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Abstract: The use of photovoltaic energy (PV) and the involvement of residents within energy com-
munities are becoming increasingly important elements of decentralized energy systems. However,
ownership structures are still too complex to empower electricity consumers to become prosumers.
We developed a token-based system of the gradual transfer of PV ownership rights, from the initial
investor to residential and small-scale commercial consumers. To demonstrate the system, we set
up a simulation of a 27-party mixed usage building with different load profiles, ranging from single
student apartments to office units with battery electric vehicles, in a German energy community. As a
result, we show that the proposed system design is economically viable for all involved stakeholders
over the simulation horizon from 2022 to 2036, with a payback time of <5 years, 4 years to distribute
50% of the PV tokens, and an overall self-consumption share of 69%.

Keywords: photovoltaic energy; energy communities; prosumer; energy tokens; smart contract;
blockchain

1. Introduction

The transition of the German energy sector towards small-scale, distributed electricity
resources has led to the strong growth of renewable energy prosumership over the past
decade [1,2]. According to [1], a large proportion of the more than 1.6 million installed PV
systems is made up of systems with less than 10 kilowatts of peak (kWp) installed gener-
ation. The potential for further development is even greater, since more than 3.8 million
apartments within residential buildings are suitable for equipment with building-integrated
PV systems [3]. Despite their importance and future potential, the expansion of PV systems
within renewable energy communities (RECs) is currently proceeding at a slow pace [4]. In
addition to the legal framework, this is mainly due to the difficulty of individual residents
to acquire shares of PV systems without major organizational or technical effort, and to
differentiate the distribution of the generated electricity on a verifiable basis [2]. So, instead
of buying individual PV shares, consumers have been sharing PV systems in RECs via
so-called "third party ownership” (TPO) models [5]. This can be designed as a “lease”
or a “power-purchase agreement” (PPA) [5]. A lease involves the consumer paying the
owner of the PV system a fixed monthly amount, regardless of the PV system’s energy
production. In a PPA, the consumer pays the owner a predefined fixed price per unit of
energy produced [6]. In both cases, however, ownership of the PV system does not transfer
to the consumer. Consumers only receive rights of use. This only partially fulfills the goal of
an inclusive energy transition according to the UN Sustainable Development Goals [2], as
residents are given access to renewable energy, but are denied active participation through
the purchase of PV shares. To enable such participation, we developed a blockchain-based
system and simulated its technical and economic viability for all stakeholders, based on a
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mixed residential and commercial building within an REC in Germany. Through this, we
answer the following research questions:

RQ1: How can a technical solution for the simple, fast and verifiable acquisition
of shared PV systems within an energy community be designed?
RQ2: What are the financial benefits for the involved stakeholders (consumers,
energy providers, etc.)?

By enabling real small-scale prosumership, we create financial incentives for demand
side management, which we expect to have a positive impact on the overall electricity
system. First, this is done using a temporal match of renewable energy production and
consumption, which is also applicable to energy communities where production sites are
not in direct proximity to the consumption (such as citizen energy communities), and
second, it also involves a spatial match within RECs, where the matching also frees up
grid capacity.

To answer the research questions, we first conduct a literature review Section 2. In
it, we present the current state of RECs in Europe, and describe changes in the business
models of energy utilities and the role of blockchain technology in this context. In Section 3,
we provide the technical details of the aforementioned showcase building including the
energy consumption based on the user behavior of its future residents, PV energy pro-
duction, and energy management application. In Section 4, we design a system which
shows how consumers in such buildings become prosumers, by earning tokens through
self-consumption and redeeming them for PV shares. The model is evaluated from an
economical and technical perspective within Section 5. We end with a conclusion and an
outlook of future applications and extensions.

2. Literature Review
2.1. Energy Communities

Energy communities are on the rise globally, as they enable electricity consumers to
advance the decarbonization of the energy system, while benefiting economically [2,7]. In
contrast to microgrids, energy communities do not necessarily have to be physically linked,
i.e., via a grid infrastructure [8]. Thus, they can involve the collaboration of individual
consumers within residential buildings, as well as several neighborhoods, for the common
purpose of expanding renewable energy and increasing their own share of locally generated
renewable electricity. For example, [9] examine how the expansion of residential PV systems
affects electricity self-consumption rates. [1] extend this approach by combining a PV system
with a storage system, and calculating the achievable annual savings of residents in energy
communities. A similarly designed research issue is investigated by [8,10,11]. Approaches
to optimizing energy flows within energy communities are also being developed, studied,
and tested in scientific literature [12–15]. Legal frameworks as well as challenges are
explored by [9,16]. Indeed, the lack of sufficient legislation to ensure viability is one of the
reasons for the delayed further development of energy communities [17,18]. In addition
to these specific research questions, [7] provides a very comprehensive study of energy
communities. The study examines not only the social interaction of their members, but
also the technological feasibility of such communities, as well as social and technical
implications. In this context, [19] perform a techno-economic analysis focusing on the
Japanese energy system. An examination of whether RECs, as defined under the European
Union’s Renewable Energy Directive (RED II), can be a useful facilitator for future energy
systems is provided by [4]. According to Article 22 of RED II, an REC is a community in
which consumers can produce, consume, distribute, and trade renewable energy, and in
which every member must be able to access and acquire renewable assets co-ownership [4].
In addition to the REC defined in RED II, with the citizen energy community (CEC), the
directive on common rules for the internal electricity market [20] provides another construct
for energy communities. The main differences are that RECs include all forms of energy and
demand within a spatial proximity of the RE project, while CECs only consider electricity,
while having no spatial limitations. For this study, we focus on the REC, since it offers the
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most benefits for the electricity grid when applying a local energy management, however,
the structure can be applied on multiple forms of ECs. In a broader sense, our model can be
interesting for ECs in rural areas by enabling the members there to first obtain transparency
on generated and consumed energy quantities, to obtain ownership of small-scale energy
assets, and finally, to build up a local energy market [21].

The way in which renewable energy is generated and distributed within RECs, the
benefits for their members and legal challenges, as well as social implications, have already
been studied. What is missing, however, is an easily accessible way towards the co-
ownership of shared PV systems for consumers within an energy community, as the
evolvement of consumers to become prosumers is relevant for the success of a sustainable
energy system design [22–25].

2.2. Novel Energy Business Models and Co-Ownership of PV Assets

In the past, energy utilities made profit by primarily selling electricity and recovering
the cost of their investment from standard electricity-tariff consumers [26]. Since RECs are
on the rise and electricity self-consumption rates are increasing, less and less electricity
will be consumed via standard electricity contracts. Thus, energy utilities are rethinking
their business models towards becoming electricity service providers [27]. In this context,
the installation of PV systems and the marketing of the electricity generated via TPO is
becoming increasingly important [28], both in the commercial and residential sectors. In
the commercial sector, for example for industrial customers, there are currently two options:
direct ownership (DO) of a PV system or TPO. In the first case, companies purchasing PV
systems for industrial buildings, for instance, may receive government subsidies and feed-
in tariffs [28]. However, the initial investment and the cost of maintenance and repair can
be substantial. This financial risk is considerably reduced by TPO for corporate customers,
who either pay a monthly amount and are allowed to use the PV systems (“lease” model,
see Section 1), or pay a fixed price per energy generated (PPA model, see Section 1) [5,28].
In a commercial context, the number of PPA-based PV systems is growing steadily [6]; PPA
approaches are also beginning to appear in the private sector as part of the installation of PV
systems in RECs [5]. However, the creation and execution of PPAs and lease contracts for PV
systems are complex and do not meet the requirements of RECs from two perspectives: (1) a
transfer of ownership of the PV system between system owner and resident does not take
place. While the consumer can increase the share of renewable generated energy, becoming
a prosumer is not feasible. (2) Within an REC, changes of residents/consumers within a
residential building occur frequently. An administratively and technologically easy and
quick transfer of electricity usage rights from PPAs is not possible. To address this problem,
the concept of “co-ownership” has evolved [4]. According to [4], “consumer co-ownership”
within RECs is understood as “participation schemes that (..) confer ownership rights in
[RE] projects (..) to consumers (..) in a local or regional area”. An important criterion of
the RED II of the European Clean Energy Package is that individual shareholders may not
own more than 33% of the PV system in co-ownership within RECs [4]. One possibility is
for members of an energy community to join together at the outset and jointly purchase
plant shares in PV plants [29]. However, this is a one-time transfer of ownership that is
detached from the future electricity consumption of the members. A possibility for the
gradual tokenized transfer of the ownership of PV shares based on electricity consumption
is currently lacking, as the technological and administrative implementation of such a
stepwise sale and co-ownership is cumbersome [4].

Following the call of [7] for ways of how Energy Communities “consider the procurement
of (..) energy infrastructure”, we developed a system for the small-scale, fast and easy purchase
of PV assets for residents within energy communities, based on blockchain technology.

2.3. Blockchain in Energy Communities and Use of Tokens

Storing data from distributed PV assets in blockchain networks, which are also orga-
nized in a distributed manner, seems to be an obvious approach, and is one of the reasons
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for the already numerous pilot applications of the use of blockchain technology in the
energy industry [30,31]. According to [30], the applications to date can be divided into
eight areas, with “decentralized energy trading” making up the largest in terms of the
number of applications. For example, [32] are investigating the design of a “local electricity
market” built on a peer-to-peer trading mechanism. In the context of an energy community,
such a mechanism was studied in [33]. The topic of data security was investigated in [34],
resulting in the development of a trading mechanism optimized for security. The use of
so-called smart contracts and tokens plays a role in almost all peer-to-peer use cases. A
smart contract is a computer program or a transaction protocol which is intended to auto-
matically execute, control or document legally relevant events and actions according to the
terms of a contract or an agreement. According to [35], smart contracts are: (a) programs,
but not contracts in the legal sense (b) tamper-proof after deployment (c) deterministic.
In Germany, smart contracts are considered to follow the expression of a human will that
has been anticipated by their programming. Therefore, it is accepted that legally binding
agreements can be concluded as smart contracts by automated devices [36–38]. As there is
currently no standardized definition of tokens [39], we use the term "token" as a representa-
tion of electricity usage and asset ownership rights within an energy community [39,40].
Table 1 provides information about the general properties of tokens.

Table 1. Classification of blockchain token.

Description Native Token Application Token

Token transmission linear or circular linear or circular
Available Quantity unlimited or limited limited

Fungibility fungible fungible or non-fungible
Duration of Validity unrestricted restricted

Transferability transferable transferable or non-transferable

A distinction can be made between native tokens and application tokens [30]. A
native token (e.g., Bitcoin or Ether) is a platform’s own currency, and serves its network
as an economic incentive to achieve a higher common goal and to sanction manipulation
attempts economically [39,41]. Application tokens represent ownership or access rights to
digital and physical assets [42]. Within an energy community, native tokens may represent
electricity usage rights, while application tokens represent PV asset ownership rights.

The offer of a token can be designed in limited or unlimited quantities, so that the
stability of the token value can be regulated. The token transmission can be categorized as
linear or circular. A token with a linear transmission will expire after a single use. A token
with a circular transmission can be used as often as desired, and expires only when the
asset that it represents no longer exists. Furthermore, the validity of a token can be limited
in time. To reduce the complexity of creating application tokens within the developer
community, numerous de facto token standards (such as ERC 20 and ERC 777) have been
created in recent years.

The existing literature focuses on the use of tokens as specific features of blockchain-
based energy markets, such as crypto-currencies [43] or data protection measures [44].
The implementation scope hereby ranges from small power markets in private blockchain
applications [45] to markets for anonymous emissions trading between independent actors
in public blockchains (peer-to-peer trading) [46]. Regardless of the scope and size of
the projects, tokens are predominantly used in the form of native tokens (e.g., one kWh
corresponds to one token), especially in the peer-to-peer sharing context. The use of utility
tokens to represent the ownership rights of PV systems and the exchange of native into
utility tokens, however, has not yet been sufficiently addressed.

2.4. Research Contribution

Summing up the literature, it can be stated that RECs are a key feature to fulfill the
energy targets set by the EU [4]. However, a large-scale application of RECs is still missing.
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On the energy utility side, we expect a shift from static energy suppliers to energy service
providers. Finally, smart contracts and tokens provide powerful tools within the blockchain
toolbox for a variety of energy applications. The most common use case so far is the trade
of kWh within a peer-to-peer network, while asset ownership approaches are sparse.

In this work, we design and implement a blockchain-based PV asset ownership system
allowing consumers to quickly, easily, and securely obtain PV shares within a potential REC
in Germany. Since the German use case is one of the most restricted use cases, the concept is
also applicable to a variety of energy community constellations. In the presented approach,
the utility becomes a key player that, instead of rejecting the idea of RECs, actively pushes
the idea of self-consuming producers. To realize the idea, we define energy tokens that are
distributed based on transparent and trustful smart contracts, where instead of enabling a
peer-to-peer trading mechanism, an ownership sharing mechanism is applied.

3. Materials and Methods
3.1. Selected Renewable Energy Community

The real-life REC chosen for this study consists of a mixed commercial and residential
building, currently located within the so-called “Pfaff” district. It is located in the center of
the German city of Kaiserslautern, which has introduced a “Solar Satzung” that requires
building owners to dedicate a defined fraction of their rooves to solar systems [47]. This dis-
trict is being redeveloped into a climate-neutral residential, commercial and technology area
within the scope of a national “Lighthouse” research project named “EnStadt:Pfaff” [48].
As a “real laboratory”, the project shall create efficient and innovative infrastructures for
electricity, heating, cooling, e-mobility and data, as well as rehabilitating existing buildings
with innovative technologies. One of these former office buildings is our choice for the
present case study.

The building is the property of one single owner, who plans to split it into 27 units,
16 residential and 11 for offices, as shown in Table 2. The 16 residential units are hetero-
geneous in their room count, composition, and presumably user behavior. Because of the
“real laboratory” character, we assume that all future residents will join the REC. Within
the REC, it is the role of the electricity provider to sell shares of the building-integrated PV
to the consuming residents, and organize the feed-in of PV surplus, as well as necessary
electricity from the grid. Therefore, three roles are present in the community: (1) the
building owner, (2) the consumers within the building, (3) the electricity provider. Even
though all roles are part of the community, we further employ the term “community mem-
bers” (or just “members”) to exclusively refer to the use of a case-specific user group of
residential consumers.

3.2. Case Study Characteristics

This section provides the main case study characteristics with enough information to
have an overview about the electrical and economical assumption, while a comprehensive
explanation is provided in Appendix A.

The data set of the building consists of generation profiles for five different PV plants,
with a combined nominal power of 40 kW, as well as consumption profiles for each
residential and commercial unit in one minute resolution over a period of one year. To
analyze the influence of demand-side management, seven battery electric vehicles (BEV)
with private charging infrastructure are distributed over the different residents. The annual
ratio between total PV production and overall consumption is 40%, while the maximum
flexible energy of the electric vehicles makes up 8% of total energy consumption. Those
two numbers provide the boundaries in which an incentivized energy management system
(EMS) can operate. The simulation setup is shown in Table 2.
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Table 2. Simulation setup.

Team Apartment/Commercial Unit Battery Electric Vehicle (BEV)

Type * Occupancy Annual Nominal Battery Annual
Demand Power Size Demand

[-] [-] [kWh] [kW] [kWh] [kWh]

1 Student 1 550 - - -
2 Student 1 838 22 85 2397
3 Student 1 1095 - - -
4 Apprentice 1 958 - - -
5 Apprentice 1 1422 11 51 1354
6 Single parent 2 1665 - - -
7 Retired 2 1749 3.7 6.8 479
8 Retired 2 1576 - - -
9 Part time worker 2 2233 - - -
10 Full time worker 2 1592 11 51 882
11 Full time worker 2 1717 - -
12 Family 4 3764 22 22.95 1409
13 Family 4 3523 - -
14 Family 4 3150 22 13.6 1663
15 Family 4 3400 - -
16 Family 4 3646 22 15.5 1472
17–27 Offices - 2183 ... 5234 - - -
Overall Building & BEVs - 113,531 113.8 245.85 9656
Utility PV - 46,112 ** 40 ** - -

* Main occupant type is also main user of the BEV. ** Annual PV production provided together with the PV plant
nominal power.

To study the different aspects of the energy usage patterns of residents and office
workers, the 27 units within the building are represented by 27 individual teams. Each team
represents one member of the energy community, and can deploy one to three computing
units respectively for the building unit, an electric vehicle, and a PV plant. These computing
units measure the electricity consumption which feeds a billing and token system, as
described in Section 4.3.

The BEV usage profile is generated using a simulation tool described in [49]. On the
aggregated apartment level, the electricity usage profiles for the various user groups are
created using a stochastic, bottom-up simulation, presented and validated in [50]. The
eleven trade, commercial, and service units were simulated using another stochastic bottom-
up simulator presented in [51]. Electricity generation is obtained using a PV model based
on [52,53]. With respect to size, azimuth, and the inclination of the PV plants previously
described, we created one time series for building-integrated PV production. Further
information on the simulation modules is provided in [54].

Prior to economical analyses, we applied an agent-based EMS, with the aim of maxi-
mizing PV self-consumption by the controlled charging of the BEVs, incentivized by the
Prosumer Asset Ownership system (PAOS) described in Section 4. Each of the agents
participates in a two-level optimization, optimizing first at the team level, and then at the
community level. The functionality of this decentralized control system is described in [55].
The simulation results without EMS are further referred to as “baseline scenario”, and the
active EMS forms the “controlled scenario”.

An overview of the economic assumptions is shown in Table 3. All time series of the
economic simulation have a 15 min resolution over one full year. For the simulation horizon
of 15 years, we used the same annual time series for loads and production repetitively,
year after year. Having the same load and consumption pattern, each year simplifies
comparison, and funnels attention to the developed PAOS.
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Table 3. Economic assumptions.

Parameter Value Source *

Utility costs. . .

for PV installation 1075 €/kWp average balance of system costs [56]
page 11

for PV O&M 860 €/a = 21.5 €/(kW * a) * 40 kW [56] page 13
gifting PV energy 7.735 ct/kWh 6.5 ct EEG levy + 19% vat

selling PV energy 11.25 ct/kWh 6.5 ct EEG levy + 19% vat on end user
el. price

buying from EPEX 3.05 ct/kWh Day ahead average 2020 [57]

selling grid energy 23.43 ct/kWh Considering taxes, surcharges, and
EPEX **

Utility profit from. . .

feed in tariff 6.88 ct/kWh = (0.0703 €/kW * 10 kW + 0.0683 €/kW
* 30 kW)/40 kW [Bundesnetzagentur]

selling PV energy 18.49 ct/kWh = 29.74 ct/kWh − 11.25 ct/kWh
End user. . .
electricity price 29.74 ct/kWh Local utility base tariff
monthly fee 11.72 €/month Local utility base tariff

* All values based on November 2021 data access. ** In detail: EPEX day ahead of price average (3.05 ct), grid
usage fee (4.4 ct), concession fee (1.59 ct), EEG surcharge (6.5 ct), KWK surcharge (0.254 ct), §19 StromNEV-Umlage
(0.432 ct), offshore grid surcharge (0.395 ct), surcharge for disconnectable loads (0.009 ct), electricity surcharge
(2.05 ct), and VAT (19%).

3.3. Definition of Key Performance Indicators

To analyze the benefit of the case study, key performance indicators (KPIs) are defined
as follows. For the utility, which in our case is the investor, the return on investment (ROI)
is of high importance, while for community members, the electricity bill reduction, together
with the acquisition of PV plant shares, is prioritized. Utility and community members
both benefit from high PV self-consumption and PV self-sufficiency shares, since they
increase the economical (and ecological) impact of the PV plant. The higher the share of self-
consumption, the less energy is fed into the distribution grid for a minimum remuneration.
The higher the self-sufficiency, the less energy needs to be bought on external markets,
saving grid usage costs and additional surcharges. In this context, self-consumption is
defined as per Equation (1), as a function of a photovoltaic power pv and consumption c.

sc(pv, c) = min(pv, c) (1)

Self-consumption shares for the aggregated community teams SCSM
T for all timesteps

t within a simulation span T (lower timestamp tl to upper timestamp tu) and all members
m in the team compilation M (Team 1 to 27) are given by Equation (2).

SCSM
T =

∑m∈M ∑tu
t=tl

sc(pvm
t , cm

t )

∑m∈M ∑tu
t=tl

pvm
t

(2)

When only considering the grid connection point of the building, no individual mem-
bers are used in the equation; instead, the overall PV power pvt and overall consumption
ct are used.

SCST =
∑tu

t=tl
sc(pvt, ct)

∑tu
t=tl

pvt
(3)

Self-sufficiency share SSS is calculated analogously for the aggregated community
share (4) and the overall building share (5), by dividing self-consumption by the consump-
tion, instead of production.
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SSSM
T =

∑m∈M ∑tu
t=tl

sc(pvm
t , cm

t )

∑m∈M ∑tu
t=tl

cm
t

(4)

SSST =
∑tu

t=tl
sc(pvt, ct)

∑tu
t=tl

cm
t

(5)

4. Prosumer Asset Ownership System (PAOS)

The goal of the PAOS is to accelerate the development of RECs, while benefiting all
involved stakeholders. It is designed to facilitate the acquisition of PV asset shares by
energy community members. We start with an overview of the involved stakeholders by
assessing their roles and motivations to be part of the REC. We then explain the chosen
overall layer structure and token transmission process of the PAOS before we end this
section with an elaboration of the individual layer components and token design.

4.1. Stakeholder

The developed PAOS addresses the needs of all involved stakeholders (as shown in
Table 4). The community members would benefit from PV electricity being less expensive
than grid electricity, and the ability to acquire PV shares [58]. The energy utility would
secure customer relationships over electricity sales volumes, enabling new business models
in line with the electrification of other sectors, such as mobility and heating, thus evolving
from an electricity provider to a service provider [27].

Table 4. Key motivators of the involved community parties.

Building (Co-)Owner Utility Company Com. Members

R
ol

e

Allows the installation of
building integrated
PV systems

Finances, builds, owns and
operates the PV plants and
the REC

Incorporate the REC by being
customers of the utility

M
ot

iv
at

io
n

&
Be

ne
fit

• Fulfills legal requirements
to dedicate a fraction of the
roof to solar systems

• Becomes a REC
service provider • Become prosumers

• Improves rating of the
buildings energy
performance certificate

• Incites prosumers to
activate flexibility
when needed

• Comprehend the
fluctuation of renewables
and adjust their behavior

• No capital needed • Improves image • Save costs
• Apartments become
more attractive

• Encourages customers for
long term cooperation

• Consume local
and renewable

• Participates in the
energy transition

• Scales up its RE
production capacity

• Participate in the
energy transition

The primary focus of the energy utility within the PAOS is to bind consumers over
an extended period of time, in order to supply the necessary grid electricity and secure
operating contracts commissioned by the building owners. The role of the building owner
changes from an investor in building-integrated PV to an enabler, by allowing the energy
utility to install (and finance) building-integrated PV. Such simplification would shift the
investment risk from the building owner to the energy utility, which has the ability to
estimate site-specific PV energy production, self-consumption and self-production shares,
and therefore, the resulting economic feasibility of the investment. To secure the ROI made
by the energy utility and to create the necessary motivator for consumers to adapt their
behavior, we propose the PAOS as follows.
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4.2. Layer Structure and Token Transmission

The PAOS is structured in two layers as shown in Figure 1: the “Energy Billing Layer”
and the “PV Asset Share Layer”. The first contains the independently acting energy agents
and a billing smart contract, while in the second, two smart contracts enable community
members to become prosumers.

Figure 1. PAOS Software Layers. Orange and green colors represent the device stock, PV shares, asset
tokens, and el. bills of two exemplary members. Step 1: El. consumption is sent to billing contract.
Step 2: Information on grid and PV el. shares is sent to the GET contract. Step 3: GET are sent to the
member wallets. Step 4: GET are redeemed on the market place contract in exchange for PV asset
tokens. 5: Bills are calculated and sent to the members.

Starting from the “Energy Billing Layer”, each agent is connected to the smart meter of
each community member within the building, and communicates its electricity consump-
tion or generation values to a “Billing Contract”. It is exemplary that four agents, with their
respective smart meters within the building described in Section 3.1 (green and orange
resident households, grid and PV panel), are shown in Figure 1 (step 1).

The billing contract calculates individual consumption values, detailing the exact
amount of PV (black arrow) and grid electricity (blue arrow), and transfers those values
to the “Green Energy Token Contract”, which is contained in the “PV-Asset Share Layer”
(Figure 1, step 2).

Based on these two values, the amount of green energy token (GET) is determined for
each community member and transferred to their respective blockchain accounts (Figure 1,
step 3).

The collected GET can subsequently be redeemed for shares in the building PV system
by using the “Market Place Contract” (step 4 in Figure 1). This contract ensures the transfer
of PV shares from the energy utility to the other members of the REC, thus allowing them
to become prosumers.

All three developed smart contracts are written in Soliditity, and can be deployed on
the Ethereum Virtual Machine, and related software platforms.
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4.3. Layer Components and Token Design
4.3.1. Billing Contract

The billing contract hosts an algorithm which, every 15 minutes, first calculates the
“real-time” self-consumption share of each member. To do so, the billing contract receives
all data of the REC members. These are the consumption values of each smart meter,
consisting of all controllable (e.g., BEVs) and non-controllable loads (e.g., apartments),
together with the production values of the PV plants. Additionally, the grid connection
point could be included, but for the present study, it was calculated. The billing contract
is visualized in Figure 2. A smart meter message package consists of a variable length of
pairs. Each pair includes a unique team ID and an energy value (e.g., in Figure 2 step 1,
the apartment smart meter of the orange team sent a value pair with the ID: “T1” and the
value “−4”). A counter within the billing contract checks if all registered smart meters sent
a message. Upon validation, the self-consumption and the excess consumption/production
of each member is determined (e.g., for Team 1 in Step 2, the self-consumed PV energy is 2
the excess value -2, where a negative value indicates an excess consumption). Initially, the
self-consumption of households is zero, since the PV system is exclusively owned by its
sole investor, the energy utility.

Figure 2. Schematic overview of the billing smart contract. Negative values represent consumption,
positive production. Smart meter team data aggregation in dotted red box includes: Step 1: transfer
of SM measurements. Step 2: Team level aggregation (e.g., T1: −4 + 2 = −2). Utility PV distribution
in dotted blue box includes: Step 3 and 4: First iteration (T1: 2 < 3.5− > 2 PV, 0 G, remaining: 5 PV).
Step 5 and 6: Second iteration (T2: 6 > 5− > 5 PV, 1 G). (T:Team, U: Utility, PV: PV energy consumed,
G: Grid energy consumed).

When, during a 15-min period, a household consumes less electricity than it is entitled
to, the electricity surplus is transferred to the energy utility (financially, not as a physical
electricity flow). Entitlement is determined on behalf of the PV ownership shares.

The determined electricity surplus is then distributed equally among all households,
until either their individual electricity consumption is saturated, or there is no more surplus
(blue box in Figure 2). This has been implemented as a loop that starts with the team
with the lowest residual consumption, and checks whether the current share (remaining
PV energy of the utility divided by the number of remaining teams in the loop that have
a consumption surplus) is greater than the current consumption surplus (e.g., in Step 3,
the excess consumption of 2 is lower than 3.5, which is calculated by dividing the seven
utility PV units equally between two teams). In this case, the consumption surplus is
settled using 100% utility PV energy (Step 4), and the next team in the line is calculated
(Step 5 and 6). This process repeats until the current share is greater or equal to the current
consumption surplus. All remaining teams obtain the current share, and the iteration is
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finished. Remaining consumption surplus is matched by the community PV surplus or
the grid.

For the bill calculation, self-consumption is priced as EUR 0, while all other energy
costs a fixed amount, as previously defined by the utility (CT 29.74 in the case study
according to Table 3). The amount of utility PV consumed and all remaining energy
consumed for each community member are transferred to the Green Energy Token Contract.

4.3.2. Green Energy Token

On the basis of the values received from the billing contract, the GET transfer trans-
action is created and then signed with the private keys of the blockchain account of the
energy utility. To ensure that the GET can only be published by the energy utility in the
blockchain network, the energy utility was set as a smart contract owner and the token
transfer function was restricted, in that it can only be executed by that owner account. The
tokens are eventually transferred from the GET smart contract to the community member
blockchain account. In the selected case study for each GET, 1 kWh of utility PV or 10 kWh
of grid consumption is needed.

Since those tokens are sent from the GET smart contract, its balance must be sufficiently
loaded with GETs. The process of "topping up” the token balance of the smart contract is
currently being done manually by transferring them from the blockchain account of the
energy utility to the GET smart contract account. The return of tokens from the blockchain
account of the community members to the smart contract account in the event of termination
of participation in the PAOS is also carried out manually. A termination can be carried out
by the community member at any time.

4.3.3. Marketplace Contract

Once the tokens are within the community member account, it is free to redeem them
by using the Marketplace Contract. By sending GETs to this contract, they are converted
into “PV Asset Tokens” at a ratio of 500 to 1. For 500 GETs, the prosumer receives one share
of the building PV system, which corresponds to 0.1 kWp of the installed capacity.

Due to this mechanism, the share of installed PV capacity that is owned by the utility
company slowly decreases, while the household shares are increasing. The residents of the
households are becoming prosumers, owning their small-scale energy production site. They
become virtually entitled to self-consumption. In reality, the households are still legally
buying each kWh that they consume. In order to reproduce the benefit of the PAOS into the
reality, households pay 0 ct per kWh for their virtual self-consumption. The visualization
of their personal status is done through the Pfaff Energy Community App (see Figure 3). A
more detailed explanation of the app is presented in Appendix B).

4.3.4. Token Design of GET and Marketplace Contract

The GET contract is implemented as a native token (see Table 5 below). It serves as
an incentive to use “green” instead of “grey” electricity. The token is designed in such a
way that it is exchangeable for PV asset tokens, is available in unlimited quantities, and is
transferable and fungible.

The marketplace contract is implemented as an application token. It represents PV
asset shares, which in turn, grant community members a certain amount of electricity
from the PV asset. The tokens are fungible, so that even fractions of a PV asset can be
purchased. They expire as soon as the PV asset is taken out of operation. The expiration
date is therefore written in the asset token specification file. Furthermore, in that file, the
quantity of issuable tokens is defined to be linked to the quantity of available PV panels.

4.4. Shifts in Community Structure

As the community composition will vary over time with people being replaced by new
residents, the asset token owner structure also changes. The concept behind a renewable
energy community requires a regional aspect, meaning that tokens acquired within the
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PAOS stay within the community, and shall not be bound to a person moving out. Therefore,
when people move from the specific location, asset tokens fall back to the utility.

Figure 3. Prosumer status in the Pfaff Energy Community App.

Table 5. Classification of green energy and PV asset token.

Description Green Energy Token PV Asset Token

Type of use Native Token—reward Application Token—
for desired behavior represents PV plant shares

Token Transmission linear circular
Available Quantity unlimited limited
Fungibility fungible fungible
Duration of Validity unrestricted restricted to PV plant lifetime
Transferability transferable non-transferable

4.5. Additional Use Cases for GET

While there is only a limited amount of PV asset tokens, GET are unlimited. Therefore,
further use cases for GET are required to provide a useful token within the EC, when
all PV assets are owned by the community. This is closely related to the previously
stated assumption that energy utilities within the EC context will become energy service
providers instead of simple energy sources (Section 2.2). In the specific case of the project
EnStadt:Pfaff, community members are imagined to be able to exchange GET for car
sharing usage provided by the utility, and to get a discount on energy-saving smart home
devices. Additionally, a community platform was developed where GET is imagined to be
a tradeable currency within the community. For example, GETs could be exchanged for
credits on electricity accounts or used to pay for other energy-related services. Such an
approach could ensure that the energy utilities can provide numerous value-added services
based on the collection of the GET.

5. Results and Discussion

The presented PAOS was tested in a techno-economical simulation, as described in
Section 3.2, with and without active EMS. This section starts with the key performance
indicators of the simulated scenarios, which are listed in Table 6. It is followed by a deeper
analysis of one specific community member (Section 5.1), an analysis of the economical
viability for the utility (Section 5.2), and a broader economical and technical overview of
the community (Section 5.3).
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Table 6. Key performance indicators of the simulation results.

ROI Community
el. Self-consumption share (SCS)

Utility bill reduction Building ∑ individual shares
Scenario [month] 2036 All years 2021 2036

controlled 57 24% 69% 5% 54%
baseline 51 23% 61% 5% 52%

Time [month] to reach Self-sufficiency share (SSS)
community PV share of Building ∑ individual shares

50% 100% All years 2021 2036

controlled 48 153 38% 3% 30%
baseline 66 167 33% 3% 29%

5.1. Selected Member Perspective

The selected community member we choose to focus on is the family listed as Team 14
in Table 2. In Figure 4, the energy, token and cash flows are shown for one exemplary
day. The upper part of the figure shows the token rewards (green bars) and the bill (black
bars), which are both resulting from the energy flows represented in the bottom part. The
energy flows include PV production, shown as positive values differentiated by its specific
use/destination, and loads, shown as negative values differentiated by their source. The
residual load is defined as ∑ PV + ∑ load (with load ≤ 0), and is visualized by the dashed
blue line. When the residual load is positive, the team has a production surplus, and the
“real time” bill and the token reward are zero. During a consumption surplus, the energy
is first provided by excess community PV (light blue area at 16:00–16:30), for which no
tokens are earned, but the end user electricity price is applied (see Table 3), then provided
by utility PV (red area), where the same price is applied, and the consumption of PV energy
is rewarded by a token and last provided by external utility energy from the grid (purple
area), for which, again, the uniform price is used, but a 10 times smaller token reward
is gained. It can be seen that shifting energy consumption into times of high production
(10:00) benefits the team, independent of whether the team PV or the utility PV is used. In
the first case, no costs appear on the bill of the team, whereas in the second case, a high
token reward is achieved, which can later be traded for additional PV plant shares.

Figure 4. Exemplary stacked energy flows for Tteam 14 on a summer’s day, where 50% of the PV
shares are owned by the community. Positive values represent PV energy, and negative value loads.
In the upper part, the corresponding token rewards and bills are shown. * Load covered by utility
grid includes externally produced energy which is taken from the public grid, ** Residual = ∑ PV +
∑ load (with load < 0). (All data based on 15-min resolution).
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5.2. Utility Perspective

This section focuses on the utility company which finances and operates the building-
integrated PV systems. Following the condition set in Section 4.1, operation is done without
pursuing financial profit upon self-consumption by the members. The simulation results
show that, despite offering ownership shares over time until the utility company owns
no more building-integrated PV, the PAOS is economically viable for utility companies,
and provides community members with the necessary PV plant shares to operate self-
consumption.

Figure 5a shows the annual net cash flow and the annual cumulative cash flow. At
the beginning, an initial investment of EUR 43,000 is required for the PV installation (see
Table 3) to integrate PV onto the building. The highest revenue is achieved in the first
year, with EUR 11,658 decreasing year after year to reach EUR 5737, when all its PV shares
are transferred to the members. With this gradually decreasing but always positive cash
flow, the ROI time of the PV plant for the controlled scenario is 4 years and 9 months
(considering a best-case scenario with an interest rate of 0). After 10 years’ operation, the
overall earnings come to EUR 36,809.

In the baseline scenario (with no active EMS), ROI is achieved 6 months faster. This is
due to the fact that the utility owns the PV shares longer, since the community members
take more time to earn those. After having transferred all its PV shares to the community,
the revenue of the utility company would, compared to the controlled scenario, rise by
14% to EUR 6517, since the members’ self-consumption shares decrease, which results in
a higher amount of electricity being provided by the utility. Nevertheless, because active
energy management is one key to an overall cost-optimized integration of renewable energy
sources [59], and the revenue difference by the utility results in additional incentives for
the community, we further focus on the analysis of the controlled scenario.

In any case, a positive cash flow of EUR 5700 provides a reasonable safety margin for
the utility, in case the community realizes an even higher self-consumption share due to
different energy usage patterns, or an increasing BEV penetration.

(a) Annual utility cash flow and accumulation (b) PV share (the 27 teams are shaded, 15min resolution)

Figure 5. Cash flow and ROI time for the utility and PV share development for utility and community.
Dashed lines represent the baseline scenarios; solid lines the managed scenarios.

5.3. Community Perspective

Seven different REC members were selected to be representative of different typical
consumer behavior. Three of those (Teams 2, 10 and 14) own and manage a BEV, and four
(Teams 1, 11, 13 and 27) have no BEV flexibility. For comparison, teams 1 and 2 are students,
10 and 11 are full-time workers, 13 and 14 represent families, and 27 is a small office. The
annual bills at the end of the first year, after 5 years and after 14 years, are shown in Table 7.
The overall column shows values for the REC as a whole.
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Table 7. Development of the tenant annual bills.

Team Mode 1 2 * 10 * 11 13 14 * 27 Overall

2022 controlled 304 1098 870 650 1165 1533 1023 28,101
baseline 304 1092 868 650 1165 1537 1023 28,092

2027 controlled 279 976 754 573 1017 1293 790 23,061
baseline 279 1029 791 573 1014 1356 785 23,320

2036+** controlled 271 921 710 555 966 1205 726 21,441
baseline 267 1009 768 555 953 1289 705 21,678

2036−2022
2022

controlled –11% –16% –18% –15% –17% –21% –29% –24%
baseline –12% –8% –12% –15% –18% –16% –31% –23%

* These teams own a flexible electric vehicle ** All shares owned by community members result in a constant bill
for all following years

Overall, the annual electricity bill decreased by 24% in 14 years within the REC.
Controlled and baseline scenarios lead to a similar cost reduction. The difference of 1%
is due to a different share composition within the community, and an overall increased
self-consumption when actively managing BEVs. After five years, a cost reduction of 18%
(17% baseline) could be achieved. Using an EMS to time the shift-charging processes of the
BEVs results in higher individual self-consumption shares for the teams with flexible loads,
even though the effect is subject to usage patterns. Team 2 (Student with BEV), which
uses an EMS, doubles the bill reduction (8% baseline vs. 16% controlled). The highest bill
reduction is achieved by Team 27, which is an office. This is mainly due to the fact that
working hours match the PV curve, even without any flexible loads.

Focusing on the correlated PV plant share distribution, Figure 5b shows the utility
PV plant shares for the controlled (solid green line) and the baseline (dashed green line)
scenario, together with the accumulation of the different tenant shares for the controlled
scenario (solid orange line marks the aggregated shares, and different shades mark in-
dividual shares). With active management, after 4 years, 50% of the PV plant is owned
by the members. Without active management, the timespan extends by 38% to 5.5 years.
The PV share transfer rate continuously decreases over time, since less utility PV energy
is consumed, and therefore, fewer tokens are earned by members. After 12 years and
9 months, the PV plant is completely owned by the members.

The PV share distribution within the REC is mainly influenced by an individual
consumption pattern. Members with a consumption pattern, in line with the availability of
PV electricity, will end up owning more shares of the PV plant. As a result, the individual
self-consumptions of members differ in absolute values, but only small deviations are noted
when divided by the individual kWh produced (see Equation (2)).

The mean day plots in Figure 6 show the aggregated self-consumption and self-
sufficiency shares (for a definition, please see Section 3.3) of the REC. In Figure 6a, a mean
summer day after one and a half years indicates that, while the self-consumption share is
mostly 100% whenever there is PV available, self-sufficiency is hardly provided. When
the PV plant is completely owned by the community (2036 and all following years), this
imbalance changes. For summer 2036, Figure 6c, self-consumption and self-sufficiency
are quite balanced. Looking at the mean winter day for 2036 Figure 6b, the imbalance is
higher again.

In the year 2036, the aggregated individual self-consumption, as defined by Equation (2),
is 52%, and the annual overall self-consumption of the building, as defined by Equation (3),
is 61%. The difference of 9% profits the utility, since any PV energy that is not self-consumed
by the producing member, but is consumed within the community, offers the highest profit
margin for the utility. This effect is responsible for the utility to further have a positive cash
flow, even after it does not own any shares of the plant anymore. From both the overall
and the aggregated individual perspectives, the self-consumption share indicates that the
plant size could be further increased. Nevertheless, since teams with a high match between
consumption and production will own the larger part of the PV plant, the gap between
building optimum and aggregated team optimum is small compared to a simple equal
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division of the PV plant. During the average summer at noon, Figure 6c self-sufficiency
does not reach a maximum of 1, even while on a building level there is an overproduction
of PV energy. This means that there is still potential for further individual optimization
or collective energy storage. Another improvement could be made by enabling financial
incentives for the community to share PV production among members, such as those
described by [60].

(a) Mean summer day 2023 (b) Mean winter day 2036 (c) Mean summer day 2036

Figure 6. Self-consumption share and self-sufficiency share for the overall community, including
internally exchanged energy by different teams. Shaded areas represent the 25% and 75% quantile.

6. Conclusions

We developed and simulated a blockchain-based prosumer asset ownership system
(PAOS), which enables consumers to become prosumers within a renewable energy com-
munity (REC).

Answering RQ1 (see Section 1), the developed PAOS incentivizes and incites PV self-
consumption, by rewarding it with tokens that can be exchanged for PV plant shares. The
system is hosted by an energy utility that invests in a PV installation on a tenant building,
operates the plant, and is also responsible for covering the remaining electricity demand
from the grid. Community members within such a building participate in an REC, and gain
tokens by consuming electricity at times of on-site generation. Gradually, the community
members take over the PV plant and increase their individual self-consumption. The PAOS
thus fulfills the requirements of a simple, fast, and verifiable transfer of ownership of
PV shares.

To evaluate our concept, we conducted a simulation reflecting a building in a German
city. The building is currently under renovation within the research project EnStadt:Pfaff.
Therefore, we generated 27 different electric consumption profiles corresponding to the
individual community members, and a generation profile of building-integrated PV. Ad-
ditionally, two sets of electric vehicles profiles were simulated, to show the impact of an
energy management system (EMS) on techno-economical performance.

Evaluation shows that the PAOS is economically viable for all stakeholders answering
RQ2 (see Section 1). Community members can lower their electricity bill by 24%, while
electricity providers have a gradually decreasing but always positive annual cash flow,
achieving a return on investment after 5 years and 3 months. After 4 years, 50% of the PV
plant is owned by the community. Community members with active EMS were able to
accelerate the asset share generation, which doubled their individual bill reduction.

Our results are case-specific, and RECs with different electricity generation and con-
sumption patterns, electricity prices, investment costs, stakeholder structures, ownership
structures, or regulatory framework may need to adapt the proposed PAOS. In particular,
when extending the PV plant (increasing the production/consumption ratio from 40%),
the PAOS will become more attractive, since self-consumption in an uncontrolled system
decreases the lower production/consumption ratio. The benefit of the PAOS also increases
with a larger share of flexible loads. Since the German environment is very restrictive in
the matter of RECs, together with the solar radiation in the showcase scenario being above
German average but still low on an international scale, the message, that the presented
system provides an economical solution for all involved parties, is valid for a broader
international application.
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7. Outlook

In the future, the described case of using a PAOS within a single residential building
could be extended to several buildings within an REC. Here, an energy service provider
would operate a renewable energy community, with multiple consumers in one specific area,
and finance several PV assets within the community. Gradually, the community members
take over the PV plants and become prosumers, even though they do not necessarily own
the houses. In this way, a community of prosumers can grow without the need for an initial
investment. Additionally, the PAOS could be applied on other devices within the energy
system. A promising example would be to distribute shares of a stationary battery storage
between the members. We see further research potential in two areas. First, especially
in the design of legal framework conditions (e.g., in the German use case an adjustment
of the EEG to reward community self-consumption), and, as well, in concepts on how
the received green energy tokens can be exchanged, not only for PV assets, but also for
other services (e.g., car sharing or smart home systems); second, in the investigation of the
acceptance and participation interest in the developed PAOS on the part of the community
members. In this regard, building on [61,62], further factors such as salary, leisure time
activities, political attitudes, etc. of the 27 residential and business unit residents could
be investigated.
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Appendix A. Detailed Simulation Setup

In Section 3, a compact description of the simulation setup is provided, while this
section provides a more in-depth view of the simulation data.

Appendix A.1. Location

The showcase building is part of the EnStadt:Pfaff project in Kaiserslautern (Germany),
located on the former industrial site of the sewing machine producer Pfaff (49.436356,
7.752961). The outline of the neighborhood is shown in Figure A1.

Appendix A.2. Electric Vehicle Time Series Generation and Control Schemes

The BEV profiles were simulated using the synPRO-emobility tool described in [49].
The specific car usage and driving patterns were generated in accordance with the specific
user types, as assigned in Table 2. The following seven electric vehicles were simulated,
with all relevant specific attributes, such as battery capacity, available charging powers, and
average consumption per distance: Team 2: Tesla, Team 5: Opel Ampera, Team 7: Renault

https://oc.ise.fraunhofer.de/index.php/s/gyFpgCqtMzUAqFH
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Zoe, Team 10: Opel Ampera, Team 12: Kia Soul, Team 14: Mitsubishi i-Miev, Team 16:
Nissan Leaf. The different charging profiles were first generated using a simple “charge
upon arrival until the battery is full” heuristic. This scenario was named “baseline”. In
a second round, an agent-based EMS was applied, wherein each agent rescheduled the
individual teams’ electric vehicle. First, with the aim of utilizing the current individual
excess PV production (PV share production subtracted by the uncontrollable apartment
loads), and secondly, based on the additional available PV energy from other teams and
the utility. This scenario was named “controlled”.

Figure A1. EnStadt:Pfaff project site. [From: https://pfaff-reallabor.de/quartier/umsetzung/ Origi-
nal source: ASTOC/Mess] (accessed on 16 February 2022).

Appendix A.3. PV Time Series Generation

The sizing of the PV system was based on the available roof and facade area for the
selected showcase building, and the financial incentive for feed-in enumeration, to limit the
size to below 40kWp. Four roof-mounted and one facade PV system with different azimuth
and declination angles were simulated. The different available roof areas, together with the
number of installed PV panels, are listed in Table A1. The PV module parameters are listed
in Table A2. The geometry is shown in Figure A2. For each geometry, a time series was
simulated using simulation models based on [52,53]. The input weather data test reference
years (TRY) for Kaiserslautern were obtained from the Deutscher–Wetterdienst (DWD) [63].
The corresponding radiation data are shown in Figure A3. All PV modules were positioned
so that shading losses were close to zero, since no higher buildings are present in the direct
proximity. For the facade-installed PV modules, an albedo of the surrounding area of 0.2
(grass + asphalt) was considered.

Appendix A.4. Business, Commerce and Service Units

For simplicity reasons, the business, commerce and service units were aggregated into
one row for teams 17–27 within Table 2. However, individual units were simulated as listed
in Table A3. The areas within the different units were chosen based on the areas available
in the construction blueprints, resulting in the following distribution: 27% group offices,
22% staircases, 16% large office area, 7% meeting rooms, 6% lobby, 6% canteen, 5% event
rooms, 5% toilets, 3% corridors, 2% kitchens, 1% storage space.

https://pfaff-reallabor.de/quartier/umsetzung/
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(a) Top view (b) Side view

Figure A2. PV system geometry of the 5 different areas available for PV, rooftop area shaded in green
and blue, facade area shaded in orange.

Figure A3. Solar radiation on horizontal surface for the used test reference year. Annual global
radiation sums up to 1120 kWh/m2.

Table A1. PV system distribution on the different areas.

Roof/Facade R1.1 R1.2 R2.1 R2.2 Facade Total

Max. available area [m2] 182 182 275 275 112 1026
Number of modules 20 10 36 15 24 105

Capacity installed [kWp] 7.6 3.8 13.7 5.7 9.1 39.9

Table A2. PV module parameters.

Attribute Length Width Power Efficiency Type

Value 1763 mm 1040 mm 380 W 21% * Monocrystalline SI
* +power dependant losses of inverters and cables (approx. 95%).
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Table A3. Detailed extension of Table 2.

Team 17 18 19 20 21 22

Type Office Office Office Office Office Office
Annual demand [kWh] 2620 3554 4086 3051 2183 3297

Team 23 24 25 26 27 17–27

Type Office Office Coffee shop Office Office Sum
Annual demand [kWh] 4797 3242 5234 4994 2273 39,331

Appendix B. Details on the User Interface

This part provides additional information on the Pfaff Energy Community App, as
mentioned in Section 4.3, and briefly shown in Figure 3. In Figure A4a,b, the individual
statistics are shown, while Figure A4c,d show the community perspective. The gray boxes
(Figure A4a,c) show the user profile and current ranking within the energy community
(based on individual PV utilization). In the orange boxes, the annual individual consump-
tion (Figure A4a) and community consumption (Figure A4c) are presented, together with
the amount of PV and external grid energy consumed (and the current trend). In the green
boxes, a bar plot shows the energy utilization for the past 12 month. The blue boxes list for
the individual prosumer (Figure A4b) and the community (Figure A4d) from top to bottom:

• Self-sufficiency (for the individual view: together with the next target to reach a higher
trank)

• Earned tokens as a share of the maximum possible tokens (when consumption and
production match perfectly)

• CO2 saved compared to the maximum savings possible when consuming 100% of the
local solar production. (Note that this is a theoretical value calculated for the area of
the community. In fact it does not matter where the PV energy is consumed as long as
PV energy replaces a fossil energy source, so feeding into the grid is still saving CO2)

• Cost savings on the electricity bill

Finally, some functions to exchange green energy tokens for PV asset tokens or to
redeem tokens for other bonuses are provided in the yellow box (Figure A4b,d).

(a) Individual statistics (top) (b) Individual statistics (bottom) (c) Community statistics (top) (d) Community statistics (bottom)

Figure A4. Detailed view of the Pfaff Energy Community App.
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52. Huld, T.; Gottschalg, R.; Beyer, H.G.; Topič, M. Mapping the performance of PV modules, effects of module type and data
averaging. Sol. Energy 2010. [CrossRef]

53. King, D.L.; Kratochvil, J.a.; Boyson, W.E. Photovoltaic array performance model. Online 2004, 8, 1–19. [CrossRef]
54. Surmann, A.; Chantrel, S.P.M.; Fischer, D.; Kohrs, R.; Wittwer, C. Stochastic Bottom-Up Framework for Load and Flexibility for Agent

Based Controls of Energy Communities; CIRED 2019: Liège, Belgium, 2019. [CrossRef]
55. Surmann, A.; Walia, R.; Kohrs, R. Agent-based bidirectional charging algorithms for battery electric vehicles in renewable energy

communities. Energy Inform. 2020, 3, 19. [CrossRef]
56. Kost, C.; Shammugam, S.; Fluri, V.; Peper, D.; Davoodi Memar, A.; Schlegel, T. Stromgestehungskosten Erneuerbare Energien.

2021. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2021_ISE_
Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf (accessed on 16 February 2022).

57. Fraunhofer Institute for Solar Energy Systems ISE. Energy Charts: Annual Electricity Spot Market Prices in Germany. 2020.
Available online: https://energy-charts.info (accessed on 16 February 2022).

58. Renewable Power Generation Costs in 2019. 2020. Available online: https://www.irena.org/publications/2020/Jun/Renewable-
Power-Costs-in-2019 (accessed on 16 February 2022).

59. Sterchele, P.; Brandes, J.; Heilig, J.; Wrede, D.; Kost, C.; Schlegl, T.; Bett, A.; Henning, H.M. Paths to a Climate-Neutral Energy System.
The German Energy Transition in Its Social Context; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2020.

60. Chantrel, S.P.M.; Surmann, A.; Kohrs, R.; Utz, M.; Albrecht, S. Agenten- und Blockchainbasiertes Energiemanagementsystem für
Mieterstromobjekte. In Internationaler ETG-Kongress 2019, 08.–09.05.2019 in Esslingen am Neckar; VDE VERLAG GMBH: Esslingen
am Neckar, Germany, 2019; pp. 465–470.

http://dx.doi.org/10.1016/j.apenergy.2018.08.004
http://dx.doi.org/10.1016/j.rser.2020.110452
http://dx.doi.org/10.1016/j.scs.2021.103419
http://dx.doi.org/10.1016/j.infoecopol.2020.100881
http://dx.doi.org/10.1016/j.resconrec.2020.105064
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1016/j.dcan.2019.01.007
http://dx.doi.org/10.1109/EEM.2014.6861213
http://dx.doi.org/10.1109/TDSC.2016.2616861
http://dx.doi.org/10.1016/j.apenergy.2017.03.039
http://dx.doi.org/10.1002/sys.21291
https://www.kaiserslautern.de/buerger_rathaus_politik/medienportal/pressemitteilungen/057464/index.html.de
https://pfaff-reallabor.de/
http://dx.doi.org/10.1016/j.apenergy.2018.10.010
http://dx.doi.org/10.1016/j.enbuild.2015.01.058
http://dx.doi.org/10.2314/KXP:1737777061
http://dx.doi.org/10.1016/j.solener.2009.12.002
https://doi.org/http://dx.doi.org/10.2172/919131
https://doi.org/http://dx.doi.org/10.34890/864
http://dx.doi.org/10.1186/s42162-020-00122-8
https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2021_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf
https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2021_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf
https://energy-charts.info
https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019
https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019


Electricity 2022, 3 130

61. Koirala, B.P.; van Oost, E.; van der Windt, H. Community energy storage: A responsible innovation towards a sustainable energy
system? Appl. Energy 2018, 231, 570–585. [CrossRef]

62. Aikaterini, B.; Jeremy, P.; Sylvester, A. Enabling collective awareness of energy use via a social serious game. EAI Endorsed Trans.
Serious Games 2017, 4. [CrossRef]

63. Bundesamt für Bauwesen und Raumordnung, Deutscher Wetterdienst. Ortsgenaue Testreferenzjahre von Deutschland für
Mittlere, Extreme und Zukünftige Witterungsverhältnisse. 2017. Available online: https://www.bbsr.bund.de/BBSR/DE/
forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/01-start.html;jsessionid=5D991
2D230EB887C1F831671303A8A0F.live21304?nn=2544408&pos=2 (accessed on 16 February 2022).

http://dx.doi.org/10.1016/j.apenergy.2018.09.163
http://dx.doi.org/10.4108/eai.27-12-2017.153510
https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/01-start.html;jsessionid=5D9912D230EB887C1F831671303A8A0F.live21304?nn=2544408&pos=2
https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/01-start.html;jsessionid=5D9912D230EB887C1F831671303A8A0F.live21304?nn=2544408&pos=2
https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/01-start.html;jsessionid=5D9912D230EB887C1F831671303A8A0F.live21304?nn=2544408&pos=2

	Introduction
	Literature Review
	Energy Communities
	Novel Energy Business Models and Co-Ownership of PV Assets
	Blockchain in Energy Communities and Use of Tokens
	Research Contribution

	Materials and Methods
	Selected Renewable Energy Community
	Case Study Characteristics
	Definition of Key Performance Indicators

	Prosumer Asset Ownership System (PAOS)
	Stakeholder
	Layer Structure and Token Transmission
	Layer Components and Token Design
	Billing Contract
	Green Energy Token
	Marketplace Contract
	Token Design of GET and Marketplace Contract

	Shifts in Community Structure
	Additional Use Cases for GET

	Results and Discussion
	Selected Member Perspective
	Utility Perspective
	Community Perspective

	Conclusions
	Outlook
	Detailed Simulation Setup
	Location
	Electric Vehicle Time Series Generation and Control Schemes
	PV Time Series Generation
	Business, Commerce and Service Units

	Details on the User Interface
	References

