Reckoning Groundwater Quality and Hydrogeochemical Processes for Drinking and Irrigation Purposes under the Influence of Anthropogenic Activities, North India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Water Quality Index (WQI)
2.4. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Groundwater Chemistry and Drinking Water Quality
3.2. Hydro-Geochemical Facies
3.3. Groundwater Suitability for Irrigation
3.4. Water Quality Index (WQI)
3.5. Multivariate Statistical Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Khurshid, S.; Madan, R.; Abu Amarah, B.A.; Naushad, M. Water quality assessment of shallow aquifer based on Canadian Council of Ministers of the environment index and its impact on irrigation of Mathura District, Uttar Pradesh. J. King Saud Univ.-Sci. 2020, 32, 1218–1225. [Google Scholar] [CrossRef]
- Akhtar, N.; Ishak, M.; Ahmad, M.; Umar, K.; Yusuff, M.M.; Anees, M.; Qadir, A.; Almanasir, Y.A. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water 2021, 13, 905. [Google Scholar] [CrossRef]
- Surinaidu, L.; Nandan, M.; Kumar, K.M.; Prasad, R. Hydrogeochemical processes and causative pollution sources in the highly urbanized crystalline aquifer system in Southern India. Geosyst. Geoenviron. 2022, 1, 100064. [Google Scholar] [CrossRef]
- Bharti, N.; Katyal, D. Water Quality Indices Used for Surface Water Vulnerability Assessment. Int. J. Environ. Sci. 2011, 2, 154–173. [Google Scholar]
- Umar, R.; Alam, F. Assessment of hydrogeochemical characteristics of groundwater in parts of Hindon–Yamuna interfluve region, Baghpat District, Western Uttar Pradesh. Environ. Monit. Assess. 2012, 184, 2321–2336. [Google Scholar] [CrossRef]
- Chandrasekar, N.; Selvakumar, S.; Srinivas, Y.; Wilson, J.S.J.; Peter, T.S.; Magesh, N.S. Hydrogeochemical assessment of groundwater quality along the coastal aquifers of southern Tamil Nadu, India. Environ. Earth Sci. 2014, 71, 4739–4750. [Google Scholar] [CrossRef]
- Brigg, D.J. A framework for integrated environmental health impact assessment of systemic risks. A review. Environ. Health. 2008, 7, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Surinaidu, L.; Amarasinghe, U.; Maheswaran, R.; Nandan, M.J. Assessment of long-term hydrogeological changes and plausible solutions to manage hydrological extremes in the transnational Ganga river basin. H2Open J. 2020, 3, 457–480. [Google Scholar] [CrossRef]
- Patil, V.T.; Patil, P.R. Physicochemical Analysis of Selected Groundwater Samples of Amalner Town in Jalgaon District, Maharashtra, India. J. Chem. 2010, 7, 111–116. [Google Scholar]
- Ahmed, S.; Sultan, M.W.; Alam, M.; Hussain, A.; Qureshi, F.; Khurshid, S. Evaluation of corrosive behaviour and scaling potential of shallow water aquifer using corrosion indices and geospatial approaches in regions of the Yamuna river basin. J. King Saud Univ.-Sci. 2021, 33, 101237. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Kaur, L.; Rishi, M.S.; Singh, G.; Thakur, S.N. Groundwater potential assessment of an alluvial aquifer in Yamuna sub-basin (Panipat region) using remote sensing and GIS techniques in conjunction with analytical hierarchy process (AHP) and catastrophe theory (CT). Ecol. Indic. 2020, 110, 105850. [Google Scholar] [CrossRef]
- Haq, S. Ground Water Brochure of Aligarh District. 2013; pp. 1–33. Available online: http://cgwb.gov.in/District_Profile/UP/Aligarh.pdf (accessed on 15 June 2017).
- Khan, A.; Umar, R.; Khan, H.H. Hydrochemical characterization of groundwater in lower Kali watershed, Western Uttar Pradesh. J. Geol. Soc. India 2015, 86, 195–210. [Google Scholar] [CrossRef]
- Wasim, S.M. Groundwater Quality in Parts of Central Ganga Basin, Aligarh City, Uttar Pradesh, India. Proc. Indian Natl. Sci. Acad. 2014, 80, 123–142. [Google Scholar] [CrossRef]
- Singh, C.K.; Kumar, A.; Shashtri, S.; Kumar, A.; Kumar, P.; Mallick, J. Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. J. Geochem. Explor. 2017, 175, 59–71. [Google Scholar] [CrossRef]
- Salifu, A.; Petrusevski, B.; Ghebremichael, K.; Buamah, R.; Amy, G. Multivariate statistical analysis for fluoride occurrence in groundwater in the northern region of Ghana. J. Contam. Hydrol. 2012, 140, 34–44. [Google Scholar] [CrossRef]
- Surinaidu, L.; Nandan, M.; Sahadevan, D.; Umamaheswari, A.; Tiwari, V. Source identification and management of perennial contaminated groundwater seepage in the highly industrial watershed, south India. Environ. Pollut. 2021, 269, 116165. [Google Scholar] [CrossRef]
- Khan, M.; Khurshid, S. Study of Trace Elements in Ground Water of Aligarh City. Uttar Pradesh 2015, 3, 30–37. [Google Scholar]
- Khwaja, M.A.; Bhattacharya, G.S.; Aggarwal, V. Analysis of groundwater quality of Aligarh. Curr. World Environ. 2016, 3, 41–48. [Google Scholar]
- Irfan, A.; Khurshid, S. Effect of Water Quality on Human Health in Aligarh City, India. Jour. Integ. Comm. Health 2017, 6, 6–9. [Google Scholar]
- Hajji, S.; Allouche, N.; Bouri, S.; Aljuaid, A.M.; Hachicha, W. Assessment of Seawater Intrusion in Coastal Aquifers Using Multivariate Statistical Analyses and Hydrochemical Facies Evolution-Based Model. Int. J. Environ. Res. Public Health 2022, 19, 155. [Google Scholar] [CrossRef]
- Jacintha, T.G.A.; Rawat, K.S.; Mishra, A.; Singh, S.K. Hydrogeochemical characterization of groundwater of peninsular Indian region using multivariate statistical techniques. Appl. Water Sci. 2016, 7, 3001–3013. [Google Scholar] [CrossRef] [Green Version]
- Belkhiri, L.; Narany, T.S. Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality. Water Resour. Manag. 2015, 29, 2073–2089. [Google Scholar] [CrossRef]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Ahmed, S.; Akhtar, N.; Rahman, A.; Mondal, N.; Khurshid, S.; Sarah, S.; Khan, M.M.A.; Kamboj, V. Evaluating groundwater pollution with emphasizing heavy metal hotspots in an urbanized alluvium watershed of Yamuna River, Northern India. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100744. [Google Scholar] [CrossRef]
- Sastri, V.V.; Bhandari, L.L.; Raju, A.T.R.; Datta, A.K. Tectonic framework and subsurface stratigraphy of the Ganga basin. Geol. Soc. India 1971, 12, 222–233. [Google Scholar]
- American Public Health Association (APHA). Standard Methods: For the Examination of Water and Waste Water. Anal. Biochem. 1990, 186, 183. [Google Scholar] [CrossRef]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water; United States Geological Survey Water Supply Paper 2254; Scientific Publishers: New Delhi, India, 1991. [Google Scholar]
- Bureau of Indian Standards; Publication Unit, BIS: New Delhi, India, 2012.
- Todd, D.K.; Mays, L.W. Groundwater Hydrology; John Willey Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkaline Soils. Soil Sci. 1954, 65, 432. [Google Scholar] [CrossRef]
- Wilcox, L.V. Classification and Use of Irrigation Waters 969; US Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- Raghunath, I.I.M. Groundwater, 2nd ed.; Wiley Eastern, Ltd.: New Delhi, India, 1987; pp. 344–369. [Google Scholar]
- Doneen, L.D. Water Quality for Agriculture; Department Irrigation University California: Davis, CA, USA, 1964; Volume 48. [Google Scholar]
- Kelley, W.P. Permissible Composition and Concentration of Irrigation Water. Proc. ASCF 1940, 607, 607–613. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, I.C. Management of Saline Soils and Waters; Oxford and IBM: New Delhi, India, 1997. [Google Scholar]
- Ahmed, S.; Khurshid, S.; Sultan, W.; Shadab, M.B. Statistical analysis and water quality index development using GIS of Mathura City, Uttar Pradesh, India. Desalination Water Treat. 2020, 177, 152–166. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir, M.I.; Rai, S.P.; Saini, R.; Pant, N.; Anees, M.T.; Qadir, A.; Khan, U. Multivariate Investigation of Heavy Metals in the Groundwater for Irrigation and Drinking in Garautha Tehsil, Jhansi District, India. Anal. Lett. 2020, 53, 774–794. [Google Scholar] [CrossRef]
- Jeevanandam, M.; Kannan, R.; Srinivasalu, S.; Rammohan, V. Hydrogeochemistry and Groundwater Quality Assessment of Lower Part of the Ponnaiyar River Basin, Cuddalore District, South India. Environ. Monit. Assess. 2007, 132, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Paul, B. Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Hum. Ecol. Risk Assess. 2019, 25, 966–987. [Google Scholar] [CrossRef]
- Varol, S.; Davraz, A. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: A case study of the Tefenni plain (Burdur/Turkey). Environ. Earth Sci. 2015, 73, 1725–1744. [Google Scholar] [CrossRef]
- Sawyer, C.N.; McCarty, P.L. Chemistry for sanitary engineers. In Chemistry for Sanitary Engineers; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Young, C.P.; Oakes, D.B.; Wilkinson, W.B. Prediction of future nitrate concentrations in ground water. Proc. Natl. Ground Water Qual. Symp. 1974, 1, 70. [Google Scholar]
- Yang, C.-Y.; Cheng, M.-F.; Tsai, S.-S.; Hsieh, Y.-L. Calcium, Magnesium, and Nitrate in Drinking Water and Gastric Cancer Mortality. Jpn. J. Cancer Res. 1998, 89, 124–130. [Google Scholar] [CrossRef]
- Walton, W.C. Groundwater Resource Evaluation; McGraw-Hill: New York, NY, USA, 1970; 664p. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Durov, S.A. Natural waters and graphical representation of their composition. Dokl. Akad. Nauk. Union Sov. Social. Repub. 1948, 59, 87–90. [Google Scholar]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Ali, M.M.; Khaty, N.T.; Pandey, D.; Patle, M.R. Assessment of Irrigation Suitability of Semi-Arid Region of Gondia District, Maharashta India. J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 46–52. [Google Scholar] [CrossRef]
- Akhtar, N.; Rai, S.P. Physico-chemical Analysis of Ground Water for Irrigation and Drinking Purposes around Moth Block of Jhansi District, Uttar Pradesh, India. Indian J. Ecol. 2019, 46, 260–269. [Google Scholar]
- Kumar, S.K.; Rammohan, V.; Sahayam, J.D.; Jeevanandam, M. Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environ. Monit. Assess. 2009, 159, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Karanth, K.R. Ground Water Assessment: Development and Management; Tata McGraw-Hill Education: New York, NY, USA, 1987. [Google Scholar]
- Eaton, F.M. Significance of carbonates in irrigation waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Lloyd, J.W.; Heathcote, J.A.A. Natural Inorganic Hydrochemistry in Relation to Ground Water; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1985. [Google Scholar]
- Sunitha, V.; Reddy, Y.S. Hydrogeochemical evaluation of groundwater in and around Lakkireddipalli and Ramapuram, Y.S.R. District, Andhra Pradesh, India. Hydro. Res. 2019, 2, 85–96. [Google Scholar] [CrossRef]
- Cunningham, M.A.; Menking, K.M.; Gillikin, D.P.; Smith, K.C.; Freimuth, C.P.; Belli, S.L.; Pregnall, A.M.; Schlessman, M.A.; Batur, P. Influence of Open Space on Water Quality in an Urban Stream. Phys. Geogr. 2010, 31, 336–356. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.A. Trace Elements in the Drinking Water and Their Possible Health Effects in Aligarh City, India. J. Water Resour. Prot. 2011, 3, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.-C.; Chuang, Y.-H.; Chen, H.-W.; Chan, Y.-T.; Teah, H.Y.; Chen, T.-Y.; Chang, C.-F.; Liu, Y.-T.; Tzou, Y.-M. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Sci. Rep. 2016, 6, 34250. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Celestino, A.E.M.; Cruz, D.A.M.; Sánchez, E.M.O.; Reyes, F.G.; Soto, D.V. Groundwater Quality Assessment: An Improved Approach to K-Means Clustering, Principal Component Analysis and Spatial Analysis: A Case Study. Water 2018, 10, 437. [Google Scholar] [CrossRef] [Green Version]
- Egbueri, J.C. Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): A case study. Groundw. Sustain. Dev. 2020, 10, 100292. [Google Scholar] [CrossRef]
- Ahmed, S.; Khurshid, S.; Qureshi, F.; Hussain, A.; Bhattacharya, A. Heavy metals and geo-accumulation index development for groundwater of Mathura City, Uttar Pradesh. Desalination Water Treat. 2019, 138, 291–300. [Google Scholar] [CrossRef]
- Hong, Z.; Zhao, Q.; Chang, J.; Peng, L.; Wang, S.; Liu, G.; Ding, S. Evaluation of Water Quality and Heavy Metals in Wetlands along the Yellow River in Henan Province. Sustainability 2020, 12, 1300. [Google Scholar] [CrossRef]
Index (References) | Classification | Range | Formula |
---|---|---|---|
Sodium Adsorption Ratio (SAR) [31] | Excellent | <10 | ) |
Good | 10–18 | ||
Doubtful | 18–26 | ||
Unsuitable | >26 | ||
Percentage Sodium (Na %) [32,33] | Excellent | <20 | |
Good | 20–40 | ||
Permissible | 40–60 | ||
Doubtful | 60–80 | ||
Unsuitable | >80 | ||
Permeability Index (PI) [34] | Suitable | <75 | |
Permissible | 25–75 | ||
Unsuitable | >25 | ||
Potential Salinity (PS) [35] | Suitable | <3 | |
Unsuitable | >3 | ||
Kelley’s Index (KI) [36] | Suitable | <1 | |
Unsuitable | >1 | ||
Residual Sodium Carbonate (RSC) [37] | Suitable | <1.25 | |
Doubtful | 1.25–2.5 | ||
Unsuitable | >2.5 |
Parameters (mg/L) | Minimum | Maximum | Mean | Std. Deviation | BIS (2012) | WHO (2011) | Weight (wi) | Relative Weight (Wi) |
---|---|---|---|---|---|---|---|---|
pH | 6.7 | 9.5 | 8.35 | 0.70 | 6.5–8.5 | 7.5 | 4 | 0.09 |
EC (µS/cm) | 200 | 2300 | 836.92 | 441.9 | 1500 | 1500 | - | - |
TDS | 313 | 2554 | 933 | 485.9 | 500 | 500 | 5 | 0.11 |
TH | 59 | 324 | 139.37 | 64.38 | 200 | 600 | - | - |
Ca | 21.2 | 601.2 | 181.66 | 117.20 | 75 | 200 | 3 | 0.07 |
Mg | 5.2 | 93.1 | 34.56 | 22.49 | 30 | 30 | 3 | 0.07 |
Na | 21 | 343 | 167 | 94.01 | 200 | 200 | 4 | 0.09 |
K | 7 | 83 | 23 | 16.29 | 200 | 200 | 4 | 0.09 |
HCO3 | 351 | 1281 | 705 | 261.96 | - | 244 | 1 | 0.02 |
CO3 | 0 | 104 | 17 | 30.26 | - | - | - | - |
SO4 | 79.1 | 731.7 | 340.99 | 183.50 | 200 | 200 | 5 | 0.11 |
NO3 | 2.6 | 105.7 | 26.34 | 20.97 | 45 | 45 | 5 | 0.11 |
Cl | 34 | 503 | 191 | 106.63 | 250 | 250 | 5 | 0.11 |
F | 0.04 | 1.89 | 0.49 | 0.51 | 1.0 | 1.5 | 5 | 0.11 |
Sample No | Locations | CAI(I) | CA(II) | Na % | SAR | Gibbs II | Gibbs I | KR | PI | PS | RSC |
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | Delhi gate | 0.85 | 2.66 | 44.22 | 2.97 | 0.46 | 0.24 | 0.72 | 63.54 | 3.17 | 4.84 |
S2 | Kanwariganj | 5.19 | 5.34 | 40.45 | 1.52 | 0.53 | 0.49 | 0.59 | 82.91 | 5.76 | 2.46 |
S3 | Talaspur | 1.19 | 2.72 | 55.65 | 4.08 | 0.65 | 0.33 | 1.20 | 74.82 | 3.55 | 2.66 |
S4 | Shahjamal | 3.00 | 4.55 | 78.10 | 8.49 | 0.83 | 0.44 | 3.34 | 95.32 | 5.25 | 3.38 |
S5 | Bhojpura | 13.15 | 13.51 | 84.03 | 11.21 | 0.86 | 0.71 | 4.77 | 97.71 | 14.21 | 2.99 |
S6 | Sarai Sultani | 6.92 | 7.45 | 47.38 | 4.00 | 0.55 | 0.47 | 0.85 | 60.82 | 8.25 | −1.79 |
S7 | Khair Road | 7.43 | 7.51 | 8.51 | 0.37 | 0.09 | 0.43 | 0.07 | 30.91 | 7.70 | −2.26 |
S8 | Gonda Road | 6.53 | 6.94 | 42.52 | 3.10 | 0.44 | 0.41 | 0.69 | 60.62 | 7.82 | 1.06 |
S9 | Gudiya Bagh | 2.24 | 3.60 | 46.02 | 3.39 | 0.54 | 0.30 | 0.82 | 64.68 | 4.14 | 2.51 |
S10 | Ashok Nagar | 1.23 | 2.94 | 39.20 | 2.59 | 0.45 | 0.22 | 0.56 | 55.94 | 3.42 | 0.86 |
S11 | Shaktinagar | 6.19 | 6.32 | 10.77 | 0.49 | 0.14 | 0.44 | 0.09 | 27.18 | 6.61 | −5.85 |
S12 | Rasalganj | 0.16 | 2.59 | 74.85 | 8.85 | 0.96 | 0.40 | 2.88 | 87.35 | 3.94 | 1.07 |
S13 | Upper Fort | 7.93 | 8.74 | 66.09 | 7.30 | 0.78 | 0.37 | 1.83 | 82.44 | 9.76 | 8.19 |
S14 | Dubey ka Padao | 3.49 | 4.80 | 46.37 | 3.11 | 0.54 | 0.27 | 0.67 | 61.01 | 5.41 | 5.21 |
S15 | Sasni gate | 5.23 | 6.27 | 41.19 | 3.70 | 0.46 | 0.37 | 0.67 | 53.31 | 6.88 | −3.64 |
S16 | Madar gate | 8.30 | 8.82 | 56.45 | 4.80 | 0.62 | 0.52 | 1.23 | 72.62 | 9.40 | 1.11 |
S17 | Mahavirganj | 4.87 | 5.85 | 28.93 | 2.19 | 0.36 | 0.30 | 0.35 | 40.95 | 6.19 | −2.78 |
S18 | Railway road | 0.18 | 3.48 | 48.72 | 5.24 | 0.52 | 0.16 | 0.92 | 62.64 | 4.08 | 4.78 |
S19 | Exibition ground | 1.71 | 3.93 | 43.97 | 4.06 | 0.53 | 0.17 | 0.75 | 60.82 | 4.41 | 5.98 |
S20 | ITI road | 0.90 | 1.78 | 10.75 | 0.60 | 0.13 | 0.14 | 0.11 | 30.30 | 1.97 | −0.67 |
S21 | Ramnagar | 4.31 | 5.21 | 14.70 | 1.37 | 0.18 | 0.25 | 0.16 | 22.85 | 5.56 | −21.39 |
S22 | Sarai rahman | −0.01 | 2.46 | 34.03 | 2.62 | 0.39 | 0.17 | 0.48 | 49.30 | 2.80 | −1.20 |
S23 | Nai basti | 7.51 | 7.99 | 29.20 | 2.05 | 0.37 | 0.41 | 0.38 | 45.15 | 8.27 | −2.30 |
S24 | Quarsi | −1.06 | 1.75 | 20.49 | 1.65 | 0.27 | 0.10 | 0.25 | 34.75 | 1.99 | −4.62 |
S25 | SS nagar | −2.75 | 0.81 | 24.41 | 1.23 | 0.31 | 0.08 | 0.26 | 44.04 | 1.02 | −0.21 |
S26 | Dhoerra | −0.53 | 1.35 | 64.72 | 3.01 | 0.74 | 0.12 | 1.68 | 138.65 | 1.51 | 10.84 |
pH | EC | TDS | TH | Ca | Mg | Na | K | HCO3 | CO3 | SO4 | NO3 | Cl | F | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||||
EC | 0.321 | 1 | ||||||||||||
TDS | 0.24 | 0.947 ** | 1 | |||||||||||
TH | 0.262 | 0.252 | 0.169 | 1 | ||||||||||
Ca | −0.016 | −0.088 | −0.057 | 0.177 | 1 | |||||||||
Mg | 0.227 | 0.061 | 0.094 | 0.322 | 0.743 ** | 1 | ||||||||
Na | 0.24 | 0.194 | 0.154 | 0.338 | −0.117 | −0.013 | 1 | |||||||
K | 0.305 | 0.322 | 0.272 | 0.718 ** | −0.099 | −0.034 | 0.327 | 1 | ||||||
HCO3 | −0.032 | −0.143 | −0.131 | 0.436 | 0.595 * | 0.543 * | 0.203 | 0.082 | 1 | |||||
CO3 | −0.297 | 0.034 | −0.086 | −0.115 | −0.115 | −0.218 | −0.28 | 0.055 | −0.082 | 1 | ||||
SO4 | 0.137 | −0.148 | −0.094 | −0.168 | 0.029 | 0.092 | 0.098 | 0.068 | 0.097 | −0.196 | 1 | |||
NO3 | 0.135 | 0.723 ** | 0.793 ** | −0.078 | 0.07 | 0.139 | −0.176 | 0.057 | −0.125 | −0.044 | −0.215 | 1 | ||
Cl | 0.134 | 0.420 * | 0.356 | 0.218 | −0.15 | −0.167 | 0.383 | 0.325 | −0.229 | −0.383 | 0.045 | 0.248 | 1 | |
F | −0.189 | −0.235 | −0.29 | −0.026 | −0.32 | −0.267 | −0.186 | −0.042 | −0.237 | −0.008 | −0.252 | −0.309 | −0.087 | 1 |
Parameters | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
pH | 0.503 | 0.113 | 0.207 | −0.234 | 0.020 |
EC | 0.858 | −0.320 | −0.245 | 0.112 | 0.047 |
TDS | 0.843 | −0.296 | −0.330 | 0.012 | 0.020 |
TH | 0.516 | 0.406 | 0.451 | 0.519 | −0.081 |
Ca | 0.090 | 0.795 | −0.393 | 0.016 | −0.135 |
Mg | 0.265 | 0.783 | −0.318 | −0.021 | −0.178 |
Na | 0.411 | 0.127 | 0.600 | −0.157 | 0.075 |
K | 0.553 | 0.033 | 0.523 | 0.397 | 0.263 |
HCO3 | 0.084 | 0.835 | −0.003 | 0.185 | 0.053 |
CO3 | −0.260 | −0.211 | −0.261 | 0.593 | 0.601 |
SO4 | −0.028 | 0.226 | 0.199 | −0.643 | 0.490 |
NO3 | 0.640 | −0.276 | −0.625 | −0.016 | −0.090 |
Cl | 0.561 | −0.281 | 0.344 | −0.260 | −0.240 |
F | −0.407 | −0.302 | 0.294 | 0.318 | −0.530 |
Eigenvalues | 3.484 | 2.669 | 2.008 | 1.488 | 1.084 |
% Total variance | 24.886 | 19.062 | 14.34 | 10.631 | 7.746 |
% Cumulative variance | 24.886 | 43.948 | 58.288 | 68.92 | 76.666 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Mulhim, M.; Qureshi, F.; Akhtar, N.; Lagudu, S. Reckoning Groundwater Quality and Hydrogeochemical Processes for Drinking and Irrigation Purposes under the Influence of Anthropogenic Activities, North India. Pollutants 2022, 2, 486-509. https://doi.org/10.3390/pollutants2040032
Ahmed S, Mulhim M, Qureshi F, Akhtar N, Lagudu S. Reckoning Groundwater Quality and Hydrogeochemical Processes for Drinking and Irrigation Purposes under the Influence of Anthropogenic Activities, North India. Pollutants. 2022; 2(4):486-509. https://doi.org/10.3390/pollutants2040032
Chicago/Turabian StyleAhmed, Salman, Mohammad Mulhim, Fazil Qureshi, Naseem Akhtar, and Surinaidu Lagudu. 2022. "Reckoning Groundwater Quality and Hydrogeochemical Processes for Drinking and Irrigation Purposes under the Influence of Anthropogenic Activities, North India" Pollutants 2, no. 4: 486-509. https://doi.org/10.3390/pollutants2040032
APA StyleAhmed, S., Mulhim, M., Qureshi, F., Akhtar, N., & Lagudu, S. (2022). Reckoning Groundwater Quality and Hydrogeochemical Processes for Drinking and Irrigation Purposes under the Influence of Anthropogenic Activities, North India. Pollutants, 2(4), 486-509. https://doi.org/10.3390/pollutants2040032