Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Silanization of Fullerenol
2.3. Fullerenol and Fullerenol Derivative Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
References
- Price, G.; Patel, D.A. Drug Bioavailability. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557852/ (accessed on 10 November 2020).
- Pramanik, A.; Garg, S. Design of diffusion-controlled drug delivery devices for controlled release of Paclitaxel. Chem. Biol. Drug Des. 2019, 94, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef] [PubMed]
- Selby, L.I.; Cortez-Jugo, C.M.; Such, G.K.; Johnston, A.P.R. Nanoescapology: Progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1452. [Google Scholar] [CrossRef] [PubMed]
- Saei, A.A.; Yazdani, M.; Lohse, S.E.; Bakhtiary, Z.; Serpooshan, V.; Ghavami, M.; Asadian, M.; Mashaghi, S.; Dreaden, E.C.; Mashaghi, A.; et al. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chem. Mater. 2017, 29, 6578–6595. [Google Scholar] [CrossRef]
- Kazemzadeh, H.; Mozafari, M. Fullerene-based delivery systems. Drug Discov. Today 2019, 24, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Mi, P.; Cabral, H.; Kataoka, K. Ligand-Installed Nanocarriers toward Precision Therapy. Adv. Mater. 2020, 32, e1902604. [Google Scholar] [CrossRef]
- Smith, S.A.; Selby, L.I.; Johnston, A.P.R.; Such, G.K. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconj. Chem. 2019, 30, 263–272. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, J.M.; Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 2019, 160, 61–75. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dhakshinamurthy, G.S.; Misra, S.K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. Part A 2017, 105, 2906–2928. [Google Scholar] [CrossRef] [PubMed]
- Biffi, S.; Voltan, R.; Bortot, B.; Zauli, G.; Secchiero, P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin. Drug Deliv. 2019, 16, 481–496. [Google Scholar] [CrossRef]
- Kanwal, U.; Bukhari, N.I.; Ovais, M.; Abass, N.; Hussain, K.; Raza, A. Advances in nano-delivery systems for doxorubicin: An updated insight. J. Drug Target 2018, 26, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Cuellar, M.; Cifuentes, J.; Perez, J.; Suarez-Arnedo, A.; Serna, J.A.; Groot, H.; Muñoz-Camargo, C.; Cruz, J.C. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int. J. Nanomed. 2018, 13, 8087–8094. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.; Cifuentes, J.; Cuellar, M.; Suarez-Arnedo, A.; Cruz, J.C.; Muñoz-Camargo, C. Cell-penetrating and antibacterial BUF-II nanobioconjugates: Enhanced potency via immobilization on polyetheramine-modified magnetite nanoparticles. Int. J. Nanomed. 2019, 14, 8483–8497. [Google Scholar] [CrossRef]
- Lopez-Barbosa, N.; Suárez-Arnedo, A.; Cifuentes, J.; Barrios, A.F.G.; Batista, C.A.S.; Osma, J.F.; Muñoz-Camargo, C.; Cruz, J.C. Magnetite–OmpA Nanobioconjugates as Cell-Penetrating Vehicles with Endosomal Escape Abilities. ACS Biomater. Sci. Eng. 2019, 6, 415–424. [Google Scholar] [CrossRef]
- Semenov, K.; Charykov, N.; Postnov, V.; Sharoyko, V.; Vorotyntsev, I.; Galagudza, M.; Murin, I.V. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem. 2016, 44, 59–74. [Google Scholar] [CrossRef]
- Kokubo, K.; Shirakawa, S.; Kobayashi, N.; Aoshima, H.; Oshima, T. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res. 2011, 4, 204–215. [Google Scholar] [CrossRef]
- De Santiago, H.A.; Gupta, S.K.; Mao, Y. On high purity fullerenol obtained by combined dialysis and freeze-drying method with its morphostructural transition and photoluminescence. Sep. Purif. Technol. 2019, 210, 927–934. [Google Scholar] [CrossRef]
- Hermanson, G.T. Introduction to Bioconjugation. In Bioconjugate Techniques; Academic Press: Cambridge, MA, USA, 2013; pp. 1–125. [Google Scholar]
- Ajie, H.; Alvarez, M.M.; Anz, S.J.; Beck, R.D.; Diederich, F.; Fostiropoulos, K.; Huffman, D.R.; Kraetschmer, W.; Rubin, Y.; Schriver, K.E.; et al. Characterization of the soluble all-carbon molecules C60 and C70. J. Phys. Chem. 1990, 94, 8630–8633. [Google Scholar] [CrossRef]
- Kratschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: A new form of carbon. Nature 1990, 347, 354–358. [Google Scholar] [CrossRef]
- Kokubo, K.; Matsubayashi, K.; Tategaki, H.; Takada, H.; Oshima, T. Facile Synthesis of Highly Water-Soluble Fullerenes More Than Half-Covered by Hydroxyl Groups. ACS Nano 2008, 2, 327–333. [Google Scholar] [CrossRef]
- Kovač, T.; Borišev, I.; Crevar, B.; Kenjerić, F.Č.; Ko, M. Fullerol C60(OH)24 nanoparticles modulate aflatoxin B1 biosynthesis in Aspergillus flavus. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brant, J.A.; Labille, J.; Robichaud, C.O.; Wiesner, M. Fullerol cluster formation in aqueous solutions: Implications for environmental release. J. Colloid Interface Sci. 2007, 314, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Saraswati, T.E.; Setiawan, U.H.; Ihsan, M.R.; Isnaeni, I.; Herbani, Y. The Study of the Optical Properties of C60 Fullerene in Different Organic Solvents. Open Chem. 2020, 17, 1198–1212. [Google Scholar] [CrossRef]
- Singh, R.; Goswami, T. Highly luminescent multifunctional hemi-ortho ester derivatives of fullerenol. Synth. Met. 2007, 157, 951–955. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravelo-Nieto, E.; Duarte-Ruiz, A.; Reyes, L.H.; Cruz, J.C. Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications. Mater. Proc. 2021, 4, 15. https://doi.org/10.3390/IOCN2020-07793
Ravelo-Nieto E, Duarte-Ruiz A, Reyes LH, Cruz JC. Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications. Materials Proceedings. 2021; 4(1):15. https://doi.org/10.3390/IOCN2020-07793
Chicago/Turabian StyleRavelo-Nieto, Eduardo, Alvaro Duarte-Ruiz, Luis H. Reyes, and Juan C. Cruz. 2021. "Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications" Materials Proceedings 4, no. 1: 15. https://doi.org/10.3390/IOCN2020-07793
APA StyleRavelo-Nieto, E., Duarte-Ruiz, A., Reyes, L. H., & Cruz, J. C. (2021). Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications. Materials Proceedings, 4(1), 15. https://doi.org/10.3390/IOCN2020-07793