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Abstract: While many sources of contamination in chemical and biological laboratories are well
understood and known, some are less so. To quantify the magnitude of the potential contamination of
solutions by zinc in common laboratory syringes, a study was conducted on solutions stored in rubber-
containing syringes in which the rubber was catalyzed by zinc. This study identified specific factors
contributing to contamination from laboratory syringes, including the syringe brand, time, solution
type, and pH. Two common syringe brands, Covidien and BD, were tested, and three time durations,
0 days, 1 day, and 14 days, were examined. The solutions tested included sucrose and tartaric acid,
representing both covalent and ionic species. Additionally, this study employed a pH range of
2 to 13 to further explore zinc contamination across a wide range of conditions and factors. The zinc
concentration from the syringes was measured using inductively coupled plasma mass spectrometry
(ICP-MS). The results, which ranged from less than 20 to over 600 µg L−1, revealed increased zinc
concentration at both extreme pH values, while remaining lower but measurable at neutral pH levels.
Zinc contamination is important to study because its contamination in laboratory syringes could
interfere with the detection of other elements, further skew laboratory data, unexpectedly catalyze
reactions, and lead to inconsistencies in experimental conditions. This study further emphasizes the
broader significance of understanding pollutants within laboratory settings. The findings highlight
the intricate dynamics of zinc contamination, stressing the need for the control of environmental
factors and the broad dissemination of lesser-known sources. Recognizing the potential impact of
contaminants like zinc is crucial, as it not only influences analytical accuracy, but also mirrors the
wider concern of pollutants compromising scientific integrity in diverse experimental conditions.
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1. Introduction

In January 2021, Nature Catalysis published a paper claiming to execute a highly desired
metal-free coupling reaction. However, upon further investigation, it was discovered that
the reaction contained trace amounts of palladium, and the paper was deemed flawed
and had to be retracted. Even the most meticulous techniques can yield inaccurate results
if contamination from the equipment is unknowingly present. However, this is not the
first instance in which the scientific community debunks claims of metal-free chemistry [1].
Additionally, zinc supplementation in cell culture media can vary from zinc-free to 0.7 pM
in Wiliams E Media to 3 nM in Han’s Nutrient Media ([2] Millipore Sigma, Burlington, MA,
USA). Unknowing alterations in these concentrations could lead to incorrect experimental
results or interpretations.

These cases highlight the importance of understanding the sources of contamination in
the lab. Syringes are a commonly used laboratory supply; approximately six billion syringes
are produced worldwide annually, with 663 million manufactured in the US alone [3,4],
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making syringes a logical place to study zinc contamination. This paper explores the
contamination of solutions stored in syringes with zinc-catalyzed rubber plungers.

The previous example of contamination highlights the significance of understanding
sources of contamination and potential pollution in the laboratory setting. The rubber
vulcanization process is catalyzed with zinc, so the black rubber on the syringe plunger
has been identified as the source of zinc [5]. Despite its relevance, there is a dearth of
academic literature documenting the zinc concentration in syringes, leaving this contam-
ination unquantified and poorly known. In a study on the contamination from syringes
and blood container pots, Taylor and Marks [6] found that substantial amounts of zinc in
unpredictable levels were leached from the rubber end cap on disposable plastic syringes.
In the 50 years since Taylor and Mark’s study, there have been changes in the rubber vulcan-
ization and manufacturing processes, so an updated investigation of zinc contamination of
laboratory syringes is warranted. Additionally, Taylor and Mark’s study did not identify
specific factors that contribute to varying zinc concentrations nor quantify the levels of zinc
contamination. Consequently, limited knowledge exists regarding the extent and control
of this contamination, which is cause for concern given the ubiquity of syringes in the
scientific industry.

Though rubber is problematic, the absence of rubber compromises the syringe’s ability
to supply a tight seal. Rubber plungers with “higher zinc extractables” are known to
potentially interact with the syringe’s contents, resulting in undesirable “aggregates” [7].
To assess its suitability for specific applications, syringe manufacturers can perform a
“forced extraction study” on the rubber plunger. The contamination is poorly documented,
indicating a lack of awareness of zinc contamination within the scientific community.
Consequently, the extent of zinc contamination in rubber-containing syringes and the
factors that affect contamination remain unknown.

Inductively coupled plasma mass spectrometry (ICP-MS) is the preferred method for
quantifying low concentrations of atomic elements in a sample, including zinc, due to its
sensitivity and widespread use [8]. ICP-MS measures most of the elements in the periodic
table at low concentrations (µg L−1) and ultra-low concentrations (ng L−1), with a few
exceptions [9,10].

In this experiment, we focused on several factors: the syringe brand, ionic vs. covalent
solutions, duration of solution exposure, and solution pH, which are highlighted in Figure 1
as a geometrical representation. Both sucrose and tartaric acid are organic compounds, one
predominantly covalent and one predominantly ionic, compatible with ICP-MS analysis,
and are relatively innocuous in laboratory settings. The objective was to identify and
quantify the factors contributing to the highest extraction of zinc from the rubber plunger.
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2. Material and Methods

The experimental materials utilized are presented in Table 1.

Table 1. Supplier and lot numbers for experimental materials.

Item Supplier Lot Number (s)

Covidien 60 mL Luer-Lok syringe VWR (Radnor, PA, USA) 027252X
BD 50 mL Luer-Lok syringe VWR (Radnor, PA, USA) 1145497 and 1215381
Norm-Jet 60 mL Luer-Lok syringe * VWR (Radnor, PA, USA) 20|18 0 B
Sucrose VWR (Radnor, PA, USA) 20G1356994
L-tartaric acid VWR (Radnor, PA, USA) 19J1056043
25 mm 0.45 µm nylon membrane VWR (Radnor, PA, USA) 10163004A
Syringe filter
15 mL PP centrifuge tubes VWR (Radnor, PA, USA) 21024058

Multi-element standard solution Inorganic Ventures
(Christiansburg, VA, USA) P2-MEB682937

Ultrapure water (18 MΩ) Veolia (Aubervilliers, France) N/A
Sodium hydroxide VWR (Radnor, PA, USA) Bulk

Nitric Acid—low metals Aristar Plus/VWR (Radnor,
PA, USA) 1121050

* Rubber free-syringe.

2.1. Solution Preparation

Prior to preparing the solutions, all pre-cleaned glassware used to make the solutions
was washed with a 1% nitric acid solution three times and rinsed with ultrapure water
three times to avoid introducing any unwanted compounds to the samples and the ICP-MS.
Sucrose and tartaric acid were each dissolved with ultrapure water in 1.0 L volumetric
flasks to create the desired solutions.

The solutions intended for the various pH levels were mixed with sodium hydroxide
and nitric acid. The solutions were mixed, and then a sample from each solution was
removed to be tested for pH to confirm that all solutions were within 0.2 pH units of the
target pH.

Before filling the experimental syringe with a given solution, the sample was filtered
using a zinc-free control syringe (Norm-Jet brand) and a 0.45 µm Nylon syringe filter
(Table 1). The control syringe did not contain a rubber plunger and, instead, was composed
solely of polypropylene to avoid introducing external zinc to the samples. Laboratory
blanks confirmed the absence of other sources of zinc.

2.2. Solution Exposure (in Syringe)

Different durations of solution containment in the syringe were tested to determine
if the longer the solution was contained in the syringe, the more zinc would be leached.
Sample preparation occurred in three phases, in line with the three durations tested in this
experiment. The 14-day samples were prepared two weeks before the scheduled ICP-MS
run date. Similarly, the 1-day samples were prepared the day before the run, and the 0-day
samples were prepared on the day of the ICP-MS run. The 0-day samples were contained
in the syringes for less than a minute. During the exposure times, all the syringes were
stored with the rubber stopper down, maximizing interaction between the solutions and
the stoppers. All samples added to the syringes were 10.00 ± 0.02 mL. Each syringe was
capped with a 0.45 µm syringe filter to reduce the evaporation of the solutions.

Two samples were prepared for each solution described in the cubes in the geometric
experimental diagram (Figure 1), and replicates were analyzed. Two syringe brands,
Covidien and BD, were tested.

The BD syringes were found to have leached a significant amount of zinc and were
further tested using an additional twelve samples, produced at integer values on the pH
scale (vide supra) which were stored in the rubber-containing syringes for 14 days prior



Pollutants 2024, 4 353

to running through the ICP-MS. The solutions were moved into pre-rinsed 15 mL sample
tubes at the end of the exposure duration.

After the designated time duration elapsed for each sample, during which each sample
was intentionally not agitated while sitting, the solutions in the syringes were analyzed
immediately by ICP-MS [11]. The samples were dispensed into 15 mL pre-rinsed centrifuge
tubes from their respective syringes. Each centrifuge tube was rinsed thrice with a 1% nitric
acid solution before introducing the samples. All samples, including blanks, were diluted
to achieve a final concentration of 1% nitric acid in accordance with the standard ICP-MS
procedure. Nitric acid was chosen as the preferred acid due to its minimal interference
with polyatomic species [12]. Standard solutions with 1, 10, 100, and 250 µg L−1 zinc
concentrations were created in a 1% nitric acid solution in a procedure similar to the test
solutions, but they were never exposed to rubber.

Nitric acid and sodium hydroxide were used to create a pH range of 2 to 13. The
sample pH’s were confirmed through pH electrode analysis. After collecting samples in
the 2 to 13 pH range and transferring them into centrifuge tubes, they were subsequently
placed into BD syringes and allowed to sit for 14 days in contact with the rubber plunger.
Following this equilibration period, the samples were analyzed by ICP-MS.

3. ICP-MS Methods

Most interferences in ICP-MS are attributed to polyatomic interferences in mass spec-
trometry, where atomic or molecular ions with the same mass-to-charge ratio as the com-
pounds of interest can cause interference. To address this issue, the ICP-MS software
includes measures to avoid interferences caused by overlapping isotopes of different ele-
ments, known as atomic “isobaric” interferences [13]. To deal with isobaric interferences, we
monitored Zn66 because it has fewer known interferences [8,13–22]. The ICP-MS operating
parameters are shown in Table 2.

Table 2. Thermo-Fischer i-CAP RQ ICP-MS operating parameters.

ICP-MS Plasma Parameters

Instrument Parameters
RF power 1550 W
Plasma power 1550 W
Auxiliary gas flow 0.80 L min−1

Nebulizer gas flow 1.04 L min−1

Sampling depth 5 mm
Sample/skimmer diameter orifice Nickel cones/3.5 mm insert

Acquisition parameters

Scanning mode KED
Dwell time 0.01 s
Sampling flow 20 rpm
Replicate count 15
Integration mode Peak area
Isotopes 64Zn, 66Zn, and 68Zn

4. Results

The factors tested in this experiment were solution type, syringe brand, time, and pH.
Two solutions, sucrose and tartaric acid, were tested for the solution type. Two brands were
examined: Covidien and BD. For the time factor, three levels were examined: 0 days, 1 day,
and 14 days. The pH levels tested were 2 to 13, using sodium hydroxide and nitric acid to
adjust the pH of ultrapure water.

4.1. Factor: Solution Type/Concentration

The sucrose and tartaric acid samples underwent the same number of measurements
under the same conditions. The samples captured in Figure 2 are subject to different
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syringe types, solution concentrations, and times. This experimental design still allows for
comparison but will result in broader data distributions [23]. Consequently, a high level
of variability is expected, so the spread of the data should be interpreted appropriately.
Figure 2 represents all the factors compared to each other, showing higher levels of zinc
extraction overall for BD syringes after a 14-day duration.
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As anticipated, the tartaric acid samples generated the greatest zinc concentration
due to tartaric acid’s structure and the higher concentration of reactive hydronium ions
available to extract the zinc [24], as seen in Figure 3. Error bars are not included here
as the values represented are averaged over all of the included factors and levels, and
thus would not be meaningful [23]. This observation prompted further investigation
into the influence of pH values, as pH is the interplay of solution concentration. The
varying concentrations (0.1, 1, and 10) in grams per liter (g/L) were also subjected to
different syringes and durations, resulting in a wide range of variability. A difference
in zinc concentration between the two syringe brands suggests that the two brands are
likely using different rubber formulations. The 14-day samples generated the next highest
average zinc concentration of 95 µg L−1. It is logical that the longer the samples were
contained in the syringe, the more zinc was extracted, as there was more time for the
samples to interact with the rubber zinc source. The BD samples followed closely behind
the 14-day samples, with an average zinc concentration of 93 µg L−1. The highest zinc
concentration was extracted when a BD syringe was filled with a solution for 14 days.
The maximum zinc concentration extracted from a syringe was 670 µg L−1, a potentially
concerning concentration in some circumstances.
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4.2. Factor: Syringe Brand

Figure 2 indicates that more zinc was leached from the BD syringes than from the
Covidien syringes overall. This result indicates that the syringe brand affected the zinc
concentration. The syringe brand had the greatest effect on the 14-day samples and did not
have a statistically significant impact on the 0-day samples.

The BD syringes experienced an increase in zinc concentration as time increased for
all solutions. The more time a solution spent in the syringe, the more zinc was dissolved as
there was more contact between the solution and the rubber.

The extreme predictability of the BD syringes creates a false expectation for the Covi-
dien syringes. In general, the zinc concentration of the Covidien samples remains relatively
constant compared to the BD syringe. All samples leached a measurable amount of zinc
when in the BD syringes. A difference in zinc concentration between the two syringe
brands suggests that the two brands are likely using different rubber formulations. Some
variability between syringe brands was anticipated, hence the inclusion of syringe brand as
a factor to be tested.

The largest zinc concentration was extracted after 14 days for both syringe brands. The
zinc concentration extracted from the BD syringes ranged from 98 to 110 µg L−1 compared
to 7 to 21 µg L−1 for the Covidien syringes.

4.3. Factor: Time

As time increases, there is a corresponding rise in zinc concentration. The bar graph
in Figure 2 shows a noticeable upward trend in zinc concentration over time for BD
syringes, as opposed to Covidien syringes. Notably, the measurements of zinc concentration
in the BD syringes show a wider range of Zn concentrations compared to those of the
Covidien syringes.

In the case of the Covidien syringes, there is a notable stability in zinc concentration as
time progresses. This trend is shown in the bar graph (Figure 2), which consistently shows
relatively low zinc concentration levels at each duration examined. Figure 2 illustrates the
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average zinc extracted during the different extraction durations while also highlighting
the lack of substantial variations in zinc concentration over time for Covidien syringes.
Conversely, the BD syringes demonstrate significant leaching of zinc compared to the
Covidien samples at each time duration.

The graph (Figure 2) provides evidence of an increase in zinc concentration as time
progresses, regardless of the solution type. The longer the rubber plunger was immersed in
the acid, the greater the extent of zinc extraction observed. Logically, the most acidic and
basic samples exhibit the widest range of zinc concentrations, as they correspond to the
highest concentration of hydronium ions.

In summary, Figure 2 highlights the influence of time on zinc concentration in BD
syringes, further confirming its impact. Time does not have a similar effect on zinc con-
centration in Covidien syringes, suggesting a potential disparity in the uniformity of the
rubber material used in the syringes.

4.4. Factor: pH

The effect of pH is most significant in the case of the 14-day samples, particularly
for pH levels of 2 and 13, as evidenced by Figure 4, which shows BD syringes on a pH
scale from a 14-day duration. The duration, combined with the higher concentration of
hydronium ions, led to higher zinc concentrations. It makes sense that the more time a
solution spent in the syringe, the more zinc was extracted, as there was prolonged contact
between the rubber material and the reactive hydronium/hydroxide ions.
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Figure 4. The average zinc concentration extracted from BD syringes at different pH levels is
depicted for a 14-day duration, showing an increase in zinc concentration at the pH extremes. Each
data point represents the average zinc concentration of all samples corresponding to a specific
pH value produced from either nitric acid or sodium hydroxide. The error bars represent three
standard deviations.

Figure 4 examines the effect of pH on zinc extraction. The relationship between pH
and zinc concentration makes sense as the solution environment becomes more reactive
with elevated hydronium concentrations and can leach more zinc from the rubber. The
extraction of zinc can be an acid-driven process. It follows that the most acidic solution with
the highest concentration of reactive hydronium ions extracted the most zinc. Tartaric acid,
a dicarboxylic acid, is a stronger cross-linker than monocarboxylic acids due to hydrogen
bond formation [25]. The carboxylic acid functional group binds strongly to divalent
metals [18,26], which might lead to a more stabilized form of zinc in the solution.
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Ultimately, pH had a more significant impact on the BD syringes in terms of zinc
concentration than the Covidien syringes. Therefore, a range of pH values were tested in
the BD syringes.

5. Discussion and Conclusions

We quantified the amount of zinc extracted from syringes stored under typical lab-
oratory conditions and determined some factors that affected the amount extracted. The
examined factors, represented in Figure 2, were the syringe type, solution type, solution
concentration, pH, and time. Zinc concentration increased at the extreme pH levels, as
the duration increased, and when the solution was contained in a BD syringe. Below, the
factors are ranked by the power of the factor analyzed from highest to lowest:

1. pH;
2. Syringe brand;
3. Time;
4. Solution type and concentration.

The results indicate the necessity of choosing the correct syringe type (with or without
a rubber stopper) depending on the sensitivity of the experiment to zinc. It also suggests
that solutions should not be stored in rubber-containing syringes, especially if the pH of
the solution is extremely acidic.

The results of this experiment speak to the importance of understanding sources of
contamination in the laboratory; the elevated zinc concentrations observed under extreme
pH levels and prolonged storage times signify potential risks of pollutant interference in
experimental analyses. Even low levels of contamination can yield inaccurate results, and
contamination can be introduced in a variety of unsuspected ways.
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