Scholar] [CrossRef]
- Glinicki, M.A.; Dąbrowski, M.; Antolik, A.; Dziedzic, K.; Sikorin, S.; Fateev, V.; Povolansky, E. Gamma irradiation sensitivity of early hardening cement mortar. Cem. Concr. Compos. 2022, 126, 104327. [Google Scholar] [CrossRef]
- Dąbrowski, M.; Glinicki, M.A.; Dziedzic, K.; Jóźwiak-Niedźwiedzka, D.; Sikorin, S.; Fateev, V.S.; Povalansky, E.I. Early age hardening of concrete with heavy aggregate in gamma radiation source—Impact on the modulus of elasticity and microstructural features. J. Adv. Concr. Technol. 2021, 19, 555–570. [Google Scholar] [CrossRef]
- Maruyama, I.; Ishikawa, S.; Yasukouchi, J.; Sawada, S.; Kurihara, R.; Takizawa, M.; Kontani, O. Impact of gamma-ray irradiation on hardened white Portland cement pastes exposed to atmosphere. Cem. Concr. Res. 2018, 108, 59–71. [Google Scholar] [CrossRef]
- Potts, A.; Butcher, E.; Cann, G.; Leay, L. Long term effects of gamma irradiation on in-service concrete structures. J. Nucl. Mater. 2021, 548, 152868. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Nayar, S.K.; Barsoum, I.; Alfantazi, A. Degradation of Concrete Structures in Nuclear Power Plants: A Review of the Major Causes and Possible Preventive Measures. Energies 2022, 15, 8011. [Google Scholar] [CrossRef]
- Reches, Y. A multi-scale review of the effects of gamma radiation on concrete. Results Mater. 2019, 2, 100039. [Google Scholar] [CrossRef]
- Jaśniok, M.; Jaśniok, T. Measurements on corrosion rate of reinforcing steel under various environmental conditions, using an insulator to delimit the polarized area. Procedia Eng. 2017, 193, 431–438. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Engelhardt, G.R.; Petrov, A. A Critical Review of Radiolysis Issues in Water-Cooled Fission and Fusion Reactors: Part I, Assessment of Radiolysis Model. Corros. Mate. Degrad. 2022, 3, 470–535. [Google Scholar] [CrossRef]
- Aljohania, T.A.; Geesib, M.H.; Kaibac, A.; Al-Mayoufd, A.M.; Khoshnaw, F. Characterization of gamma-ray irradiation influence on the corrosion behaviour of austenitic stainless steel. Mater. Today Commun. 2020, 24, 101242. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Zhang, Z.; Han, E.-H.; Liu, W.; Liang, D.; Yang, Z.; Cao, X. Effect of cumulative gamma irradiation on microstructure and corrosion behaviour of X65 low carbon steel. J. Mater. Sci. Technol. 2018, 34, 2131–2139. [Google Scholar] [CrossRef]
- Dewynter-Marty, V.; Chomat, L.; Guillot, W.; Amblard, E.; Durand, D.; Cornaton, M.; Bourbon, X. Concrete radiolysis effect on steels corrosion and comparison with non-irradiated material. In Proceedings of the EUROCORR 2017—20th International Corrosion Congress/Process Safety Congress 2017, Prague, Czech Republic, 3–7 September 2017. [Google Scholar]
- Dąbrowski, M.; Glinicki, M.A.; Kuziak, J.; Jóźwiak-Niedźwiedzka, D.; Dziedzic, K. Effects of 2 MGy gamma irradiation on the steel corrosion in cement-based composites. Constr. Build. Mater. 2022, 342, 127967. [Google Scholar] [CrossRef]
- EN 197-1:2012; Cement: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 196-1:2016; Methods of Testing Cement: Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2016.
- EN 10025-2:2019; Hot Rolled Products of Structural Steels Part 2: Technical Delivery Conditions for Non-Alloy Structural Steels. European Committee for Standardization: Brussels, Belgium, 2019.
- PN-B-01810:1986; Protection Against Corrosion in Building—Protective Properties of Concrete Referring to Reinforcing Steel—Electrochemical Tests. Polish Committee for Standardization: Brussels, Belgium, 1986. (In Polish)
- Jóźwiak-Niedźwiedzka, D.; Dąbrowski, M.; Dziedzic, K.; Jarząbek, D.; Antolik, A.; Denis, P.; Glinicki, M.A. Effect of gamma irradiation on the mechanical properties of carbonation reaction products in mortar. Mater. Struct. 2022, 55, 164. [Google Scholar] [CrossRef]
- Andrade, C.; Alonso, C.; Gulikers, J.; Polder, R.; Cigna, R.; Vennesland, Ø.; Salta, M.; Raharinaivo, A.; Elsener, B. RILEM TC 154-EMC: Electrochemical Techniques for Measuring Metallic Corrosion. Recommendations. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 2004, 37, 623–643. [Google Scholar] [CrossRef]
- Montemor, M.F.; Cunha, M.P.; Ferreira, M.G.; Simoes, A.M. Corrosion behaviour of rebars in fly ash mortar exposed to carbon dioxide and chlorides. Cem. Concr. Compos. 2002, 24, 45–53. [Google Scholar] [CrossRef]
Parameters | air | 50—can | 50—ir | 100—can | 100—ir |
---|---|---|---|---|---|
Ecor, V | −0.52 | −0.25 | −0.43 | −0.31 | −0.36 |
jcor, μA/cm2 | 0.57 | 0.02 | 0.24 | 0.20 | 0.26 |
Ep, V | −0.47 | −0.19 | −0.36 | −0.25 | −0.30 |
jp, μA/cm2 | 13.9 | 0.6 | 4.4 | 3.8 | 5.0 |
Etr, V | 0.55 | 0.57 | 0.55 | 0.54 | 0.54 |
Parameters | air | 50—can | 50—ir | 100—can | 100—ir |
---|---|---|---|---|---|
Rpas, kΩ·cm2 | 1.56 | 5.15 | 2.12 | 0.38 | 0.48 |
Ypas, μFsn−1·cm−2 | 132.0 | 50.5 | 111.0 | 2.4 | 20.1 |
npas | 0.55 | 0.73 | 0.61 | 0.90 | 0.71 |
Rct, kΩ·cm2 | 39 | 5010 | 204 | 207 | 122 |
Ydl, μFsn−1·cm−2 | 201 | 43 | 122 | 173 | 146 |
ndl | 0.62 | 0.78 | 0.67 | 0.70 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowski, M.; Kuziak, J.; Dziedzic, K.; Glinicki, M.A. Influence of Environmental Conditions on Steel Corrosion in Concrete Exposed to Gamma Radiation. Mater. Proc. 2023, 13, 44. https://doi.org/10.3390/materproc2023013044
Dąbrowski M, Kuziak J, Dziedzic K, Glinicki MA. Influence of Environmental Conditions on Steel Corrosion in Concrete Exposed to Gamma Radiation. Materials Proceedings. 2023; 13(1):44. https://doi.org/10.3390/materproc2023013044
Chicago/Turabian StyleDąbrowski, Mariusz, Justyna Kuziak, Kinga Dziedzic, and Michał A. Glinicki. 2023. "Influence of Environmental Conditions on Steel Corrosion in Concrete Exposed to Gamma Radiation" Materials Proceedings 13, no. 1: 44. https://doi.org/10.3390/materproc2023013044
APA StyleDąbrowski, M., Kuziak, J., Dziedzic, K., & Glinicki, M. A. (2023). Influence of Environmental Conditions on Steel Corrosion in Concrete Exposed to Gamma Radiation. Materials Proceedings, 13(1), 44. https://doi.org/10.3390/materproc2023013044