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Abstract: Differences in exposures and resources to manage personal health contribute to 
persistent inequities in air pollution burden despite vast air quality improvements over 
the past 2–3 decades in the United States. These factors are, partly, linked to historic racist 
practices, such as redlining, a discriminatory housing policy that was practiced legally 
between 1935 and 1968. Using 100 m × 100 m resolution land-use regression predicted 
surfaces of PM2.5 constituents (black carbon, nickel, vanadium, and copper) as pollution 
source indicators, we fit Bayesian generalized linear mixed-effects models to examine dif-
ferences in source exposures over two study periods, 2008–2015 and 2016–2019, compar-
ing (1) redlined to not redlined and (2) high-asthma to low-asthma neighborhoods. We 
examine redlining as an indicator of historical, and structural racism and asthma rates as 
an indicator of present-day community burden. Redlined areas saw near elimination of 
disparities in exposure to residual oil boilers and marine residual oil but persistent dis-
parities in traffic. High-asthma neighborhoods continue to have disproportionately high 
exposures to both residual oil boilers and traffic, with no discernable disparities related 
to marine residual oil emissions. Overall exposure disparities are small, with PM2.5 dispar-
ities by both asthma morbidity and redlining amounting to less than 1 µg/m3 and NO2 
disparities by asthma and redlining amounting to less than 2 ppb in the post-2016 period. 
For context, 2019 NYC average PM2.5 and NO2 were 8.5 µg/m3 and 20 ppb, respectively. 
Our findings suggest that local pollution policy should focus on reducing traffic and 
building boiler emissions in high-asthma neighborhoods to reduce exacerbations.
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1. Introduction
Air quality remains an important global public health issue as 99% of the worldwide 

population, in 2019, was exposed to outdoor air pollution levels that exceeded World 
Health Organization (WHO) guideline limits. Exposure to outdoor PM2.5 is estimated to 
have resulted in 4.2 million premature worldwide deaths, annually, and the highest 
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exposures occurred in low- and middle-income countries [1]. While air quality has gener-
ally improved across the United States over the past 2–3 decades [2], the inequitable bur-
dens of air pollution persist. Differences in indoor and outdoor exposures, baseline rates 
of health conditions, and resources to manage personal health are all factors that contrib-
ute to these inequitable burdens [3–7]. In the United States, these factors are linked, in 
part, to historic racist practices, such as redlining, blockbusting, contract selling, and ra-
cially restrictive covenants [8]. Established in 1935 and made illegal in 1968 by the Fair 
Housing Act, redlining had a wide-ranging impact as a federal policy that made it harder 
to obtain loans for homes in neighborhoods with low grades (D-grade = redlined) based 
on the presence of residents with racial and ethnic identities considered undesirable by 
agents of the Home Owners’ Loan Corporation (HOLC) [9]. All these practices had the 
effect of making it more difficult for people of color to own homes and build generational 
wealth, further entrenching neighborhood segregation. 

In New York City (NYC), research has documented associations among race/ethnic-
ity, poverty, and air pollution-related health outcomes. The NYC Department of Health 
and Mental Hygiene estimates that, in the period 2015–2017, PM2.5 exposure was respon-
sible for almost 2000 premature deaths among adults aged 30 and older, nearly 1500 car-
diovascular (ages 40+) and respiratory (ages 20+) hospitalizations, and about 3800 emer-
gency department (ED) visits, annually [10]. Asthma is one of the most common chronic 
diseases among children with clear and well-documented disparities in NYC [11,12]. 
Compared to White children, Black children were five times as likely, Latino children 
were three times as likely, and Asian children were twice as likely to have been diagnosed 
with asthma [6] (NYCDOHMH 2017). Very high-poverty neighborhoods experienced 7.4- 
and 5.3 times higher rates of pediatric asthma ED visits attributable to PM2.5 and ozone, 
respectively, compared to low-poverty neighborhoods [13]. Furthermore, very high-pov-
erty neighborhoods experienced 27% higher rates of PM2.5-attributable deaths than low-
poverty neighborhoods [13]. A racial wealth gap is also well-documented in NYC [14,15], 
with Black and Latino New Yorkers being twice as likely as White New Yorkers to live in 
poverty [16]. Thus, health disparities by neighborhood poverty intersect with racial health 
inequities. 

Importantly, disparities in air pollution-attributable health outcomes in NYC are 
more highly associated with baseline health outcome rates than with neighborhood air 
quality [17]. NYC has a central business district (CBD) that acts as a major hub of com-
mercial activity for a large and dense metropolitan area. The presence of this commercial 
activity makes the CBD a high-priced place to live despite the pollution it produces, re-
sulting in highly affluent neighborhoods that also have the highest air pollution in the city 
but low baseline rates of adverse health outcomes, such as asthma ED visits. The fact that 
these high-income, high-pollution neighborhoods do not experience higher rates of air 
pollution-attributable health outcomes [17,18] shows that outdoor air pollution is only one 
of many determinants of health. Nevertheless, communities experiencing higher baseline 
rates of respiratory and cardiac health outcomes are the most adversely affected by air 
pollution because of the role that pollution plays in exacerbating existing conditions [19–
21]. 

In this study, we identified local emission sources contributing to air pollution expo-
sure disparities using 11 years of seasonally averaged PM2.5 constituent data from the NYC 
Community Air Survey (NYCCAS). We examine redlining as an indicator of historical, 
and structural racism and asthma rates as an indicator of present-day community burden. 
NYC is uniquely suited to this type of study because it is an exceptionally diverse and 
densely populated city with many types of local sources of air pollution as well as the 
most comprehensive ground-based air pollution monitoring network (NYCCAS) of any 
major city, to our knowledge. The NYCCAS network has been operating at 75–150 



Pollutants 2025, 5, 2 3 of 19 
 

 

monitoring sites throughout NYC since the winter of 2008, and, in this study, we analyze 
NYCCAS data from the start of the program through 2019; we only analyze data collected 
prior to 2020 to exclude the anomalous pollution emissions and emergency room utiliza-
tion patterns resulting from the COVID-19 pandemic [18,22,23]. 

Fine particulate vanadium (V), copper (Cu), and nickel (Ni) have been shown to be 
highly correlated with specific emission sources [24,25], and we use them in this study as 
indicators of these sources—vanadium for marine residual oil, copper for traffic, and 
nickel for residual oil boilers. We also analyzed the seasonal patterns of black carbon (BC), 
which is correlated with diesel fuel and residual oil emissions. We developed 100 m × 100 
m resolution surfaces of NO2, PM2.5, and fine particulate BC, V, Cu, and Ni in the winter 
and summer seasons of 2008–2019 across NYC by fitting land-use regression (LUR) mod-
els to measurements at NYCCAS sites. We used Bayesian generalized linear mixed-effects 
models (B-GLMMs) to examine the differences in pollution exposure among neighbor-
hoods with varying past redlining grades and rates of pediatric asthma ED visits. Though 
some of the PM2.5 constituents analyzed in this study are correlated with each other [25], 
we add specificity to our analysis by stratifying the B-GLMMs by season as there are 
strong seasonal patterns to the sources examined in this study. For example, residual oil 
boiler emissions peak in the winter heating season, and marine residual oil emissions peak 
in summer [26,27]. Furthermore, our use of highly spatially resolved, ground-based PM2.5 

constituent data allows for a highly granular examination of spatial variability in local 
sources. In contrast, conventional source apportionment methods, such as Positive Matrix 
Factorization, are limited in their ability to resolve neighborhood-level patterns in local 
sources because they typically rely on highly temporally resolved data collected from 
sparsely distributed sites [28–30]. By comparing pollution patterns across neighborhoods 
by redlining status and asthma morbidity, we aimed to determine local sources of inequi-
table exposures among communities most affected by outdoor air pollution in order to 
inform effective and just environmental health policy. As spatially resolved PM2.5 constit-
uent data becomes more widely available via upcoming satellite missions, such as MAIA 
[31], our methods may be applied more broadly to elucidate sources of air pollution 
exposure inequities worldwide. 

2. Methods 
2.1. New York City Community Air Survey Data 

NYCCAS study design and analytical protocols are described in detail elsewhere 
[25,32]. This study employs NYCCAS measurements of NO2, PM2.5, and its elemental con-
stituents from years 1 to 11 of NYCCAS (Dec. 2008–Dec. 2019). Integrated two-week NO2 
samples were collected on passive samplers (Ogawa and Co. USA, Pompano Beach, FL, 
USA) before water-based extraction and colorimetric analysis. Integrated two-week PM2.5 
samples were collected on Teflon filters and gravimetrically analyzed for PM2.5 mass. The 
PM2.5 samples were analyzed for BC using reflectometry (EEL Model 43D smoke stain 
reflectometer, Diffusion Systems, London, UK). Additionally, X-ray fluorescence (XRF) 
analysis was performed on the PM2.5 samples to measure 50 elements. We focus on Cu, Ni, 
and V in this study because these elements have been found to be the most strongly asso-
ciated with major local emissions [25]. In the first two years of NYCCAS, 150 sites were 
monitored once per season. The number of NYCCAS sites varied in subsequent years, 
ranging between 75 and 100 sites, of which, 60 core sites were monitored across all years 
of the study. Though the number of sites varies from year to year, we preserved the bal-
ance of source densities and geographic areas represented in the network, which was de-
signed to encompass the full range of traffic conditions, size and number of buildings, and 
land uses in NYC [32,33]. Additionally, reference sites were sampled for continuous two-
week sessions; there were five reference sites in years 1–5 of NYCCAS and three reference 
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sites in years 6–11. Since data from the non-reference sites were only collected once per 
season, the reference site data were necessary for temporal adjustments to account for 
variable weather and regional pollution events. Because elemental PM2.5 constituents were 
measured only in the winter (late December to March) and summer (June to September) 
seasons, all pollutant analyses in this study are limited to these two seasons. The locations 
of all NYCCAS sites are shown in Figure S1. 

2.2. Spatial Interpolation of Citywide Air Pollution 

Spatial patterns of NO2, PM2.5, and fine particulate BC, V, Cu, and Ni were analyzed 
using NYCCAS integrated measurements. LUR models were developed to predict pollu-
tant concentrations for winter and summer seasons in 2008–2019 at the centroids of 100 m 
× 100 m grid cells across the city. BC, Ni, and Cu were log-transformed prior to modeling 
to correct for highly skewed distributions. Forward stepwise model selection was em-
ployed to fit LUR models for each year of study using measurements from rolling three-
year periods, with the LUR model year as the final year in each rolling period, except for 
the first three years for which model predictions were based on a single LUR model. Emis-
sions indicators of known and expected importance in NYC were chosen based on previ-
ous research [25,34] and include data from the New York Metropolitan Transportation 
Council (NYMTC), the U.S. Environmental Protection Agency’s (USEPA) National Emis-
sions Inventory, NYC Department of City Planning Primary Land Use Tax Lot Output 
(PLUTO), and the NYC Fire Department. The development of these emissions indicators 
is described in Clougherty et al. (2013), Ito et al. (2016), and NYCDOHMH (2021a) 
[25,33,34]. Table S1 summarizes the data sources for the emissions indicators used in our 
LUR models. 

Emissions indicators were entered into the model in order of their perceived a priori 
importance as described in Clougherty et al. (2013) [34]. The criteria for retaining an indi-
cator were: (1) it yields a positive regression coefficient; (2) it is significant at α = 0.05; (3) 
it increases the model R2 by at least 2% from the previous model; and (4) it yields a model 
with variance inflation factors for all covariates that do not exceed 1.5. A smoothing term 
for unique sampling session ID, a chronological indicator, was included to adjust for the 
seasonality of pollutant concentrations. The reference sites are monitored continuously 
throughout the year, thus making up the majority of the observations, and their inclusion 
in the models accounted for the influence of citywide temporal patterns, effectively ad-
justing for temporal variables, such as weather and regional pollution events. Moran’s I 
was calculated for each model before and after adding a smoothing term for xy coordi-
nates. If Moran’s I was <0.2 in the model without the coordinate term, the final model was 
chosen to include spatial smoothing to account for spatial autocorrelation. The spatial 
smooth term was given up to 15 degrees of freedom, and the temporal smooth term was 
given up to 41 degrees of freedom. If it improved the model R2, the spatial smooth and 
each emission indicator in the model were included as interaction terms with unique sea-
son-year IDs to account for temporal variations in spatial patterns and covariate effect 
size. Cook’s Distance was also calculated for each model to determine if any outlier points 
had an outsized influence on the model (6X mean Cook’s Distance). Outlier sites were 
omitted from the final model selection. To evaluate model robustness, we performed 
leave-one-out cross-validation (LOOCV) and computed the normalized mean squared er-
ror (NMSE). 

Final models, fit, and validation parameters are shown in Tables S2–7. LUR modeling 
was performed using the mgcv package [35] in R version 4.2.3 [36]. We chose to use LUR 
models because they are relatively quick to run and have high predictive accuracy at high 
spatial resolution. For example, the mean R2 values for our NO2 and PM2.5 models are 0.87 
and 0.85, respectively. This is in contrast to low-complexity source-receptor models, 
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which are also quick-running but tend to have low predictive accuracy. For example, the 
InMAP source-receptor model yielded an R2 of only 0.26 when run using 2014 USEPA 
National Emissions Inventory data as input [7]. Alternatively, chemical transport models 
(e.g., CMAQ, WRF-Chem, GEOS-Chem) generally have high predictive accuracy, but are 
computationally intensive, especially at higher spatial resolution [37].

2.3. Equity Analysis

B-GLMMs were developed to examine differences in pollution exposure by redlining 
status and rate of pediatric asthma ED visits. Redlining status was determined by over-
laying census tract geographies obtained from IPUMS NHGIS [38] and a digitized version 
of the HOLC map obtained from the University of Richmond Mapping Inequality Project 
[9]. For this analysis, a census tract was considered to have been redlined if its centroid 
intersected with a D-graded area on the HOLC map (Figure 1a). Since large sections of 
NYC were excluded from the HOLC map, the redlining analysis was

Figure 1. Spatial patterns of (a) redlining, (b) household income, and (c) rates of pediatric asthma 
emergency department visits, by census tract.

restricted to census tracts with centroids that intersected with a HOLC-graded area. The 
asthma morbidity analysis was also performed using the census tract geography. Data on 
full-year and quarterly asthma ED visits were obtained from the New York Statewide 
Planning and Research Cooperative System for the period 2016–2018. NYC population 
data were obtained from the 2017–2021 American Community Survey [39]. Three-year 
rates of asthma ED visits in each census tract were calculated for children 14 years of age 
and younger and then grouped into tertiles (low, medium, high) (Figure 1c).

Associations among each of five pollutants (NO2, PM2.5, BC, V, Cu, Ni) and two de-
mographic variables (redlining status and rate of pediatric asthma ED visits) were ana-
lyzed using B-GLMMs, controlling for year of study with random intercept to account for 
within-geography correlation and stratified by season and period—the study period was 
divided into pre-2016 (2008–2015) and post-2016 (2016–2019) periods, marking the dra-
matic shift in local air pollution trends resulting from multiple policies enacted prior to 
2016 regulating emissions from residual fuel oil, electric generating units, and motor ve-
hicles (Figure 2) [40]. This is apparent in the sharp change in slope in annual pollutant 
trends, where 2016 marks the inflection point when reductions in NO2 and PM2.5 start to 
plateau (Figure 2). While it is difficult to disentangle the effects of multiple, concurrent 
pollution regulations on the observed trends, we take the 2016 inflection point to be a 
marker of two periods having distinct pollution emission patterns and model them sepa-
rately. The B-GLMMs assumed gamma-distributed dependent variables to reflect the 
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skewed distribution of pollutant concentrations. The identity link was used so that covari-
ate effect sizes could be interpreted in the original units of pollutant concentration. Typi-
cally, air pollution models are log-transformed to coerce skewed data into approximately 
normal distributions, yielding results in units of percent difference; percent differences 
can be misleading when used to compare differences in exposure among groups over time 
if overall exposure levels change dramatically over the study period as they do in our 
study. Thus, we used B-GLMMs to determine absolute differences in pollutant exposure 
among our study groups in order to produce clear and informative results. In contrast to 
a frequentist GLM, the Bayesian framework allows the setting of initial values for model 
fitting—this aided in model convergence when specifying the relatively restrictive gamma 
distribution. Weakly informative priors, based on observed data, were specified for model 
parameters. B-GLMMs were fit via MCMC estimation using the NIMBLE package [41] in 
R version 4.2.3 [36]. 

 

Figure 2. Trends in NYCCAS measurements of PM2.5, NO2, and 4 PM2.5 constituents: black carbon 
(BC), nickel (Ni), vanadium (V), and copper (Cu), shown as percent change since NYCCAS Year 1 
(2009). Starting in 2016, a marked change in slope is apparent for most pollutants. 

3. Results and Discussion 
3.1. Temporal Trends in Citywide Air Pollution 

Policies and events regulating emissions from residual fuel oil, electric generating 
units, and motor vehicles resulted in decreased PM2.5 and NO2 concentrations citywide 
[40]. From 2008 to 2019 PM2.5 fell from 12.8 to 8.51 µg/m3, NO2 fell from 27.8 to 19.9 ppb, 
BC fell from 1300 to 840 ng/m3, Ni fell from 8.44 to 0.947 ng/m3, V fell from 5.35 to 0.363 
ng/m3, and Cu remained relatively constant at around 7 ng/m3 (Figures 2 and 3). 
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Figure 3. LUR-predicted surfaces of winter and summer average PM2.5 and NO2 for the two study 
periods: (a) pre-2016 (Dec. 2008–Dec. 2015), (b) post-2016 (Dec. 2015–Dec. 2019).

3.2. Spatial Disparities in NO2 and Total PM2.5 Exposure

Our B-GLMMs showed that, despite citywide declines, disparities endured in out-
door air pollution among neighborhoods with varying redlining statuses and rates of pe-
diatric asthma ED visits. In the pre-2016 period, high-asthma neighborhoods experienced, 
on average, 0.76 [95% credible interval 0.65–0.87] µg/m3, 3.0 [2.7–3.5] µg/m3, 0.29 [−0.10–
0.65] ppb, and 0.23 [−0.08–0.53] ppb higher levels of summertime PM2.5, wintertime PM2.5, 
summertime NO2, and wintertime NO2, respectively, compared to low-asthma neighbor-
hoods (Figure 4). In the pre-2016 period, redlined areas experienced, on average, 0.79 
[0.71–0.87] µg/m3, 1.4 [1.2–1.6] µg/m3, 2.3 [1.9–2.6] ppb, and 2.1 [1.8–2.3] ppb higher levels 
of summertime PM2.5, wintertime PM2.5, summertime NO2, and wintertime NO2, respec-
tively, compared to areas that were not redlined (Figure 4). In the post-2016 period, high-
asthma neighborhoods experience, on average, 0.76 [0.66–0.86] µg/m3, 0.79 [0.68–0.89] 
µg/m3, 0.41 [0.12–0.73] ppb, and 0.35 [0.08–0.64] ppb higher levels of summertime PM2.5, 
wintertime PM2.5, summertime NO2, and wintertime NO2, respectively, compared to low-
asthma neighborhoods (Figure 4). In the post-2016 period, redlined areas experienced, on 
average, 0.77 [0.69–0.85] µg/m3, 0.81 [0.73–0.89] µg/m3, 1.9 [1.6–2.1] ppb, and 1.9 [1.6–2.1] 
ppb higher levels of summertime PM2.5, wintertime PM2.5, summertime NO2, and winter-
time NO2, respectively, compared to areas that were not redlined (Figure 4). Lane et al. 
(2022) also reported nationwide disparities by redlining status using LUR-modeled pol-
lutant surfaces based on US EPA regulatory monitor and satellite data from 2010 [5]. Re-
cent studies have found that having lower socioeconomic status was associated with 
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higher exposures to criteria air pollutants in cities around the world [42–47]. A study of 
NO2 in nine European cities observed higher NO2 among local administrative units hav-
ing higher crime or unemployment rates, suggesting a positive association between air 
pollution and deprivation [48]. There is evidence that these inequities are growing larger, 
especially in developing nations in East and South Asia [47]. To our knowledge, ours is 
the first study to identify specific sources of air pollution exposure inequities using high-
resolution PM2.5 constituent data based on a dense network of ground-based observations. 
In the following sections, we analyze trends in PM2.5 constituents to elucidate the under-
lying sources of inequity in NYC. 

 

Figure 4. Differences in PM2.5 and NO2 concentration comparing redlined areas to non-redlined ar-
eas and high asthma neighborhoods to low asthma neighborhoods. Error bars indicate 95% credible 
intervals and points indicate posterior medians from Bayesian generalized linear mixed effects mod-
els. Redlining is defined by census tracts having centroids that overlap with D-graded areas on the 
Home Owners’ Loan Corporation map. Asthma outcomes are defined by census tract rates of pedi-
atric (ages 14 and under) asthma emergency department visits. 

3.3. Source-Specific Exposure Trends 

3.3.1. Traffic 

Cu is highly associated with local traffic sources in NYC [25], reflecting non-exhaust 
emissions from brake wear [49]. Thus, fine particulate Cu patterns are driven by trends in 
traffic volume. BC is associated with and commonly used as a marker for diesel truck 
traffic emissions [32,50]. NYC traffic is often higher in the summer due to tourism and 
outdoor recreation [51], and the peak season for heavy-duty freight traffic (August–Octo-
ber, when retailers are stocking up for back-to-school and holiday shopping) overlaps the 
summer season [52]. This means that summertime patterns of traffic-related air pollution 
(i.e., Cu, BC) are likely dominated by traffic, as opposed to other shared sources, such as 
residual oil boilers (which have peak usage in winter for heating). Increasingly positive 
associations between summertime Cu and redlining (pre-2016: 0.15 [0.03–0.28] ng/m3 
higher in redlined areas; post-2016: 0.27 [0.17–0.36] ng/m3 higher in redlined areas), as well 
as neighborhood pediatric asthma rates (pre-2016: 0.09 [−0.04–0.22] ng/m3 higher in high-
asthma neighborhoods; post-2016: 0.30 [0.19–0.40] ng/m3 higher in high-asthma neighbor-
hoods), indicate persistent disparities in neighborhood traffic volumes (Figure 5). 
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Figure 5. Differences in PM2.5 constituents: black carbon (BC), nickel (Ni), vanadium (V), and copper 
(Cu), comparing redlined areas to non-redlined areas and high asthma neighborhoods to low 
asthma neighborhoods. Error bars indicate 95% credible intervals and points indicate posterior me-
dians from Bayesian generalized linear mixed effects models. Redlining is defined by census tracts 
having centroids that overlap with D-graded areas on the Home Owners’ Loan Corporation map. 
Asthma outcomes are defined by census tract rates of pediatric (ages 14 and under) asthma emer-
gency department visits. 

Furthermore, the differences in summertime BC by both redlining status (pre-2016: 
87 [85–89] ng/m3 higher in redlined areas; post-2016: 45 [43–46] ng/m3 higher in redlined 
areas) and neighborhood asthma (pre-2016: 42 [40–44] ng/m3 higher in high-asthma neigh-
borhoods; post-2016: 22 [21–24] ng/m3 higher in high-asthma neighborhoods) remain pos-
itive through both study periods, suggesting heavy-duty diesel vehicles as an enduring 
source of exposure disparities. Regulations on vehicle exhaust emissions may explain why 
summer BC disparities are decreasing as summer Cu disparities increase since BC is emit-
ted in vehicle exhaust and Cu is not. These trends suggest that vehicle emissions controls 
have helped to reduce inequitable exposures to traffic-related pollution even as disparities 
in traffic volume appear to grow. 

3.3.2. Residual Oil Boilers 

While Ni has the strongest association with residual oil boilers in NYC [25], BC, V, 
and Cu are also associated with this source [25,50]. Building boilers operate year-round to 
produce hot water; however, their emissions are highest during the winter, when space 
heating reaches a peak. Wintertime differences by redlining status were virtually elimi-
nated for Ni (0.17 [−0.18–0.52] to −0.0090 [−0.046–0.027]) and V (0.12 [0.045–0.20] to 0.0013 
[−0.010–0.013]), and reduced for BC (68 [66–70] to 42 [40–43] ng/m3) between the two study 
periods, suggesting that regulations on boiler fuels had an equalizing effect on residual 
oil emissions (Figure 5). In NYC, a suite of “Clean Heat” policies mandated the phase-out 
of No. 6 fuel oil by 2015 and No. 4 oil by 2030 and reduced maximum allowable sulfur 
levels in No. 2 and No. 4 heating oils as of 2012 [53]. Differences in wintertime Cu, 
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however, increased in redlined vs. non-redlined areas between the two study periods 
(0.066 [−0.062–0.20] to 0.23 [0.15–0.31] ng/m3). While Cu is a known component of residual 
oil emissions [54], it is most highly associated with traffic in NYC [25]. This suggests that 
variation in traffic emissions was sharper than variation in residual oil boiler emissions 
among neighborhoods of varying redlining status, so reductions in boiler emissions re-
vealed the magnitude of the traffic emissions disparity. In other words, the wintertime Cu 
disparity by redlining appeared to be driven by traffic rather than residual oil emissions. 

Our B-GLMMs also showed reduced disparities in high-asthma compared to low-
asthma neighborhoods between the two study periods in wintertime Ni (1.22 [0.81–1.6] to 
0.22 [0.18–0.26] ng/m3), wintertime BC (61 [59–63] to 38 [37–40] ng/m3), and wintertime Cu 
(0.22 [0.073–0.37] to 0.13 [0.037–0.22] ng/m3) (Figure 5), suggesting reduced exposure in-
equity to residual oil boiler emissions. However, the persistence of the Ni disparity sug-
gests that, though Clean Heat improved air quality citywide [55], these policies did not 
eliminate inequitable exposure to residual oil boilers in high-asthma neighborhoods. 

3.3.3. Marine Residual Oil 

V exhibits the strongest association with marine residual oil emissions in NYC [25], 
though it is also a known component of residual oil used to fuel building boilers [54]. The 
high season for recreational cruise ships in NYC is summer [27], and peak container ship 
season follows that of freight trucking (August–October), driven by anticipated increases 
in demand during the holiday shopping season [26]. Thus, summertime V patterns are 
likely driven by marine residual oil emissions. Summertime V trends suggest drastically 
reduced marine residual oil emissions in redlined areas (pre-2016: 0.13 [0.091–0.17] ng/m3 
higher in redlined areas; post-2016: 0.0088 [0.0024–0.015] ng/m3 higher in redlined areas). 
This may be due to decreased marine residual oil emissions in response to policies regu-
lating the sulfur content of marine fuel oil that was phased in from the early 2000s to the 
mid-2010s [56,57]. In contrast to the findings for redlined areas, the spatial patterns of V 
suggest that marine residual oil is not a major source of disparate air pollution exposure 
in high-asthma neighborhoods (Figure 5). 

3.4. Policy Implications 

Over the study period, disparities in outdoor PM2.5 and NO2 exposure endured 
among neighborhoods with varying redlining status and rates of pediatric asthma ED vis-
its. These disparities are, however, small relative to citywide average exposures (8.5 µg/m3 
and 20 ppb for PM2.5 and NO2, respectively, in 2019), with PM2.5 disparities by both asthma 
morbidity and redlining amounting to approximately 0.8 µg/m3 and NO2 disparities by 
asthma and redlining amounting to <2 ppb in the post-2016 period. In acknowledging the 
disparities’ small magnitude, we seek not to diminish injustices, but rather to guide effec-
tive policy. Given small exposure disparities, concentrated efforts to reduce exposures in 
populations experiencing disproportionate health impacts would be more effective than 
focusing solely on where exposure disparities are greatest. The health benefits of contin-
uing to reduce air pollution will be greater in high-asthma neighborhoods because of the 
association of outdoor PM2.5 and NO2 pollution with asthma exacerbation, including in-
creased rates of pediatric asthma ED visits [19–21,58]. This study aimed to determine the 
sources of inequitable exposures among disproportionately impacted populations. While 
there is some overlap between high-asthma and redlined neighborhoods, differences in 
pollution trends (i.e., NO2 disparities decreasing in redlined areas but increasing in high-
asthma neighborhoods) suggest that asthma morbidity may be a more useful proxy for 
community-level burden as neighborhood demographics shift. 

Persistent disparities in wintertime PM2.5 constituent data suggest that benefits from 
Clean Heat policies have been insufficient to address inequities in air quality among 
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neighborhoods with varying asthma morbidity rates. This is in contrast to redlined areas, 
which saw a virtual elimination of disparities in exposure to residual oil boilers. This may 
reflect shifting neighborhood demographics as some previously redlined areas become 
higher-income neighborhoods (Figure 1a,b). Building emissions can change as new devel-
opments replace older ones and existing buildings change fuel types—events that may be 
more likely in neighborhoods experiencing this demographic shift. NYC has undergone 
drastic neighborhood demographic shifts since the time of redlining as the city increased 
in population [59] and developers have sought to transform historically marginalized 
neighborhoods into more upscale ones [60]. As a result, redlining has become a less mean-
ingful characteristic for identifying neighborhoods currently experiencing the most envi-
ronmental injustice in NYC. 

Compared to real estate development, traffic infrastructure is slower to change, and 
traffic emissions persist as a source of inequitable exposures in both high-asthma and red-
lined communities, including evidence suggesting increasing inequities. Increased sum-
mer Cu disparities point to increasingly inequitable exposures to traffic volume while de-
creased summer BC disparities indicate shrinking inequities in exposure to traffic emis-
sions. Because traffic-related Cu is a non-exhaust emission and BC is an exhaust emission, 
these opposing trends suggest that regulations on vehicle exhaust emissions have, to some 
extent, offset the effects of a widening gap in traffic exposure among high- and low-traffic 
neighborhoods. While historic siting of traffic infrastructure has kept spatial patterns in 
traffic generally consistent, high-traffic neighborhoods may be experiencing dispropor-
tionate increases in truck traffic due to the rise in e-commerce [61,62], which relies on in-
dustrial hubs that are often in predominantly Black, Hispanic/Latino, and low-income 
neighborhoods [63]. 

To fully address environmental health inequities, we must tackle disparities in hous-
ing quality, indoor air quality, and access to healthcare in addition to outdoor air pollution 
[4,6]. The neighborhoods with the highest levels of outdoor air pollution in NYC are some 
of the wealthiest and do not experience higher rates of air pollution-attributable health 
outcomes [17], showing that outdoor air pollution is only one of many determinants of 
health. NYC has a central business district that acts as a major hub of commercial activity 
for a large and dense metropolitan area. The presence of this commercial activity makes 
the CBD an expensive place to live despite the pollution it produces, resulting in highly 
affluent neighborhoods with the highest air pollution in the city and ample resources to 
manage personal health. Nevertheless, the CBD is an exception to a trend, and our study 
shows that, on average, NYC communities with higher rates of pediatric asthma ED visits 
are exposed to higher concentrations of outdoor NO2 and PM2.5 compared to low-asthma 
neighborhoods and that traffic and building boiler emissions are important local sources 
of this disparity. 

This study shows how PM2.5 constituents can be used to identify communities expe-
riencing the greatest impact from local air pollution and the main sources of disparity. 
Figure 6 shows bivariate maps plotting neighborhood pediatric asthma ED visit rates 
against LUR-predicted wintertime Ni (tracer for residual oil boiler emissions) and sum-
mertime BC (tracer for heavy-duty diesel truck emissions) in the post-2016 period. 
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Figure 6. Bivariate maps of (a) summertime BC and (b) wintertime Ni in the post-2016 period by 
pediatric asthma emergency department visit rate. Asthma rates were not available for census tracts 
colored in dark gray. Map legends show the ranges of pollutant concentrations for each color bin in 
units of nanograms per cubic meter (ng/m3). (c) Map of study area labeled with truck routes and 
industrial areas in locations where summertime BC and high pediatric asthma emergency depart-
ment visit rates overlap.

The summertime BC map highlights high-asthma neighborhoods exposed to dispro-
portionately high diesel fuel emissions in northern Manhattan, in the proximity of a few 
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major roadways, and in industrial areas in northern Brooklyn and Hunts Point in the 
Bronx (Figures 6a,c and S2a,b). The wintertime Ni map shows that most of the Bronx and 
northern Manhattan stand out as high-asthma neighborhoods with disproportionate ex-
posure to residual oil boiler emissions (Figures 6b and S2c). That residual oil boiler and 
traffic emissions continue to disproportionately impact high-asthma neighborhoods is rel-
evant to the implementation of local, state, and federal greenhouse gas mitigation strate-
gies, including building and vehicle electrification that will also have air quality co-bene-
fits [64–67]. These burgeoning initiatives are an opportunity to support and accelerate 
emissions reductions in overburdened and under-resourced communities. 

3.5. Strengths and Limitations 

A strength of this study is the NYCCAS network’s high density of long-term, ground-
level air pollution monitors. This gives us the ability to investigate highly resolved spatial 
variability in local sources as indicated by PM2.5 constituents shown to have robust asso-
ciations with specific sources in NYC [25]. Though some of the PM2.5 constituents analyzed 
in this study are correlated with each other and show associations with multiple sources 
[24,25], we add specificity to our analysis by stratifying the B-GLMMs by season as there 
are strong seasonal patterns to the sources examined in this study. For example, residual 
oil boiler emissions peak in the winter heating season, and marine residual oil emissions 
peak in summer [26,27]. One weakness of the NYCCAS dataset is its temporal resolution, 
which is limited to seasonal averages at each site (only winter and summer measurements 
for PM2.5 elemental constituents). This limited our ability to perform source apportion-
ment, which typically requires high temporal resolution data in order to effectively re-
solve distinct source factors. To our knowledge, conventional source apportionment 
methods, such as Positive Matrix Factorization, have not been used to resolve neighbor-
hood-level patterns in local sources because they typically rely on highly temporally re-
solved data collected from sparsely distributed sites [28–30]. Other recent studies of air 
pollution exposure inequities using LUR [5], source-receptor models [7], or satellite-based 
data [3,68] similarly observed disparities in air pollution exposure by redlining, race, eth-
nicity, and income. However, these studies were limited to analyses of total PM2.5 or NO2. 
As far as we know, ours is the first study to identify specific sources of air pollution expo-
sure inequities on the neighborhood level using high-resolution PM2.5 constituent data 
from a dense network of ground-based observations. 

4. Conclusions 
Redlined areas experienced near elimination of disparities in exposure to residual oil 

boilers and marine residual oil, with persistent inequitable exposures to traffic. High-
asthma neighborhoods continue to have disproportionately higher exposures to both traf-
fic and residual oil emissions. These differences in trend suggest that the spatial pattern 
of asthma morbidity may be a more useful proxy for community-level burden as neigh-
borhood demographics shift (Figure 1). Though addressing outdoor air pollution levels 
helps to reduce exacerbation, asthma is a complex condition driven mainly by factors that 
are addressed through improved economic opportunity, access to healthcare, and housing 
quality [6,69,70]—factors potentially supported by well-designed and equitable climate 
policies [67]. While there is evidence of inequities in air pollution exposure in cities outside 
of the United States [42,43,45–48], these studies are relatively limited in number and scope 
[42,44], with few investigating specific pollution sources contributing to inequity. Other 
municipalities may also want to use the methods in this study to analyze spatial patterns 
of chemical source indicators to reveal sources of exposure inequity. This will become 
possible for more places as spatially resolved air pollution constituent data becomes more 
widely available via current and upcoming satellite missions, such as TEMPO [71] and 
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MAIA [31]. Regardless of the granularity in air pollution surveillance, local policymakers 
in NYC and other cities should consider the spatial patterns of health disparities in de-
signing air quality policy that supports environmental justice and maximizes health ben-
efits. Because overall exposure disparities in NYC are small, our findings suggest that pol-
lution policy in NYC should focus on reducing traffic and building boiler emissions in 
high-asthma neighborhoods to reduce exacerbations. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/pollutants5010002/s1, Figure S1: NYCCAS integrated two-
week monitoring sites. The core sites (dark blue circles and triangles) have been monitored every 
year since the inception of NYCCAS (December 2008). The number of reference sites (triangles) was 
reduced from 5 to 3 after Year 5 of NYCCAS; Figure S2: Spatial distribution of (a) annual average 
daily truck volumes, (b) industrial land use, and (c) buildings burning No. 4 fuel oil in NYC. Truck 
traffic data was obtained from the New York State Department of Transportation. Industrial land 
use data was obtained from the NYC Department of City Planning. Data on fuel oil permits was 
obtained from the NYC Mayor’s Office of Climate and Environmental Justice; Figure S3: Spatial 
patterns of PM2.5 in different seasons and study periods by census tract; Figure S4: Spatial patterns 
of NO2 in different seasons and study periods by census tract; Figure S5: Spatial patterns of BC in 
different seasons and study periods by census tract; Figure S6: Spatial patterns of Cu in different 
seasons and study periods by census tract; Figure S7: Spatial patterns of Ni in different seasons and 
study periods by census tract; Figure S8: Spatial patterns of V in different seasons and study periods 
by census tract; Figure S9: Bivariate maps of PM2.5 and pediatric asthma emergency department visit 
rate in different seasons and study periods by census tract. Asthma rates were not available for 
census tracts colored in dark gray. Map legends show the ranges of PM2.5 concentrations for each 
color bin in units of micrograms per cubic meter (µg/m3); Figure S10: Bivariate maps of NO2 and 
pediatric asthma emergency department visit rate in different seasons and study periods by census 
tract. Asthma rates were not available for census tracts colored in dark gray. Map legends show the 
ranges of NO2 concentrations for each color bin in units of parts per billion (ppb); Figure S11: Biva-
riate maps of BC and pediatric asthma emergency department visit rate in different seasons and 
study periods by census tract. Asthma rates were not available for census tracts colored in dark gray. 
Map legends show the ranges of BC concentrations for each color bin in units of nanograms per 
cubic meter (ng/m3); Figure S12: Bivariate maps of Cu and pediatric asthma emergency department 
visit rate in different seasons and study periods by census tract. Asthma rates were not available for 
census tracts colored in dark gray. Map legends show the ranges of Cu concentrations for each color 
bin in units of nanograms per cubic meter (ng/m3); Figure S13: Bivariate maps of Ni and pediatric 
asthma emergency department visit rate in different seasons and study periods by census tract. 
Asthma rates were not available for census tracts colored in dark gray. Map legends show the ranges 
of Ni concentrations for each color bin in units of nanograms per cubic meter (ng/m3); Figure S14: 
Bivariate maps of V and pediatric asthma emergency department visit rate in different seasons and 
study periods by census tract. Asthma rates were not available for census tracts colored in dark gray. 
Map legends show the ranges of V concentrations for each color bin in units of nanograms per cubic 
meter (ng/m3); Figure S15: Bivariate maps of PM2.5 and redlining status in different seasons and 
study periods by census tract. Census tracts whose centroids did not overlap with a HOLC-graded 
area are represented in dark gray. Map legends show the ranges of PM2.5 concentrations for each 
color bin in units of micrograms per cubic meter (µg/m3); Figure S16: Bivariate maps of NO2 and 
redlining status in different seasons and study periods by census tract. Census tracts whose cen-
troids did not overlap with a HOLC-graded area are represented in dark gray. Map legends show 
the ranges of NO2 concentrations for each color bin in units of parts per billion (ppb); Figure S17: 
Bivariate maps of BC and redlining status in different seasons and study periods by census tract. 
Census tracts whose centroids did not overlap with a HOLC-graded area are represented in dark 
gray. Map legends show the ranges of BC concentrations for each color bin in units of nanograms 
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per cubic meter (ng/m3); Figure S18: Bivariate maps of Cu and redlining status in different seasons 
and study periods by census tract. Census tracts whose centroids did not overlap with a HOLC-
graded area are represented in dark gray. Map legends show the ranges of Cu concentrations for 
each color bin in units of nanograms per cubic meter (ng/m3); Figure S19: Bivariate maps of Ni and 
redlining status in different seasons and study periods by census tract. Census tracts whose cen-
troids did not overlap with a HOLC-graded area are represented in dark gray. Map legends show 
the ranges of Ni concentrations for each color bin in units of nanograms per cubic meter (ng/m3); 
Figure S20: Bivariate maps of V and redlining status in different seasons and study periods by cen-
sus tract. Census tracts whose centroids did not overlap with a HOLC-graded area are represented 
in dark gray. Map legends show the ranges of V concentrations for each color bin in units of nano-
grams per cubic meter (ng/m3); Table S1: Data sources and interpretation of emissions indicators 
used in land-use regression models; Table S2: Selected land-use regression models, R-squared, and 
normalized mean squared error (NMSE) for PM2.5 in Years 1–11 of the New York City Community 
Air Survey. See Table S1 for interpretation of emissions indicators. (n = number of monitoring sites 
included in model; conc = pollutant concentration; datenum = unique 2-week sampling session ID; 
season_sort = unique season-year ID); Table S3: Selected land-use regression models, R-squared, 
and normalized mean squared error (NMSE) for NO2 in Years 1–11 of the New York City Commu-
nity Air Survey. See Table S1 for interpretation of emissions indicators. (n = number of monitoring 
sites included in model; conc = pollutant concentration; datenum = unique 2-week sampling session 
ID; season_sort = unique season-year ID); Table S4: Selected land-use regression models, R-squared, 
and normalized mean squared error (NMSE) for BC in Years 1–11 of the New York City Community 
Air Survey. See Table S1 for interpretation of emissions indicators. (n = number of monitoring sites 
included in model; conc = pollutant concentration; datenum = unique 2-week sampling session ID; 
season_sort = unique season-year ID); Table S5: Selected land-use regression models, R-squared, 
and normalized mean squared error (NMSE) for Cu in Years 1–11 of the New York City Community 
Air Survey. See Table S1 for interpretation of emissions indicators. (n = number of monitoring sites 
included in model; conc = pollutant concentration; datenum = unique 2-week sampling session ID; 
season_sort = unique season-year ID); Table S6: Selected land-use regression models, R-squared, 
and normalized mean squared error (NMSE) for Ni in Years 1–11 of the New York City Community 
Air Survey. See Table S1 for interpretation of emissions indicators. (n = number of monitoring sites 
included in model; conc = pollutant concentration; datenum = unique 2-week sampling session ID; 
season_sort = unique season-year ID); Table S7: Selected land-use regression models, R-squared, 
and normalized mean squared error (NMSE) for V in Years 1–11 of the New York City Community 
Air Survey. See Table S1 for interpretation of emissions indicators. (n = number of monitoring sites 
included in model; conc = pollutant concentration; datenum = unique 2-week sampling session ID; 
season_sort = unique season-year ID). 
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