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Abstract: Cracking is a major problem for several types of steels during additive manufacturing. 
Non-equilibrium kinetics of rapid solidification and solid–solid phase transformations are critical 
in determining the cracking susceptibility. Previous studies correlate the hot cracking susceptibility 
to the solidification sequence, and therefore composition, empirically. In this study, an Integrated 
Computational Materials Engineering (ICME) approach is used to provide a more mechanistic and 
quantitative understanding of the hot cracking susceptibility of a number of steels in relation to the 
peritectic reaction and evolution of δ-ferrite during solidification. The application of ICME and hot 
cracking susceptibility predictions to alloy design for additive manufacturing is discussed. 
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1. Introduction 
Solidification cracking, also referred to as hot tearing, is one of the major problems 

for some types of steels during solidification in processes, such as casting, welding, and 
additive manufacturing. It occurs when dendrites inhibit the flow of the remaining liquid 
in the inter-dendritic region to compensate for shrinkage and strain. Initial theories regard-
ing hot cracking hypothesized that, as the freezing range of an alloy defined by the differ-
ence of liquidus and solidus temperature, is increased, the more susceptible it is to cracking, 
as large freezing ranges can lead to more interlocked dendrites that form in the later stages 
of solidification [1]. A more quantitative measure of solidification cracking, known as the 
cracking susceptibility coefficient (CSC), proposed by Clyne and Davies [2], has been widely 
used to describe the solidification cracking tendency. It is defined by Equation (1), 

where tv is the time period during solidification when the system is vulnerable to cracking 
which is taken as the liquid fraction between 0.1 and 0.01, and tR is the time period during 
solidification when liquid feeding can readily occur, which corresponds to the liquid frac-
tion between 0.6 and 0.1. Thus, if the window for stress relief is relatively large compared 
to the time period during which the alloy can readily crack, the probability for cracking 
during solidification is decreased, represented by a reduction of the CSC. Three types of 
correlations were proposed to estimate cooling conditions: mode 1 with a constant cooling 
rate; mode 2 with a constant heat flow; mode 3 with a heat flow proportional to the square 
root of time [3]. 

Extensive studies have also shown that solidification cracking is closely related to the 
course of solidification and the ferrite fraction at solidification temperatures, which are 
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essentially composition-dependent. Kujanpää et al. [4] measured and correlated the room-
temperature δ-ferrite content to the total crack length for 24 austenitic and austenitic-fer-
ritic welds with Creq/Nieq between 1.11 and 3.25. It was identified that the least hot crack-
ing is correlated to 10–20% δ-ferrite at room temperature, as indicated by Figure 1. How-
ever, using the room-temperature ferrite content to explain the solidification cracking be-
havior is mechanistically insufficient, as the full evolution of the ferrite content during 
solidification and cooling is not taken into account. While experimentally available infor-
mation is usually limited to room temperature measurements, state-of-the-art computa-
tional techniques enable analyses of the evolution of phase contents during solidification, 
which are essential to understand solidification cracking. 

 
Figure 1. Total length of cracks vs. δ-ferrite content measured at room temperature for 24 austen-
itic and austenitic-ferritic welds in [4]. 

This work is utilizing a CALPHAD-based ICME (Integrated Computational Materi-
als Engineering) approach to quantify these metrics in order to evaluate the solidification 
cracking tendency with respect to steel compositions in a more mechanistic manner.  

2. Methods 
The solute redistribution with respect to the temperature during rapid solidification 

is simulated by the Scheil–Gulliver model using the Scheil Calculator within the Thermo-
Calc software (version 2020b) [5]. It is a classical model for extreme non-equilibrium con-
ditions which assumes that there is no diffusion in the solid phase and infinitely fast dif-
fusion of all components in the liquid phase. Thermo-Calc Software TCFE10 Steels/Fe-
alloys database is used for the calculations [6]. 

For diffusion-controlled phase transformations during solidification and continuous 
cooling, the Diffusion Module (DICTRA) [5] and Thermo-Calc Software MOBFE5 
Steels/Fe-alloys mobility database [7] are used to predict cooling-rate-controlled kinetics. 
In this work, a cylindrical one-dimensional cell is used to represent the thickening of pri-
mary cell arms during solidification. 

3. Results and Discussions 
3.1. Hot Cracking Susceptibility (HCS) 

CSC values for the Fe-0.5Si-xC (x = 0.05~0.95, in wt.%) ternary system are calculated 
from Scheil curves based on the model proposed by Clyne and Davies [2]. Since it is sug-
gested that mode 2 and mode 3 give similar reasonable results on susceptibility predic-
tion, the CSC values under the mode 2 cooling condition are plotted against the carbon 
content in Figure 2 to manifest the carbon effect on the cracking susceptibility. Figure 2 
suggests that for dilute solutions (x < 0.2 wt.%), the alloy system gets prone to cracking as 
the carbon content increases, whereas increasing carbon levels can reduce the CSC values 
when the carbon content is greater than 0.2 wt.%. However, this tendency in high carbon 
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regions is not well aligned with the experimental observation of the hot cracking sensitiv-
ity on the carbon content of the same alloy system carried out by Tamaki et al. [8]. Exper-
imental evaluation of cracking percentage in steel welds suggests a dip in the cracking 
susceptibility at a medium carbon level, followed by an increased cracking susceptibility 
as the carbon content increases. 

 
Figure 2. Cracking susceptibility coefficient (CSC, under mode 2 cooling condition) vs. carbon 
content for Fe-0.5Si-xC (x = 0.05~0.95, in wt.%) ternary system. 

To address the disparity, a metric named HCS (hot cracking susceptibility) [9] is used 
to represent the cracking sensitivity. Figure 3 shows the plot of HCS values against varied 
carbon content in the Fe-0.5Si-xC ternary system in comparison with an isopleth of the 
equilibrium phase diagram. The tendency of the HCS curve matches well with the exper-
imentally-determined cracking percentage curve in [8], with a dip at an intermediate car-
bon level indicating a less cracking-sensitive composition. Compared with the phase dia-
gram in Figure 3b, the first bump of the curve corresponds to the alloy compositions with 
a peritectic reaction (L + δ → γ) occurring during solidification. This indicates that the hot 
cracking sensitivity is a combined effect of solidification temperature and solidification 
range. With peritectic reactions, the solidification range is expanded and therefore in-
creases the susceptibility to hot cracking. Therefore, compared with the CSC curves, the 
HCS is a more comprehensive metric that can better represent the cracking sensitivity 
during solidification. 

 
Figure 3. Relation between hot cracking susceptibility (HCS) and equilibrium phase diagram of 
the Fe-0.5Si-xC (x = 0.05~0.95, in wt.%) ternary system. 
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3.2. δ-Solidification 
The δ-ferrite fraction is another effective metric that needs to be well-controlled to 

ensure a low solidification cracking susceptibility. Empirically, Schaeffler diagrams are 
used to dictate the δ-ferrite fraction and therefore the cracking sensitivity with respect to 
the Creq and Nieq values, especially for austenitic stainless steels. Using the ICME ap-
proach, it is feasible to predict the δ-ferrite fraction for multicomponent systems with 
greater reliability, without the needs to estimate Creq and Nieq values. 

In this work, DICTRA simulations are performed to simulate the phase transfor-
mation during solidification and continuous cooling. Although a Scheil simulation can 
also give a reasonable solidification curve (see Figure 4), it overpredicts the room-temper-
ature δ-ferrite content in the microstructure, as it does not consider the δ-γ transformation. 
In contrast, DICTRA can describe both the formation and back-transformation of δ-ferrite 
as a function of the cooling rate and cell size during the continuous cooling process. As 
compared to the experimental results, DICTRA gives a better prediction of the room-tem-
perature δ-ferrite amount (see Figure 5). 

 
Figure 4. Comparison of cooling simulations under equilibrium condition, and under non-equilib-
rium conditions performed by Scheil and DICTRA. (a) Comparison of fraction of liquid during 
solidification; (b) comparison of δ-ferrite fraction during continuous cooling. 

 
Figure 5. Comparison of predicted ferrite fraction by DICTRA simulations and measured values in [4]. 

3.3. ICME-Guided Materials Design 
As described in previous sections, the HCS and the fraction of δ-ferrite are composi-

tion-dependent metrics to evaluate the solidification cracking susceptibility of alloys. 
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Therefore, they can be adopted in compositional designs for improved cracking resistance 
based on selected benchmark materials. Figure 6 exemplifies a simple ICME-predicted 
“Schaeffler diagram” generated with δ-ferrite fraction data points obtained from DICTRA 
simulations. For an identified δ-ferrite fraction, the composition can be adjusted based on 
sensitivity, with constraints from the HCS values. 

 
Figure 6. ICME-predicted “Schaeffler diagram”. 

4. Conclusions 
To provide a more mechanistic and quantitative understanding of the solidification 

cracking susceptibility of steels, the ICME approach has been demonstrated in this study. 
Representative metrics, including CSC, HCS, and the δ-ferrite fraction, are discussed 
quantitatively with CALPHAD-based simulations. Compared with experimental data, it 
is found that the HCS is a more effective and reliable metric to describe the hot cracking 
sensitivity than the CSC which is generally used. In addition, DICTRA simulations can 
successfully be used to predict the evolution of the δ-ferrite fraction during solidification 
and continuous cooling. With reliable predictions from ICME tools, a compositional de-
sign for improved solidification cracking resistance can be achieved. 
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and J.Y.; formal analysis, F.Y., J.Y. and D.L.; writing—original draft preparation, F.Y.; writing—re-
view and editing, D.L. and J.Y. All authors have read and agreed to the published version of the 
manuscript. 
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