Benthic Macroinvertebrate Communities as Indicator of the Water Quality of a Suburban Stream in the Littoral Region of Cameroon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Physicochemical Variables
2.3. Collection, Identification and Enumeration of Benthic Macroinvertebrates
2.4. Data Processing
2.4.1. Organic Pollution Index (OPI)
2.4.2. Macroinvertebrate Community Structure Indices
3. Results
3.1. Physicochemical Variables
3.2. Benthic Macroinvertebrates Community Structure
3.3. Spatial Variation in Abundance and Sorensen’s Coefficient
3.4. Biocenotic Indices
4. Discussion
4.1. Abiotic Variables
4.2. Benthic Macroinvertebrate Community
4.3. Biocenotic Indices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amorim, C.A.; Moura, A.D.N. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Sci. Total Environ. 2021, 758, 143605. [Google Scholar] [CrossRef] [PubMed]
- Aldrees, A.; Khan, M.A.; Tariq, M.; Mustafa Mohamed, A.; Taha, A.T.B. Multi-Expression Programming (MEP): Water Quality Assessment Using Water Quality Indices. Polymers 2022, 14, 947. [Google Scholar] [CrossRef]
- Agropolis International. Les dossiers d’Agropolis international. Ecosyst. Aquat. Ressour. Valoris. 2007, 6, 68. [Google Scholar]
- Sanogo, S.; Tinkoudgou Kabre, J.A.; Cecchi, P. Inventaire et distribution spatiotemporelle des macroinvertébrés bioindicateurs de trois plans d’eau du bassin de la Volta au Burkina Faso. Int. J. Biol. Chem. Sci. 2014, 8, 1005–1029. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the curve of global freshwater biodiversity loss: An emergency recovery plan. BioScience 2020, 70, 330–342. [Google Scholar] [CrossRef] [PubMed]
- van Rees, C.B.; Waylen, K.A.; Schmidt-Kloiber, A.; Thackeray, S.J.; Kalinkat, G.; Martens, K.; Domisch, S.; Lillebø, A.I.; Hermoso, V.; Grossart, H.P.; et al. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conserv. Lett. 2020, 4, e12771. [Google Scholar] [CrossRef]
- Lotze, H.K. Marine biodiversity conservation. Curr. Biol. 2021, 31, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Barroin, G. Eutrophisation, pollution nutritionnelle et restauration des lacs. In La Pollution des Eaux Continentales: Incidence sur les Biocénoses Aquatiques; Pesson, P., Ed.; Gauthier et Villars: Paris, France, 1980; pp. 75–96. [Google Scholar]
- Descy, J.-P. Evaluation de la qualité biologique de l’eau: Des micro algues aux poissons. Ann. Med. Mil. Belg. 1999, 13, 151–158. [Google Scholar]
- Dídac, J.-C.; Beatri, R.-L.; Mònica, B. A five-step assessment ofriver ecosystem services to inform conflictive water-flows management—The Ter River case. VertigO Rev. Électron. Sci. Environ. 2016, 25, 17462. [Google Scholar]
- Parveen, S.; Ram, B.; Dharam, S. Assessment of physicochemical properties of tannery wastewater andits impact on freshwater quality. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1879–1887. [Google Scholar]
- Shil, S.; Singh, U.K.; Mehta, P. Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Appl. Water Sci. 2019, 9, 168. [Google Scholar] [CrossRef]
- Foto Menbohan, S.; Nwaha, M.; Biram A Ngon, E.B.; Dzavi, J.; Boudem, R.C.; Sob Nangou, P.B.; Nyame Mbia, D.L. Water Quality and Benthic Macroinvertebrates of Tropical Forest Stream in South-West Region, Cameroon. Int. J. Progress. Sci. Technol. 2021, 25, 183–192. [Google Scholar] [CrossRef]
- Huang, X.; Xu, J.; Liu, B.; Guan, X.; Li, J. Assessment of Aquatic Ecosystem Health with Indices of Biotic Integrity (IBIs) in the Ganjiang River System, China. Water 2022, 14, 278. [Google Scholar] [CrossRef]
- Mohanta, M.K.; Salam, M.A.; Saha, A.K.; Hasan, A.; Roy, A.K. Effect of tannery effluents on survival and histopathological changes in different organs of Channa puntatus. Asian J. Exp. Biol. Sci. 2010, 1, 294–302. [Google Scholar]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water qualityusing water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 131–144. [Google Scholar] [CrossRef]
- Rizwana, Q.; Muneeb, A.F. Freshwater pollution: Effects on aquatic life and human health. Fresh Water Pollut. Dyn. Remediat. 2020, 15–26. Available online: https://www.researchgate.net/publication/334546576_Freshwater_Pollution_Effects_on_Aquatic_Life_and_Human_Health (accessed on 16 January 2024).
- Onana, F.M.; Koji, E.; Nana, P.A.; Tamsa Arfao, A.; Nyamsi Tchatcho, N.L.; Tchakonté, S.; Emmanuel Cédric, M.M.; Zébazé Togouet, S.H. Effect of Bridge Construction Works on the Structure of Macroinvertebrates of Two Forest Streams in the Coastal Zone of Cameroon. J. Ecol. Nat. Res. 2020, 4, 1–7. [Google Scholar]
- Mushtaq, S.; Akhte, T.S.; Khan, A.; Sohail, A.; Manzoor, S. Efficacy and safety of generic sofosbuvir plus daclatasvir and sofosbuvir/velpatasvir in HCV genotype 3-infected patients: Real-world outcomes from Pakistan. Front. Pharmacol. 2020, 11, 1379. [Google Scholar] [CrossRef]
- Sikati Foko, V. Rejet des Stations D’éPuration a Boues Activées à Yaoundé (Cameroun): Physicochimie-Microbiologie-Essai D’éPuration sur Station Pilote. Ph.D. Thesis, University Yaoundé I, Yaoundé, Cameroun, 1998; p. 155. [Google Scholar]
- Siwiec, T.; Reczek, L.; Michel, M.M.; Gut, B.; Hawer-Strojek, P.J.; Czajkowska, J.; Jóźwiakowsk, K.; Gajewska, M.; Bugajski, P. Correlations between organic pollution indicatorsin municipal wastewater. Arch. Environ. Prot. 2018, 44, 50–57. [Google Scholar]
- Yu, C.; Chen, S.S.; Zhang, L.; Gao, Q.; Wang, Z.; Shen, Q. Changes in water quality of the rivers discharging into Lake Tanganyika in Bujumbura, Burundi. Aquat. Ecosyst. Health Manag. 2018, 21, 201–212. [Google Scholar] [CrossRef]
- Chen, S.S.; Kimirei, I.; Yu, A.C.; Shen, Q.; Gao, Q. Assessment of urban river water pollution with urbanization in East Africa. Environ. Sci. Pollut. Res. 2022, 27, 40812–40825. [Google Scholar] [CrossRef] [PubMed]
- Altarriba, E.L.; Heyer-Rodríguez, L.; Rábago-Castro, J.L.; Vázquez-Sauceda, M.L.; Pérez-Castañeda, R.; Arellano-Méndez, L.U. Toxicity of river water polluted by urban wastewater to aquatic organisms. Toxicol. Lett. 2016, 259, 127–128. [Google Scholar] [CrossRef]
- Dou, P.; Wang, X.; Lan, Y.; Cui, B.; Bai, J.; Xie, T. Benthic Macroinvertebrate Diversity as Affected by the Construction of Inland Waterways along Montane Stretches of Two Rivers in China. Water 2022, 14, 1080. [Google Scholar] [CrossRef]
- Mwaijengo, G.N.; Vanschoenwinkel, B.; Dube, T.; Njau, K.N.; Brendonck, L. Seasonal variation in benthic macroinvertebrate assem-blages and water quality in an Afrotropical river catchment, northeastern Tanzania. Limnologica 2020, 82, 125780. [Google Scholar] [CrossRef]
- Bae, M.J.; Hong, J.K.; Kim, E.J. Evaluation of the Impacts of Abandoned Mining Areas: A Case Study with Benthic Macroinvertebrate Assemblages. Int. J. Environ. Res. Public Health 2021, 18, 11132. [Google Scholar] [CrossRef] [PubMed]
- Kownacki, A.; Szarek-Gwiazda, E. The Impact of Pollution on Diversity and Density of Benthic Macroinvertebrates in Mountain and Upland Rivers. Water 2022, 14, 1349. [Google Scholar] [CrossRef]
- Hauer, F.R.; Lamberti, G.A. Methods in Stream Ecology; Academic Press Inc.: Cambridge, MA, USA, 2006; p. 896. [Google Scholar]
- Pence, R.A.; Cianciolo, T.R.; Drover, D.R.; McLaughlin, D.L.; Soucek, D.J.; Timpano, A.J.; Zipper, C.E.; Schoenholtz, S.H. Comparison of benthic macroinvertebrate assessment methods along a salinity gradient in headwater streams. Environ. Monit. Assess. 2021, 193, 765. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Indrani, S.; Siddartha, D.; Sheela, R. Community Structure of Benthic Macroinvertebrate Fauna of River Ichamati, India. J. Threat. Taxa 2018, 10, 12044–12055. [Google Scholar] [CrossRef]
- Deborde, D.D.D.; Hernandez, M.B.M.; Magbanua, F.S. Benthic Macroinvertebrate Communityas an Indicator of Stream Health: The Effects of Land Use on Stream Benthic Macroinvertebrates. Sci. Diliman 2016, 28, 5–26. [Google Scholar]
- Tchakonté, S.; Ajeagah, G.A.; Diomandé, D.; Camara, A.I.; Konan, K.M.; Ngassam, P. Impact of anthropogenic activities on water quality and Freshwater Shrimps diversity and distribution in five rivers in Douala, Cameroon. J. Biodivers. Environ. Sci. 2014, 4, 183–194. [Google Scholar]
- Onana, F.M.; Zebaze Togouet, S.H.; Nyamsi Tchatcho, N.L.; Domche Teham, H.B.; Ngassam, P. Distribution spatio-temporelle du zooplancton en relation avec les facteurs abiotiques dans un hydrosystème urbain: Le ruisseau Kondi (Douala, Cameroun). J. Appl. Biosci. 2014, 82, 7326–7338. [Google Scholar] [CrossRef]
- Koji, E.; Lontsi Djimeli, C.; Tamsa Arfao, A.; Noah Ewoti, V.; Tchakonté, S.; Bricheux, G.; Nola, M.; Sime-Ngando, T. Abundance Dynamic of Vibrio Cells Associated with Freshwater Shrimps Atyidae (Crustacea-Decapoda) in the Coastal Surface Waters of Cameroon (Central Africa): Assessment of the Role of some Environmental Factors. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 358–378. [Google Scholar]
- Suchel, J.-B. Les Climats du Cameroun. Ph.D. Thesis, Université de Bordeaux III, Pessac, France, 1987; p. 1188. [Google Scholar]
- Rodier, J.; Legube, B.; Marlet, N.; Brunet, R. L’Analyse de L’Eau, 9th ed.; Dunod: Paris, France, 2009; p. 1579. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; PHA: Washington, DC, USA, 2012. [Google Scholar]
- Stark, J.D.; Boothroyd, K.G.; Harding, J.S.; Maxted, J.R.; Scarsbrook, M.R. Protocols for Sampling Macroinvertebrates in Wadeable Streams; New Zealand Macroinvertebrates working group, Report No. 1; Fund Project No. 5103; Ministry for the Environment, Sustainable Management: Wellington, New Zealand, 2001; p. 57. [Google Scholar]
- De Moor, I.J.; Day, J.A.; De Moor, F.C. Guides to the Freshwater Invertebrates of Southern Africa. In Ephemeroptera, Odonata & Plecoptera; Insecta, I., Ed.; Water Research Commission Report, No. TT 207/03; Water Research Commission: Pretoria, South Africa, 2003; Volume 7, p. 301. [Google Scholar]
- Tachet, H.; Richoux, P.; Bournaud, M.; Usseglio-Polatera, P. Invertébrés D’Eau Douce. Systématique, Biologie, Écologie; CNRS: Paris, France, 2010; p. 588. [Google Scholar]
- Leclercq, L. Intérêt et limites des méthodes d’estimation de la qualité de l’eau. In Document de Travail; Station Scientifique Des Hautes-Fagnes: Waimes, Belgique, 2001; p. 44. [Google Scholar]
- Hammer, D.; Harpe, D.; Ryan, P. PAST: Paleontological Statistics Soft-ware Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Musingafi, M.; Tom, T. Fresh Water Sources Pollution: A Human Related Threat to Fresh Water Security in South Africa. J. Public Policy Gov. 2014, 1, 72–81. [Google Scholar]
- Gwos Nhiomock, S.R.; Foto Menbohan, S.; Nyame Mbia, D.L.; Tchouapi, Y.L.; Biram A Ngon, E.B.; Disso, E. Biodiversity and water health status of four rivers in the East Cameroon region. GSC Biol. Pharma. Sci. 2022, 18, 226–241. [Google Scholar] [CrossRef]
- Foto Menbohan, S.; Mboye, B.R.; Mbega, J.D.; Ajeagah, G.A. Santé écologique de quelques cours d’eau du bassin hydrographique de la Mabounié au Gabon: Essaie de typologie par des variables physicochimiques et hydromorphologiques. Eur. J. Sci. Res. 2017, 148, 93–105. [Google Scholar]
- Tchakonté, S.; Ajeagah, G.A.; Camara, A.I.; Diomande, D.; Nyamsi Tchatcho, N.L.; Ngassam, P. Impact of Urbanization on Aquatic Insect Assemblages in the Coastal Zone of Cameroon: The Use of Biotraits and Indicator Taxa to Assess Environmental Pollution. Hydrobiologia 2015, 755, 123–144. [Google Scholar] [CrossRef]
- Leclercq, L.; Maquet, B. Deux nouveaux indices chimique et diatomique de qualité de l’eau courante. Application au Samson et à ses affluents (Bassin de la Meuse Belge). Comparaison avec d’autres indices chimiques, biocénotique et diatomique. Inst. R. Sci. Nat. Belg. 1987, 38, 1–112. [Google Scholar]
- Nyamsi Tchatcho, N.L.; Zébazé Togouet, S.H.; Foto Menbohan, S.; Onana, F.M.; Tchakonté, S.; Yémélé Tsago, C.; Gah-Muti, S.Y.; Njiné, T. Characterization of a Physicochemical Water Quality Reference Status for the Centre-South Forest Region of Cameroon. Int. J. Sci. Res. 2017, 6, 397–405. [Google Scholar]
- Moisan, J.; Pelletier, L. Guide de Surveillance Biologique Basée Sur Les Macroinvertébrés Benthiques D’Eau Douce du Québec-Cours D’Eau Peu Profonde à Substrat Grossier; Direction de Suivi de l’Etat de l’Environnement, Ministère du Développement Durable de l’Environnement et des Parcs: Quebec, QC, Canada, 2008; p. 87. [Google Scholar]
- Scheffer, M.G.J.; Van Geest, K.; Zimmerm, E.; Jeppesen, M.; Sondergaard, M.G.; Butlerhanson, M.A.; Declerck, S.; De Meester, L. Small habitat size and isolation can promote species richness: Second-order effects on biodiversity in shallow lakes and ponds. Oikos 2006, 112, 227–231. [Google Scholar] [CrossRef]
- Ward, J.V.; Stanford, J.A. The serial discontinuity concept of lotie ecosystems. In Dynamics of Lotic Ecosystems; Fontaine, T.D., Bartell, S.M., Eds.; Ann Arbor Science Publishers: Ann Arbor, MI, USA, 1983; pp. 29–42. [Google Scholar]
- Fisher, S.G.; Gray, L.J.; Grimm, N.B.; Busch, D.E. Temporal succession in a Desert stream ecosystem following flash flooding. Ecol. Monogr. 1982, 52, 93–110. [Google Scholar] [CrossRef]
- Dajoz, R. Précis D’Ecologie, 7th ed.; Dunod: Paris, France, 2000; p. 615. [Google Scholar]
- Hilsenhoff, W.L. Rapid field assessment of organic pollution with a family-level biotic index. J. N. Am. Benthol. Soc. 1988, 7, 65–68. [Google Scholar] [CrossRef]
- Bode, R.W.; Novak, M.A.; Abele, L.E.; Heitzman, D.L.; Smith, A.J. Quality Assurance Work Plan for Biological Stream Monitoring in New York State, Albany (New York); Stream Biomonitoring Unit, Bureau of Water Assessment and Management, Division of Water, Department of Environmental Conservation: New York, NY, USA, 2002; p. 89. [Google Scholar]
Class | NH4+ (mg/L) | NO2− (μg/L) | PO43− (μg/L) | OPI Quality Class |
---|---|---|---|---|
(5) No organic pollution | <0.1 | <5 | <15 | 4.6–5.0 |
(4) Low organic pollution | 0.1–0.9 | 6–10 | 16–75 | 4.0–4.5 |
(3) Moderate organic pollution | 1–2.4 | 11–50 | 76–250 | 3.0–3.9 |
(2) High organic pollution | 2.5–6 | 51–150 | 251–900 | 2.0–2.9 |
(1) Very high organic pollution | >6 | >150 | >900 | 1.0–1.9 |
Station M1 | Station M2 | Station M3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Min. | Max. | Mean | SD | Min. | Max. | Mean | SD | Min. | Max. | Mean | SD |
Temperature (°C) | 21 | 28 | 23.60 | 1.33 | 22 | 27.20 | 24.64 | 1.32 | 21.50 | 25.50 | 24 | 1.22 |
Conductivity (Μs/cm) | 108 | 1018 | 358 | 10.18 | 87.30 | 604 | 238.4 | 6.44 | 519 | 1122 | 919.40 | 7.26 |
Salinity (ppt) | 0.07 | 0.10 | 0.08 | 0.01 | 0.03 | 0.13 | 0.55 | 0.01 | 0.41 | 0.68 | 0.52 | 0.01 |
pH | 5.14 | 7.14 | 6.23 | 0.99 | 5.40 | 6.98 | 6.24 | 0.99 | 5.66 | 6.66 | 6.26 | 0.10 |
TDS (mg/L) | 55 | 511 | 187.40 | 8.58 | 61 | 297 | 121.70 | 5.10 | 258 | 795 | 506 | 7.33 |
Dissolved oxygen (%) | 67 | 90 | 77.40 | 3.98 | 59 | 77 | 69.80 | 2.87 | 56 | 92 | 76.80 | 2.98 |
Oxygen concentration (mg/L) | 2.37 | 19.20 | 6.81 | 0.65 | 1.97 | 4.42 | 3.49 | 0.02 | 2.95 | 16.65 | 8.25 | 0.13 |
Suspended solids (mg/L) | 9 | 117 | 52 | 2.33 | 9 | 204 | 69 | 2.36 | 16 | 87 | 37.80 | 1.77 |
Turbidity (FTU) | 8 | 226 | 87.60 | 5.44 | 10 | 216 | 88.40 | 4.53 | 10 | 107 | 49.40 | 3.25 |
Color (Pt.Co) | 114 | 326 | 187.20 | 10.11 | 109 | 221 | 150.20 | 8.32 | 78 | 189 | 113.60 | 7.20 |
Ammonia nitrogen (mg/L) | 0.01 | 1.19 | 0.28 | 0.01 | 0.08 | 0.89 | 0.45 | 0.01 | 0 | 1.02 | 0.34 | 0 |
Nitrites (mg/L) | 0 | 1.61 | 0.46 | 0.01 | 0 | 0.68 | 0.23 | 0.01 | 0.02 | 0.21 | 0.07 | 0.01 |
Nitrates (mg/L) | 1.50 | 6.80 | 3.6 | 0.12 | 1.7 | 5.80 | 2.90 | 0.19 | 0.77 | 2.40 | 1.40 | 0.02 |
Orthophosphates (mg/L) | 0.08 | 3.14 | 1.04 | 0.01 | 0.23 | 2.04 | 0.90 | 0.01 | 0.11 | 4.10 | 1.19 | 0.01 |
Alcalinity (mg/L) | 10 | 120 | 46.6 | 3.17 | 10 | 148 | 53.30 | 2.57 | 11 | 66 | 40.20 | 2.41 |
Aluminium (mg/L) | 1.68 | 3.17 | 2.18 | 0.15 | 0.76 | 1.14 | 0.92 | 0.01 | 6.70 | 11.40 | 8.03 | 1.09 |
OPI | 1.66 | 4.33 | 2.86 | 0.12 | 2 | 4.33 | 2.87 | 0.14 | 2 | 3.66 | 2.86 | 0.011 |
Phylum | Class | Orders | Families | Station M1 | Station M2 | Station M3 |
---|---|---|---|---|---|---|
Arthropoda | Crustacea | Decapoda | Atyidae | 29 | 41 | 6 |
Palaemonidae | 43 | 49 | 51 | |||
Potamonidae | 3 | 0 | 11 | |||
Insecta | Odonata | Gomphidae | 6 | 3 | 0 | |
Libellulidae | 3 | 1 | 0 | |||
Coenagrionidae | 1 | 0 | 0 | |||
Cordulegasteridae | 4 | 0 | 0 | |||
Aeshnidae | 0 | 1 | 0 | |||
Caloterygidae | 0 | 1 | 0 | |||
Corduliidae | 1 | 0 | 0 | |||
Ephemeroptera | Leptophlebidae | 6 | 5 | 2 | ||
Undetermined | 3 | 0 | 1 | |||
Heteroptera | Gerridae | 3 | 3 | 0 | ||
Pleidae | 1 | 0 | 0 | |||
Nepidae | 1 | 0 | 0 | |||
Veliidae | 1 | 1 | 0 | |||
Mesoveliidae | 0 | 1 | 0 | |||
Plecoptera | Nemouridae | 1 | 0 | 0 | ||
Perloidae | 1 | 0 | 0 | |||
Undetermined | 1 | 0 | 0 | |||
Coleoptera | Dytiscidae | 33 | 95 | 0 | ||
Hydrophilidae | 3 | 18 | 3 | |||
Elmidae | 1 | 12 | 1 | |||
Chrysomelidae | 0 | 2 | 0 | |||
Haliplidae | 0 | 0 | 2 | |||
Curculionidae | 1 | 0 | 0 | |||
Diptera | Chironomidae | 3 | 4 | 2 | ||
Ceratopogonidae | 7 | 5 | 5 | |||
Blephariceridae | 0 | 1 | 0 | |||
Limoniidae | 1 | 0 | 0 | |||
Dolichopodidae | 0 | 1 | 0 | |||
Simuliidae | 1 | 0 | 0 | |||
Dixidae | 0 | 1 | 0 | |||
Tricoptera | Polycentropodidae | 0 | 0 | 1 | ||
Ecnomidae | 1 | 0 | 0 |
Station M1 | Station M2 | Station M3 | |
---|---|---|---|
H’ (bits/ind.) | 2.33 | 1.88 | 1.46 |
J (bits/ind.) | 0.72 | 0.64 | 0.61 |
EPT (%) | 2.65 | 1.02 | 0.81 |
EPT/Chironomidae | 4.33 | 1.25 | 2.00 |
HBI | 1.83 | 1.90 | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyamsi Tchatcho, N.L.; Nana, P.A.; Koji, E.; Tchakonté, S.; Lando Zangue, Y.E.; Jeunemi Keu, P.; Bricheux, G.; Sime-Ngando, T. Benthic Macroinvertebrate Communities as Indicator of the Water Quality of a Suburban Stream in the Littoral Region of Cameroon. Pollutants 2024, 4, 251-262. https://doi.org/10.3390/pollutants4020016
Nyamsi Tchatcho NL, Nana PA, Koji E, Tchakonté S, Lando Zangue YE, Jeunemi Keu P, Bricheux G, Sime-Ngando T. Benthic Macroinvertebrate Communities as Indicator of the Water Quality of a Suburban Stream in the Littoral Region of Cameroon. Pollutants. 2024; 4(2):251-262. https://doi.org/10.3390/pollutants4020016
Chicago/Turabian StyleNyamsi Tchatcho, Nectaire Lié, Paul Alain Nana, Ernest Koji, Siméon Tchakonté, Yolande Elsa Lando Zangue, Prospère Jeunemi Keu, Geneviève Bricheux, and Télesphore Sime-Ngando. 2024. "Benthic Macroinvertebrate Communities as Indicator of the Water Quality of a Suburban Stream in the Littoral Region of Cameroon" Pollutants 4, no. 2: 251-262. https://doi.org/10.3390/pollutants4020016
APA StyleNyamsi Tchatcho, N. L., Nana, P. A., Koji, E., Tchakonté, S., Lando Zangue, Y. E., Jeunemi Keu, P., Bricheux, G., & Sime-Ngando, T. (2024). Benthic Macroinvertebrate Communities as Indicator of the Water Quality of a Suburban Stream in the Littoral Region of Cameroon. Pollutants, 4(2), 251-262. https://doi.org/10.3390/pollutants4020016