Pharmaceuticals Influence on Phragmites australis Phytoremediation Potential in Cu Contaminated Estuarine Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Evaluation of the Role of Different Salt Marsh Plants on Metal Retention
2.3. Elutriate Experiments Assembly and Samples Preparation
2.4. Metals Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Role of Different Salt Marsh Plants on Metal Retention
3.2. Elutriate Experiments—pH Variation
3.3. P. australis Phytoremediation Potential for Cu Contaminated Medium
3.4. Influence of Pharmaceuticals on P. australis Phytoremediation Potential for Cu Contaminated Medium
3.4.1. Bezafibrate
3.4.2. Paroxetine
3.4.3. Pharmaceutical Influence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouvy, M.; Arfi, R.; Bernard, C.; Carré, C.; Got, P.; Pagano, M.; Troussellier, M. Estuarine microbial community characteristics as indicators of human-induced changes (Senegal River, West Africa). Estuar. Coast. Shelf Sci. 2010, 87, 573–582. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Mucha, A.P.; Vasconcelos, M.T.S.D. Influence of the sea rush Juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environ. Sci. Technol. 2004, 38, 3112–3118. [Google Scholar] [CrossRef] [PubMed]
- Taheran, M.; Naghdi, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Emerging contaminants: Here today, there tomorrow! Environ. Nanotechnol. Monit. Manag. 2018, 10, 122–126. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M.-H.; Ho, Y.-S. A historical review and bibliometric analysis of research on estuary pollution. Mar. Pollut. Bull. 2012, 64, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Lutz, A.; Carroll, R.; Keteles, K.; Dahlin, K.; Murphy, M.; Nguyen, D. Occurrence, distribution, and seasonality of emerging contaminants in urban watersheds. Chemosphere 2018, 200, 133–142. [Google Scholar] [CrossRef]
- Sophia, A.C.; Lima, E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- Madureira, T.V.; Barreiro, J.C.; Rocha, M.J.; Rocha, E.; Cass, Q.B.; Tiritan, M.E. Spatiotemporal distribution of pharmaceuticals in the Douro River estuary (Portugal). Sci. Total Environ. 2010, 408, 5513–5520. [Google Scholar] [CrossRef]
- Reis-Santos, P.; Pais, M.; Duarte, B.; Caçador, I.; Freitas, A.; Vila Pouca, A.S.; Barbosa, J.; Leston, S.; Rosa, J.; Ramos, F.; et al. Screening of human and veterinary pharmaceuticals in estuarine waters: A baseline assessment for the Tejo estuary. Mar. Pollut. Bull. 2018, 135, 1079–1084. [Google Scholar] [CrossRef]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Ribeiro, C.; Tiritan, M.E.; Pereira, M.F.R.; Silva, A.M.T. Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers. Sci. Total Environ. 2019, 649, 1083–1095. [Google Scholar] [CrossRef]
- Klosterhaus, S.L.; Grace, R.; Hamilton, M.C.; Yee, D. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environ. Int. 2013, 54, 92–99. [Google Scholar] [CrossRef]
- Lindim, C.; van Gils, J.; Cousins, I.T.; Kühne, R.; Georgieva, D.; Kutsarova, S.; Mekenyan, O. Model-predicted occurrence of multiple pharmaceuticals in Swedish surface waters and their flushing to the Baltic Sea. Environ. Pollut. 2017, 223, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.M.P.T.; Silva, L.J.G.; Meisel, L.M.; Lino, C.M.; Pena, A. Environmental impact of pharmaceuticals from Portuguese wastewaters: Geographical and seasonal occurrence, removal and risk assessment. Environ. Res. 2015, 136, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, S.; Correia, B.; Fraga-Santiago, P.; Silva, C.; Baptista, P.C.; Gomes, C.R.; Almeida, C.M.R. Potential of an estuarine salt marsh plant (Phragmites australis (Cav.) Trin. Ex Steud10751) for phytoremediation of bezafibrate and paroxetine. Hydrobiologia 2021, 848, 3291–3304. [Google Scholar] [CrossRef]
- Silva, L.J.G.; Pereira, A.M.P.T.; Meisel, L.M.; Lino, C.M.; Pena, A. A one-year follow-up analysis of antidepressants in Portuguese wastewaters: Occurrence and fate, seasonal influence, and risk assessment. Sci. Total Environ. 2014, 490, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.N.V. Metals in the Environment Analysis by Biodiversity; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- Weis, J.S.; Weis, P. Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ. Int. 2004, 30, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Mucha, A.P.; Almeida, C.M.R.; Bordalo, A.A.; Vasconcelos, M.T.S.D. Salt marsh plants (Juncus maritimus and Scirpus maritimus) as sources of strong complexing ligands. Estuar. Coast. Shelf Sci. 2008, 77, 104–112. [Google Scholar] [CrossRef]
- Reboreda, R.; Cacador, I. Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ. Pollut. 2007, 146, 147–154. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Almeida, C.M.R.; Andreotti, F.; Barros, L.; Almeida, T.; Mucha, A.P. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Sci. Total Environ. 2017, 581–582, 801–810. [Google Scholar] [CrossRef]
- Feng, N.-X.; Yu, J.; Zhao, H.-M.; Cheng, Y.-T.; Mo, C.-H.; Cai, Q.-Y.; Li, Y.-W.; Li, H.; Wong, M.-H. Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci. Total Environ. 2017, 583, 352–368. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Mucha, A.P.; Teresa Vasconcelos, M. Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal). Estuar. Coast. Shelf Sci. 2011, 91, 243–249. [Google Scholar] [CrossRef]
- Oliveira, T.; Mucha, A.P.; Reis, I.; Rodrigues, P.; Gomes, C.R.; Almeida, C.M.R. Copper phytoremediation by a salt marsh plant (Phragmites australis) enhanced by autochthonous bioaugmentation. Mar. Pollut. Bull. 2014, 88, 231–238. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Araújo, J.L.; Mucha, A.P.; Basto, M.C.P.; Almeida, C.M.R. Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater. Bioresour. Technol. 2013, 134, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.P.; Almeida, C.M.R.; Basto, M.C.P.; Mucha, A.P. Response of a salt marsh microbial community to antibiotic contamination. Sci. Total Environ. 2015, 532, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Sauvêtre, A.; Schröder, P. Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Front. Plant. Sci. 2015, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.M.R.; Mucha, A.P.; Bordalo, A.A.; Vasconcelos, M.T.S.D. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments. Sci. Total Environ. 2008, 403, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.M.R.; Mucha, A.P.; Delgado, M.F.C.; Caçador, M.I.; Bordalo, A.A.; Vasconcelos, M.T.S.D. Can PAHs influence Cu accumulation by salt marsh plants? Mar. Environ. Res. 2008, 66, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Almeida, C.M.R.; Claúdia Dias, A.; Mucha, A.P.; Bordalo, A.A.; Vasconcelos, M.T.S.D. Study of the influence of different organic pollutants on Cu accumulation by Halimione portulacoides. Estuar. Coast. Shelf Sci. 2009, 85, 627–632. [Google Scholar] [CrossRef]
- Mucha, A.P.; Almeida, C.M.R.; Magalhães, C.M.; Vasconcelos, M.T.S.D.; Bordalo, A.A. Salt marsh plant–microorganism interaction in the presence of mixed contamination. Int. Biodeterior. Biodegrad. 2011, 65, 326–333. [Google Scholar] [CrossRef]
- Oyetibo, G.O.; Miyauchi, K.; Huang, Y.; Chien, M.-F.; Ilori, M.O.; Amund, O.O.; Endo, G. Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants. Int. Biodeterior. Biodegrad. 2017, 119, 614–625. [Google Scholar] [CrossRef]
- Moreira, I.T.A.; Oliveira, O.M.C.; Triguis, J.A.; Queiroz, A.F.S.; Barbosa, R.M.; Anjos, J.A.S.A.; Reyes, C.Y.; Silva, C.S.; Trindade, M.C.L.F.; Rios, M.C. Evaluation of the effects of metals on biodegradation of total petroleum hydrocarbons. Microchem. J. 2013, 110, 215–220. [Google Scholar] [CrossRef]
- Sayen, S.; Rocha, C.; Silva, C.; Vulliet, E.; Guillon, E.; Almeida, C.M.R. Enrofloxacin and copper plant uptake by Phragmites australis from a liquid digestate: Single versus combined application. Sci. Total Environ. 2019, 664, 188–202. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.N.; Mucha, A.P.; Rocha, A.C.; Gomes, C.R.; Almeida, C.M.R. Response of two salt marsh plants to short- and long-term contamination of sediment with cadmium. J. Soils Sediments 2015, 15, 722–731. [Google Scholar] [CrossRef]
- Long, E.R.; MacDonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Bakke, T.; Källqvist, T.; Ruus, A.; Breedveld, G.D.; Hylland, K. Development of sediment quality criteria in Norway. J. Soils Sediments 2010, 10, 172–178. [Google Scholar] [CrossRef]
- Rocha, A.C.S.; Almeida, C.M.R.; Basto, M.C.P.; Vasconcelos, M.T.S.D. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs). Estuar. Coast. Shelf Sci. 2016, 171, 77–84. [Google Scholar] [CrossRef]
- Caetano, M.; Madureira, M.-J.; Vale, C. Metal remobilisation during resuspension of anoxic contaminated sediment: Short-term laboratory study. Water Air Soil Pollut. 2003, 143, 23–40. [Google Scholar] [CrossRef]
- Chapman, P.M.; Wang, F. Assessing sediment contamination in estuaries. Environ. Toxicol. Chem. 2001, 20, 3–22. [Google Scholar] [CrossRef]
- Weis, P.; Windham, L.; Burke, D.J.; Weis, J.S. Release into the environment of metals by two vascular salt marsh plants. Mar. Environ. Res. 2002, 54, 325–329. [Google Scholar] [CrossRef]
- Windham, L.; Weis, J.S.; Weis, P. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar.Coast. Shelf Sci. 2003, 56, 63–72. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Mucha, A.P.; Vasconcelos, M.T.S.D. Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environ. Pollut. 2006, 142, 151–159. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Santos, F.; Ferreira, A.C.F.; Gomes, C.R.; Basto, M.C.P.; Mucha, A.P. Constructed wetlands for the removal of metals from livestock wastewater—Can the presence of veterinary antibiotics affect removals? Ecotoxicol. Environ. Saf. 2017, 137, 143–148. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Dias, A.C.; Mucha, A.P.; Bordalo, A.A.; Vasconcelos, M.T.S.D. Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant. Chemosphere 2009, 75, 135–140. [Google Scholar] [CrossRef]
Cu (μg/g) | Pb (μg/g) | Fe (mg/g) | Mn (mg/g) | Zn (mg/g) | Cr (μg/g) | ||
---|---|---|---|---|---|---|---|
OFIR, Cávado river Halimione portulacoides | Vegetated sediment | 61 (3) | 44 (8) | 23.1 (0.6) | 0.70 (0.04) | 0.27 (0.02) | 41 (1) |
Non-vegetated sediment | 15 (1) | 19 (1) | 17.2 (0.4) | 0.56 (0.02) | 0.36 (0.02) | 15 (7) | |
VIANA C, Lima river Phragmites australis | Vegetated sediment | 14 (1) | 20 (10) | 18.9 (0.2) | 0.35 (0.07) | 0.40 (0.05) | 21 (2) |
Non-vegetated sediment | 6 (2) | 10 (10) | 14 (2) | 0.30 (0.05) | 0.48 (0.05) | 11 (2) | |
DARQUE, Lima river Juncus maritimus | Vegetated sediment | 22 (1) | 29 (8) | 21 (1) | 0.38 (0.04) | 0.30 (0.02) | 27 (2) |
Non-vegetated sediment | 14 (1) | 20 (10) | 15.2 (0.4) | 0.34 (0.05) | 0.29 (0.03) | 14.0 (0.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraga-Santiago, P.; Dias, S.; Silva, C.; Gomes, C.R.; Almeida, C.M.R. Pharmaceuticals Influence on Phragmites australis Phytoremediation Potential in Cu Contaminated Estuarine Media. Pollutants 2022, 2, 42-52. https://doi.org/10.3390/pollutants2010006
Fraga-Santiago P, Dias S, Silva C, Gomes CR, Almeida CMR. Pharmaceuticals Influence on Phragmites australis Phytoremediation Potential in Cu Contaminated Estuarine Media. Pollutants. 2022; 2(1):42-52. https://doi.org/10.3390/pollutants2010006
Chicago/Turabian StyleFraga-Santiago, Pedro, Sofia Dias, Cristiana Silva, Carlos R. Gomes, and C. Marisa R. Almeida. 2022. "Pharmaceuticals Influence on Phragmites australis Phytoremediation Potential in Cu Contaminated Estuarine Media" Pollutants 2, no. 1: 42-52. https://doi.org/10.3390/pollutants2010006
APA StyleFraga-Santiago, P., Dias, S., Silva, C., Gomes, C. R., & Almeida, C. M. R. (2022). Pharmaceuticals Influence on Phragmites australis Phytoremediation Potential in Cu Contaminated Estuarine Media. Pollutants, 2(1), 42-52. https://doi.org/10.3390/pollutants2010006