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Abstract: Accurate electricity demand forecasting is vital to the development and evolution of
smart grids as well as the reinforcement of demand side management strategies in the energy sector.
Since this forecasting task requires the efficient processing of load profiles extracted from smart
meters for large sets of clients, the challenges of high dimensionality often lead to the adoption of
cluster-based aggregation strategies, resulting in scalable estimation models that operate on aggregate
times series formed by client groups that share similar load characteristics. However, it is evident
that the clustered time series exhibit different patterns that may not be processed efficiently by a
single estimator or a fixed hybrid structure. Therefore, ensemble learning methods could provide
an additional layer of model fusion, enabling the resulting estimator to adapt to the input series
and yield better performance. In this work, we propose an adaptive ensemble member selection
approach for stacking and voting regressors in the cluster-based aggregate forecasting framework
that focuses on the examination of forecasting performance on peak and non-peak observations for
the development of structurally flexible estimators for each cluster. The resulting ensemble models
yield better overall performance when compared to the standalone estimators and our experiments
indicate that member selection strategies focusing on the influence of non-peak performance lead to
more performant ensemble models in this framework.

Keywords: load forecasting; energy; machine learning; artificial intelligence; clustering; ensemble
learning; regression; supervised learning; meta-modeling

1. Introduction

Smart grid technologies and applications are at the forefront of modern electricity
network research and development due to the increasing number of challenges that hinder
the performance of the traditional power grid as well as the accrescent need to transition
towards a digital ecosystem where the bidirectional flow of information between the
electricity provider and consumers is simplified. Since the penetration of renewable energy
sources introduces additional volatility that could compromise the reliability of the grid
and the increasing electricity demand from a growing number of consumers could lead
to the occurrence of irregular events such as blackouts, the centralized structure of the
traditional grid has limited control over these phenomena [1,2]. Therefore, the development
of smart grids that rely on the wide deployment of smart meters is necessary for the efficient,
adaptive and autonomous management of consumer loads in a distributed framework.
Consequently, a large volume of high dimensional sensor data are extracted from smart
meters and the efficient processing as well as prediction of electricity load are crucial tasks
that reinforce advanced transmission, distribution, monitoring and billing strategies [3].
Load forecasting tasks could be developed for different time horizons depending on
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the focus of each smart grid application. In the context of real-time load monitoring,
demand response and smart energy pricing, accurate short-term predictions and point
forecasts could support energy management systems as well as decision-making models
in shaping load allocation and pricing strategies for consumer groups that share similar
load profile characteristics. Additionally, high-resolution predictions of total electricity
demand could assist in the stability of the grid through the real-time detection of irregular
events, enabling online scheduling at a higher level while preserving consumer privacy.
It is equally important to note that high-frequency demand forecasts could result in the
optimization of energy resources through the examination of total load fluctuations at a
higher granularity as well as the optimization of bidding strategies when utility companies
purchase electricity from energy markets, enabling short-term flexibility and more efficient
market balancing [4].

Artificial intelligence and machine learning contributed significantly towards the
accurate estimation of total demand through the supervised learning task of regression
analysis. Firstly, simple linear models such as ordinary least squares linear regression [5],
Ridge [6], Lasso [7], Stochastic Gradient Descent (SGD) [8] and Huber [9] estimators search
for the line of best fit that optimally describes the relationship between the dependent
and independent variables. Linear models are commonly used in large-scale forecasting
tasks due to their low computational cost and interpretability. However, these models do
not interpret complex nonlinear relationships and the impact of outliers within the data
could hinder the forecasting accuracy. Therefore, more robust methods were developed
such as the generalized median Theil-Sen estimator [10], gradient boosting models based
on decision trees such as XGBoost [11], the least angle regressor (LARS) [12] and efficient
unsupervised learning models were adapted such as k-nearest neighbor (KNN) [13] and
support vector machine models for regression (SVR) [14] in order to achieve higher accuracy
in high dimensional spaces and ensure resilience against multivariate outliers. Secondly,
neural network models such as the multilayer perceptron [15–17] and long short-term
memory network [18] could be applied to this forecasting task in order to capture nonlinear
relationships as well as time dependencies adaptively, operating as function approximators
in a black-box approach. It is important to mention that while the standalone performance
of these models could result in predictions with low error metrics, combinatorial and
hybrid approaches such as ensemble learning could be considered for further performance
improvement when a suitable combination of models is discovered through arbitrary
selection, informed selection based on expert knowledge and experimentation or criteria ex-
amination. Time series estimator output could be combined in a meta-modeling framework
for stacked generalization, averaged in a voting framework or used to improve another set
of estimators sequentially through boosting [19,20].

It is evident that since consumer load profiles are organized in high dimensional time
series, forecasting total electricity demand through the direct use of regression analysis
would be computationally expensive and the resulting estimators would exhibit dimin-
ishing accuracy as more load data from different types of consumers is collected. Conse-
quently, in order to provide solutions to the challenges of dimensionality and scalability,
load forecasting approaches in this sector utilize clustering and aggregation strategies as a
preprocessing step, altering the shape of the data before it is used for the training of estima-
tors. Cluster-based approaches mainly focus on the segmentation of the consumers into
groups based on similar characteristics or by utilizing heuristic algorithms. Predictions for
each cluster are extracted and summed to derive the total demand forecast. This approach
may become computationally expensive when the consumer base is large and the optimal
number of clusters remains small. However, clustering approaches are valuable to demand
forecasting since they preserve load patterns within each consumer group. Furthermore,
advances in distributed computing attempt to develop more efficient parallelizable models
to offset that computational cost [21]. Aggregation approaches attempt to develop a single
prediction model where the time series dataset is typically derived from the summation
of all consumer load profiles. This approach offers substantial benefits in terms of data
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compression at the cost of prediction accuracy since the impact of the patterns found in
individual consumer time series as well as the behaviors exhibited in different clusters
could be reduced greatly in the resulting time series [22]. Combining the clustering and
aggregation methods led to the development of the cluster-based aggregate framework
where the time series for each consumer group can be aggregated before the prediction
in order to derive the estimated partial sum of total demand. This approach attempts to
balance accuracy and computational cost and presents a scalable alternative that improves
the performance of estimators as the size of the customer base increases.

In the modern power grid, the evolution of the increasingly diverse customer base
coupled with the overall complexity of the data collection process often result in datasets
that include missing values, outliers and typically exhibit structural issues due to variations
in monitoring periods and differences in the quality of the available equipment. Therefore,
the performance of load estimators depends on the dataset structure as well as the ability
of data-driven models to adapt to the given input. Consequently, a static load estimation
model may not maintain optimal performance across multiple forecasting tasks since
some components may underperform due to the unique characteristics of the input. This
phenomenon could be easily observed in the processing of clustered time series for the
prediction of total electricity demand. The utilization of clustered time series results in
several structurally different datasets derived from different consumer groups. When the
datasets pass through a single type of estimator or a static combinatorial structure, divergent
performance metrics between partial demand predictions could be observed, resulting
in suboptimal overall performance when the values are aggregated for the estimation
of total demand. The potential failure to adapt to an individual dataset could be more
impactful in short-term and very short-term forecasting tasks since lagged features at
higher resolutions would require a higher volume of information in order to properly
capture meaningful temporal dependencies between samples. These load forecasting issues
could be connected to the challenges of data drift and concept drift in machine learning
modeling. The challenge of data drift indicates the deterioration of model performance
as the distribution of input data changes and the challenge of concept drift denotes the
difficulty of the model to adapt to the data as the mapping between the input and the
target variable changes [23,24]. These challenges could arise when load time series are
considered for the prediction of total demand since data distributions could vary between
different client types and the relationship between input and output could change as the
size of the customer base and the complexity of observed patterns increase. Furthermore,
the impact of those challenges could affect the performance of combinatorial approaches
such as ensemble learning significantly, since potential concept or data drift across multiple
datasets could result in inefficient estimator combinations that may yield suboptimal
performance when compared to standalone models due to underperforming components.
As a result, the focus should be shifted towards modular estimator structures that utilize
well-defined, criteria-based strategies in order to select estimation components that would
not underperform given a specific input, thereby reinforcing consistency. Moreover, the
implementation of estimator selection strategies would lead to less arbitrary and less
ambiguous combinatorial structures since estimator members would be directly connected
to the input data.

Several recent research projects presented interesting demand forecasting approaches
utilizing a plethora of regression estimators for centralized analysis as well as distributed
modeling in clustering and aggregation frameworks. Ceperic et al. [25] proposed a model
input selection strategy for SVR-based load forecasting, outperforming state of the art
short-term forecasting approaches in terms of accuracy. Wijaya et al. [26] examined the
performance of linear regression, multilayer perceptron and support vector regression on
several clustering strategies for short-term load forecasting, highlighting the dependence
of the cluster-based aggregate forecasting approach on the number of clusters as well as the
size of the customer base for optimal performance. Karthika et al. [27] proposed a hybrid
model based on the autoregressive moving average and support vector machine algorithms
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for hourly demand forecasting, showing reduced error metrics and increased convergence
speed through the efficient merging of those machine learning methods. Laurinec and
Lucká [28] studied the impact of unsupervised ensemble learning models on clustered
and aggregated load forecasting tasks and deduced that the adaptation of those methods
could lead to improved performance. Fu et al. [29] developed an adaptive cluster-based
method for residential load forecasting through the utilization of self-organizing fuzzy
neural networks, harnessing the unique characteristics of each cluster. Li et al. [30] utilized
subsampled SVR ensembles coupled with a swarm optimization strategy, resulting in a
deterministic and interpretable forecasting model that efficiently combines the output of
multiple predictors. Bian et al. [31] proposed a similarity-based approach and implemented
K-means clustering and fuzzy C-mean clustering for the derivation of features based
on locally similar consumer data for the training of a back-propagation neural network.
Sarajcev et al. [32] presented a stacking regressor that combined gradient boosting, support
vector machine and random forest learners for clustered total load forecasting, signifying
that the robust estimation of electricity consumption can be achieved when a suitable model
combination is discovered. Cini et al. [33] examined the performance of the cluster-based
aggregate framework on deep neural network architectures and highlighted the suitability
of this clustering approach for short-term load forecasting. Additionally, this project
raises awareness about the complex and challenging nature of implementations involving
multiple predictors in this framework for future research. Kontogiannis et al. [34] presented
a meta-modeling technique combining long short-term memory network ensembles and a
multilayer perceptron to forecast power consumption and examine the impact of causality
and similarity information extracted from client load profiles. This project presented a
novel strategy for the decomposition of load data into causal and similar components,
resulting in a combinatorial structure that outperformed the standalone load representation.
Stratigakos et al. [35] proposed a hybrid model combining time series decomposition
and artificial neural networks for efficient short-term net load forecasting. The approach
presented in this work reduced the error metrics of multi-layer perceptron and long-short
term memory network and highlighted the impact of trend, seasonal and noise time
series components. Zafeiropoulou et al. [36] proposed a pilot project that addressed the
challenges of congestion and balancing management in energy systems and provided
robust solutions that could improve resource flexibility and power system stability. Phyo
et al. [37] developed a voting regression model including decision tree, gradient boosting
and nearest neighbor estimators, resulting in improved performance when compared
to the baseline standalone predictors. This symmetrical forecasting approach achieved
the expected performance boost that is often observed in optimal ensemble models and
when compared to the autoregressive moving average model, the proposed estimator
yielded lower error metrics due to the highly performant components included in this
ensemble structure.

In this study, we focused on the high-frequency point prediction of total electricity
demand on the cluster-based aggregate framework for the development and evaluation
of adaptive and structurally flexible stacking and voting ensemble models. This very
short-term forecasting approach addresses the challenges in combinatorial forecasting
models through the processing of diverse clustered time series and the introduction of a
well-defined member selection strategy. The ensemble estimator considers several peak
detection perspectives for member selection. The membership of base learners is deter-
mined based on the performance examination from a set of 11 candidate estimators on
subsets of training observations from the actual as well as the predicted clustered time
series, detected as peaks and non-peaks. The proposed ensemble regressors were evaluated
in a case study utilizing smart meter data from a dataset of 370 Portuguese electricity
consumers for a period of 4 years. The goal of this project is to examine the impact of this
criteria-influenced member selection strategy on the cluster-based aggregate framework
and propose alternative adaptive ensemble models that combine knowledge extracted from
different estimators based on core time series characteristics. Since recent research efforts
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have deployed training performance indicators and feature-based criteria for member se-
lection on centralized ensemble models, our contribution aims to expand on this approach
through the implementation of flexible ensemble estimators constructed from different
base learners on each consumer cluster. Additionally, several adaptive hybrid modeling
and meta-modeling approaches on clustered and aggregated frameworks typically include
the most prominent estimators for model fusion based on expert knowledge or arbitrary
selection. Consequently, the effect of criteria-based ensemble structures for cluster-based
aggregate load forecasting is not thoroughly explored. Our study aims to provide meaning-
ful insights while addressing this research gap. Case studies and model comparisons in the
literature show that a static ensemble structure or a standalone estimator may not always
yield the same level of performance stability on all types of consumer load time series.
This observation holds true in the examination of clustered time series since each cluster
needs to be processed differently in order to capture the patterns of a specific client group
efficiently. Therefore, our project considers the fundamental characteristic of peak and
non-peak detection in time series and attempts to adjust the ensemble structure for each
cluster locally, reinforcing the idea that more modular and dynamic estimation strategies
should be developed for those distributed frameworks. The deployment of our proposed
approach in real-world applications could support advanced energy management systems
and contribute towards the development of more robust bidding strategies through the
extraction of more precise total demand analytics in short time intervals.

In Section 2, we present the main methodologies involved in the implementation of
our proposed models, including the ensemble learning structure for stacking and voting
regression, an overview of the cluster-based aggregate framework for total demand fore-
casting, an inspection of well-known clustering evaluation methodologies and the structure
of our proposed ensemble regressors. Additionally, information about the dataset and
the definitions of error metrics are provided in this section for completeness. In Section 3,
we analyze the results of our experiments and evaluate the performance of our models,
comparing them to baseline standalone estimators. In Section 4, we discuss the impact of
the experimental results and outline the advantages and the potential challenges of the
proposed models. Furthermore, we provide insights on future research directions that
could expand on our forecasting approach and possibly enhance model performance for
similar applications in the energy sector. Finally, in Section 5, we present the conclusions
derived from the experiments and the analysis of the results.

2. Materials and Methods
2.1. Stacking and Voting Ensemble Regression

Time series forecasting estimators attempt to capture linear and non-linear patterns
from the training data in order to fit a model that is able to generalize well when new
observations are tested. However, due to the coexistence of those two types of patterns, a
single estimator may not be able to achieve both good interpretation and optimal forecasting
performance. The suboptimal accuracy could be attributed to high bias, resulting in limited
approximation flexibility, or high variance, leading to larger fluctuations in the estimated
time series when value changes occur in the training data. Therefore, models with a high
bias could be prone to underfitting, resulting in poor performance on the training and
test set. Additionally, models with high variance are prone to overfitting, resulting in
optimal performance on the training set and suboptimal accuracy on the test set. Ensemble
learning methods acknowledge those potential model instabilities and contribute to the
implementation of more robust estimators that are more resilient to noise through the
combination of multiple regression models [38]. In this project, we develop the forecasting
model structure and investigate the impact of stacking and voting ensembles on clustered
aggregate load time series.

The stacking ensemble regression approach combines multiple estimators in order to
construct a meta-model that consists of multiple layers responsible for processing estimated
time series as features for the training of a new estimator. For this study, we consider the
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simple two-layer stacking ensemble structure for time series regression tasks. Layer 0 trains
several diverse estimators commonly known as base learners and produces a feature set of
estimated time series, denoting different representations of the target variable, forming the
stacked dataset. Layer 1 usually consists of a simple model such as linear regression that is
trained on the stacked dataset in order to derive the final predictions. Figure 1 presents this
two-layer structure for N base learners. Multilayer stacking extends this structure through
the derivation of multiple meta-model time series that are utilized for the training of a
subsequent estimator, following the process of the first two layers [39,40].
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Voting ensemble models attempt to correct highly divergent estimated time series
values through the averaging of multiple estimators. Firstly, a set of similarly performant
models is selected for the prediction of the target variable. The members of voting regression
typically share similar error metrics during training in order to preserve stable performance
after the averaging process. Secondly, a weighting strategy is applied in order to denote
the significance of each estimated time series in the final prediction. Uniform weights are
commonly considered as the default averaging strategy but more sophisticated strategies
based on the process of member selection could be explored for performance evaluation.
Figure 2 presents the structure of a voting regression model of N members [41,42].
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Stacking and voting ensembles could result in improved performance when compared
to standalone estimators since the simultaneous reduction in bias and variance could derive
estimated values that are closer to the actual values of the target variable. Additionally,
the combination of ensemble members that are able to independently interpret linear or
non-linear patterns leads to more robust estimators that could process more complex high-
dimensional time series data efficiently. However, the performance benefits stemming from
the implementation of an ensemble model are not guaranteed and it is commonly observed
that the wrong or arbitrary selection of ensemble members leads to suboptimal performance.
Therefore, studies that propose ensemble models based on arbitrary membership usually
undergo extensive experimentation in order to verify the results. This work proposes a
deterministic approach for member selection based on fundamental time series components,
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aiming to outperform the standalone base estimators on both ensemble approaches for
clustered aggregate forecasting.

2.2. Cluster-Based Aggregate Forecasting Framework

Smart meter data processing is a challenging task in the development of load forecast-
ing models since the dimensionality of the datasets and the plethora of different consumer
types increase model complexity, resulting in a suboptimal prediction accuracy and con-
vergence time for several centralized approaches relying on a single estimator structure.
Therefore, cluster-based approaches attempt to divide the consumer base into groups
based on distinct time series characteristics or geographical features in order to leverage
trends within similar sets of consumers and reduce the noise by processing consumers
with different load patterns separately. This work considers the cluster-based aggregate
forecasting framework outlined in [26,33] since this method attempts to balance the effects
of data compression from aggregation models and the fine-grained distributed prediction
of clustered time series, resulting in a scalable strategy that could lower the forecasting
error as the size of the consumer base increases. Firstly, load profile time series are clustered
into k groups based on similarity distance metrics. It is important to note that the number
of clusters affects the forecasting performance of the model since a suboptimal division
of consumers could result in noisy and unbalanced datasets that could overfit or underfit
the estimators. Therefore, cluster evaluation strategies such as the elbow method [43] and
silhouette analysis [44] are often applied in this step, in order to determine the optimal
value of k and ensure that the clusters are well-separated. Secondly, the load consumption
time series in each cluster are aggregated in a single time series, resulting in drastically
reduced dimensions and increased pattern regularity. The aggregated time series train k
estimators that output aggregate load predictions for each cluster. Lastly, the summation
of clustered predictions derives the total demand forecast and error metrics for model
evaluation are calculated based on this time series. Figure 3 presents the cluster-based
aggregate forecasting strategy.
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2.3. Clustering Evaluation Methods

Clustering approaches in load forecasting such as the cluster-based aggregate frame-
work utilize several evaluation methods in order to determine optimal data segmentation,
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resulting in groups of similar time series. The increased homogeneity of time series re-
inforces the presence of patterns in the aggregate data, reducing the noise that could be
observed when load profiles of consumers exhibiting drastically different behaviors would
be aggregated for the prediction of total demand. Additionally, energy applications based
on the processing of load features as well as projects that utilize anonymous consumer
data often face the challenge of separating the consumer set into distinct groups, since
this would help the predictive performance of forecasting models, leading to meaningful
deductions. Therefore, it is important to include some of the commonly used clustering
evaluation methods in this project such as the elbow method and the silhouette method in
order to properly divide the client base into clusters and potentially avoid irregularities in
performance that could result in unstable error metrics.

The elbow method is an iterative process used for the selection of the optimal number
of clusters through the search for the point where an increase in the number of clusters
would not yield substantial data modeling benefits. This point is considered a threshold
for clustering algorithms since the diminishing returns from the inclusion of additional
clusters may not improve model performance. The commonly used metric in the elbow
method is the sum of squared distances between the samples in each cluster and the cluster
center. The value of this metric is calculated as the number of clusters increases and it is
usually found that the sum of squared distances decreases in every iteration. The curve
formed by those values is examined for the selection of the point after which the metric
decreases slowly, exhibiting a linear pattern [45].

The silhouette method aims to quantify the cohesion as well as separation of samples
by measuring the similarity of data points within the same cluster and the degree of
dissociation of samples from other data points found in neighboring clusters. The silhouette
coefficient is the metric calculated for the selection of the optimal number of clusters. Given
the average distance of sample i to all other samples in the same cluster denoted as a(i)
and the average distance of sample i to all the points in the closest neighboring clusters,
denoted as b(i) the silhouette coefficient is computed with the following formula:

s(i) =
b(i)− a(i)

max(b(i), a(i))
(1)

The silhouette score derived from the averaging of the silhouette coefficient for each
data point is utilized for the iterative analysis of each number of clusters. The computation
and visualization of the silhouette score provide a robust cluster assessment, summarized
in values ranging from −1 to 1. Positive silhouette scores closer to 1 indicate sufficient
separation of samples into distinct and well-defined clusters. When the silhouette score is
close to 0, the examined samples are usually close to the decision boundary between two
neighboring clusters, denoting the ambiguity of the resulting data segmentation. Further-
more, negative silhouette scores closer to −1 often denote incorrect cluster assignment or
the presence of outliers. Consequently, the optimal number of clusters corresponds to the
number that resulted in the highest silhouette score [46]. However, it is worth noting that a
thorough examination of model performance should consider both evaluation metrics and
investigate the edge case of the minimum number of clusters when the silhouette score is
positive since execution time and parallelization availability could be important factors in
the deployment of forecasting applications.

2.4. Proposed Forecasting Model

This study examines a combinatorial forecasting approach utilizing the cluster-based
aggregate framework as the main structure for customer base segmentation and a model
selection method for the development of flexible ensemble estimators that are able to
efficiently derive total demand predictions. At the first step, the dataset containing client
load profiles is clustered using the K-means algorithm [47] based on the dynamic time
warping metric [48] in order to reinforce optimal time series similarity when client data are
collected from different start periods. A silhouette analysis and the inertia-based elbow
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method were applied in order to determine the optimal number of clusters. Following
the cluster-based aggregate framework, client time series within each cluster were aggre-
gated to form the input dataset for the ensemble model. At the second step, ensemble
membership is determined using peak and non-peak performance evaluation. A peak
detection algorithm [49] is applied to the training set in order to detect local maxima by the
comparison of neighboring values. A subdivision of the training set is used to train a set of
estimators and evaluate their predictive potency on peak and non-peak indices.

The evaluation of peaks and non-peaks is quantified based on an error metric following
the examination of three sets of indices denoting three different perspectives where peak
and non-peak values are observed. The first set examines the performance of peak and
non-peak indices as they were detected by the estimated time series for each candidate
ensemble member, the second set examines the performance of peak and non-peak indices
observed in the actual time series and the third set considers the performance of peaks and
non-peaks detected exclusively in the actual time series. These sets of indices were selected
based on the intuitive assumption that peaks and non-peaks should be detected from a
relatively large and well-defined set of observations in order to derive robust performance
metrics. Therefore, in the extreme case of poor time series estimation, the common index
set for the actual and estimated load could result in a small sample that would provide
insignificant insight towards the overall peak and non-peak performance of the candidate
ensemble members. Additionally, when this extreme scenario is considered, the candidate
estimator could be automatically eliminated since the potential inclusion of a prediction
model that yields exceedingly poor performance in the ensemble model does not benefit
the combinatorial approach. Similarly, uncertainty surrounds the consideration of peak
and non-peak values detected exclusively for each estimator since this set may not share a
strong connection to the actual time series and result in unreliable deductions. However, in
the edge case where the candidate estimators perform extremely well and there is a great
overlap of peak and non-peak positions between the actual and estimated time series due
to the optimal match of the data points, the evaluation of the remaining indices exclusively
detected in the actual time series is significant for the extraction of additional insights
that could support informed decisions for model selection since the examination of this
small region could be the deciding factor when multiple models are highly performant.
The estimator scoring the lowest error metric for each perspective set is added to a list.
Consequently, lists of peak and non-peak influenced estimators are formed, including the
most performant estimators for each case. Figure 4 presents the total observation space and
highlights the sets of indices selected for this strategy. Furthermore, Figure 5 presents the
derivation of the membership lists.

At the final step of this approach, ensemble regression structures adapted to each
cluster due to the membership selection strategy, derive the predicted cluster load. The
ensemble estimators could utilize the stacking or the voting paradigm in order to combine
the output of the selected ensemble members. When a stacking ensemble is utilized, the
lists derived from the member selection strategy could determine the base learners of the
first level. Therefore, three models featuring the most performant estimators from sets
of peaks, non-peaks and the joint set of indices can be evaluated. Figure 6 presents the
structure of the stacking ensemble when the information from the sets of indices is available.
Alternatively, the consideration of a voting ensemble could result in the development of
more models since the member selection strategy could affect the base predictors as well as
the weight strategy for the averaging of the estimated output. Consequently, six models
could be examined in this case, since each of the previously mentioned sets of indices could
follow a uniform or occurrence-based weight strategy. Figure 7 presents the structure of the
voting ensemble models. Lastly, Figure 8 presents the process pipeline of this combinatorial
forecasting approach.
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Figure 4. Set representation for the peak and non-peak model selection strategy based on training
performance. (a) Total index space of peak and non-peak observations. The blue circle in the
background denotes the total set of indices of peak and non-peak values for the actual load time
series. The red circle in the foreground denotes the total set of indices of peak and non-peak values
for the predicted load time series. (b) The highlighted red circle denotes the first evaluation set of
peaks and non-peaks detected in each estimated time series. (c) Denotes the second evaluation set of
peaks and non-peaks detected in the actual time series. (d) Evaluation set denoting the peaks and
non-peaks exclusively detected in the actual time series.

2.5. Case Study
2.5.1. Data Overview

The proposed model was evaluated on a publicly available dataset [50] containing load
measurements for 370 Portuguese clients extracted from smart meters in 15 min intervals
for 4 years from January 2011 to December 2014, including a total of 140,256 observations.
Since some clients were monitored after 2011, load measurements were considered as zeros.
The dataset did not contain any missing values and client measurements were converted
from kW to kWh for the purposes of this study. Additionally, the time labels follow the
Portuguese time zone and at the start of daylight saving in March values between 1:00 a.m.
and 2:00 a.m are zeros. At the end of daylight saving in October, values between 1:00 a.m.
and 2:00 a.m. aggregate the consumption of two hours. The load profiles included in this
dataset belong to different types of clients such as industrial and residential, exhibiting
different consumption patterns that could lead to the fine-grained classification of several
subcategories. Since the dataset focuses solely on load features, the anonymity of clients
is preserved. Consequently, the segmentation of the client base through clustering is
important to the efficiency of the aggregate forecasting model since the processing of clients
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exhibiting similar consumption patterns could reduce the potential noise and contribute
towards faster convergence during training.
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The inspection of total demand in Figure 9 as well as the yearly boxplot presented in
Figure 10 show that the aggregation of different consumer types coupled with the difference
in monitoring periods result in peaks and valleys that could be difficult to interpret in
short-term and very short-term prediction horizons. These effects become less impactful as
the number of actively monitored consumers remains the same and the forecasting horizon
is extended since seasonal patterns can be easily discovered. However, the requirement of
a static consumer set in the modern power grid would be unrealistic due to the continuous
expansion of the client base as well as the increased diversity in client behavior. Therefore,
the examination of very short-term forecasting tasks for the prediction of aggregate load
through frameworks that aim to address these challenges could lead to the implementation
of more robust design strategies.
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The examination of the histogram and the inspection of the density plot for the
aggregate load in Figure 11 indicate a bimodal distribution that could be interpreted as the
broader classification of clients into residential and industrial groups. Alternatively, this
distribution could denote the sinusoidal shape of observations as the number of actively
monitored clients becomes more stable. The presence of several peaks in the density plot
and the general imbalance of samples in the bins of the histogram could confirm that this is
a challenging task for some linear forecasting models that assume a Gaussian distribution.
The implementation of a clustering algorithm could lead to more easily interpretable data
distributions, resulting in the accurate prediction of partial aggregate load. However,
the selection of estimators for the prediction of the partial aggregate load should not be
arbitrary due to irregular data distributions that might persist after the clustering step.
Therefore, the adoption of membership strategies is important for the development of
combinatorial forecasting approaches; additionally, the utilization of fundamental methods
tied to the data distribution such as peak detection could be useful in the refinement of
error metrics.



Electricity 2022, 3 493

Electricity 2022, 3, FOR PEER REVIEW 14 
 

 

distribution could denote the sinusoidal shape of observations as the number of actively 
monitored clients becomes more stable. The presence of several peaks in the density plot 
and the general imbalance of samples in the bins of the histogram could confirm that this 
is a challenging task for some linear forecasting models that assume a Gaussian distribu-
tion. The implementation of a clustering algorithm could lead to more easily interpretable 
data distributions, resulting in the accurate prediction of partial aggregate load. However, 
the selection of estimators for the prediction of the partial aggregate load should not be 
arbitrary due to irregular data distributions that might persist after the clustering step. 
Therefore, the adoption of membership strategies is important for the development of 
combinatorial forecasting approaches; additionally, the utilization of fundamental meth-
ods tied to the data distribution such as peak detection could be useful in the refinement 
of error metrics. 

  
(a) (b) 

Figure 11. Non-temporal representation of total electricity demand samples. (a) Total electricity de-
mand histogram. (b) Density plot denoting bimodal distribution. 

Lastly, the observation of the first order lag plot denotes relatively high autocorrela-
tion due to the high concentration of samples on the diagonal. Figure 12 suggests a posi-
tive correlation between the time series 𝑦ሺ𝑡 + 1ሻ and the lag 𝑦ሺ𝑡ሻ due to the positive 
slope of the line formed in the graph. Therefore, autoregressive approaches could be suit-
able for the prediction of total electricity demand in a very short-term time horizon since 
most data points are densely concentrated in this linear shape. This could be useful infor-
mation in research projects that primarily include load features as proof of concept or due 
to data availability issues. 

2.5.2. Implementation and Experiments 
The forecasting problem examined in this study can be formulated as the point pre-

diction of total demand for the next 15 min interval based on 4 lagged observations for the 
previous hour in order to define a simple and interpretable supervised learning task. This 
task minimizes the impact of feature engineering and data preprocessing on the overall 
performance of estimators and could allow us to focus on the performance of the cluster-
based structure through the dedicated usage of load features as the membership of esti-
mators changes for each cluster. The training set contained 80% of observations and the 
test set 20%, following common practice for similar forecasting tasks. Since the model fo-
cuses on very short-term predictions, the execution time for clustering needs to be fast in 
order to reserve time for the tuning and recalibration of the ensemble predictors at later 
steps. Consequently, monthly down-sampled load profiles were considered for the as-
signment of clients into clusters. As a result, the clustering procedure could be executed 

Figure 11. Non-temporal representation of total electricity demand samples. (a) Total electricity
demand histogram. (b) Density plot denoting bimodal distribution.

Lastly, the observation of the first order lag plot denotes relatively high autocorrelation
due to the high concentration of samples on the diagonal. Figure 12 suggests a positive
correlation between the time series y(t + 1) and the lag y(t) due to the positive slope of the
line formed in the graph. Therefore, autoregressive approaches could be suitable for the
prediction of total electricity demand in a very short-term time horizon since most data
points are densely concentrated in this linear shape. This could be useful information in
research projects that primarily include load features as proof of concept or due to data
availability issues.
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2.5.2. Implementation and Experiments

The forecasting problem examined in this study can be formulated as the point pre-
diction of total demand for the next 15 min interval based on 4 lagged observations for
the previous hour in order to define a simple and interpretable supervised learning task.
This task minimizes the impact of feature engineering and data preprocessing on the
overall performance of estimators and could allow us to focus on the performance of the
cluster-based structure through the dedicated usage of load features as the membership
of estimators changes for each cluster. The training set contained 80% of observations
and the test set 20%, following common practice for similar forecasting tasks. Since the
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model focuses on very short-term predictions, the execution time for clustering needs to
be fast in order to reserve time for the tuning and recalibration of the ensemble predic-
tors at later steps. Consequently, monthly down-sampled load profiles were considered
for the assignment of clients into clusters. As a result, the clustering procedure could
be executed in seconds instead of several minutes when compared to weekly and daily
down-sampling. Furthermore, the utilization of K-means clustering based on dynamic
time warping was beneficial to the optimal alignment of the time series since some clients
were monitored after 2011 and prior data entries were zeros. Following this step, silhouette
and elbow methods were utilized for the selection of the optimal number of clusters. The
silhouette score is the main metric examined in the silhouette method and ranges from −1
to 1, denoting poor cluster assignment when the clustering method achieves a negative
silhouette score and satisfactory data separation when the value of that score is positive.
The silhouette analysis showed that the assignment of clients into clusters ranging from
2 to 10 resulted in acceptable data separation since the silhouette scores were above 0.6,
verifying the consensus of selecting an optimal number of clusters that falls within this
range and reaching a global maximum at k = 2. The elbow method based on the sum of
squared distances of the samples to their closest cluster center denotes that the selection of
a number of clusters higher than 7 for the assignment of clients would not yield significant
data modeling benefits since after that point, inertia decreases linearly at a slow rate. We
observed that clustering derived from other candidate elbow points such as k = 6 and
k = 8 did not yield a significant difference in terms of error metrics in this forecasting
task when compared to k = 7. However, the significantly lower silhouette score of k = 8
could indicate data separation issues, discouraging the selection of this value for the elbow
method and reinforcing the selection of k = 7 since this is a pivotal point after which a
significant decrease in the silhouette score occurs when this region of the inertia curve is
examined. Therefore, the performance of the ensemble learning models was examined
in the representative points of each method for 2 and 7 clusters, respectively. Figures 13
and 14 present the clustering evaluation of the silhouette and elbow methods.
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The next process of this forecasting model considers a set of 11 base regression estima-
tors as candidate members of the ensemble structure for each clustered aggregated load.
The estimators were tuned based on cross-validated random search [51] on the training
data, utilizing a 5-fold time series split that returns the first f − 1 folds as the training set
and the last fold f as the evaluation set, maintaining the temporal order of observations.
Consequently, the models were configured in a way that reflects the average performance
of the best selected hyperparameters. Table 1 presents the methods utilized for our ex-
periments as well as their respective parameters based on the implementations found on
scikit-learn and xgboost packages [52,53].

Table 1. Base estimators and hyperparameters.

Model Hyperparameters

XGBoost learning rate, maximum depth, minimum child weight,
number of estimators, columns sampled by tree

Linear Regression -
Linear SVR tolerance, regularization parameter C

SGD
learning rate, initial learning rate, alpha regularization
strength, maximum iterations, loss, tolerance, penalty
parameter for regularizer selection

Huber Regression maximum iterations, alpha regularization parameter, epsilon
outlier resilience, tolerance

LARS non-zero coefficients

Lasso maximum iterations, alpha regularization parameter,
tolerance

Ridge alpha regularization parameter
Theil-Sen Regression -

Bayesian Ridge lambda weight precision, alpha noise precision

K-Neighbors Regression leaf size, number of neighbors, power parameter of
Minkowski metric

The training set was segmented for the peak and non-peak detection and evaluation
following the previously mentioned time series split and mean absolute error was selected
as the error metric for the quantification of predictive potency since the dataset contains
zeros for the time periods where some clients were not monitored. After the examination of
three different perspectives corresponding to three different sets of indices as described in
the previous subsection, three lists of estimators were formed for each cluster. The first list



Electricity 2022, 3 496

contained the three most performant estimators on the sets of observations related to peak
indices, the second list included the most performant estimators on the sets of observations
associated with non-peak indices and the third list was the concatenated list of the previous
two after the removal of duplicate estimator entries. Three stacking ensemble models were
developed based on the estimators of each list with linear regression being the second level
estimator. Additionally, six voting regression models were developed, featuring uniform
and occurrence-based weighting strategies based on the concatenated membership list.
All models featuring the tuned ensemble members were trained on the full training set of
observations and evaluated on the holdout test set.

This project was developed in Python 3.8.8 using the packages pandas 1.2.3, numpy
1.21.5 and scipy 1.7.3 for data processing, tslearn 0.5.2 for clustering, scikit-learn 1.0.2 and
xgboost 1.3.3 for predictive modeling and matplotlib 3.5.1 for visualization. The model
implementation and the experiments were executed on a desktop computer with an AMD
Ryzen 1700X processor, 8 gigabytes of RAM, and a NVIDIA 1080Ti graphics processor.
Additionally, the code of this forecasting approach and case study is publicly available on
GitHub [54].

2.6. Performance Metrics

In this section, we define and outline the main performance metrics utilized for the
evaluation of all nine ensemble estimators in the cluster-based aggregate framework. Firstly,
mean absolute error (MAE) [55] is utilized for the peak and non-peak influenced member
selection as well as the final ensemble evaluation since it is a common and simple loss
function that measures the average error of continuous variables without considering error
direction. Given the total number of test observations n, the estimated values yi and the
actual values xi, the mean absolute error can be computed using the following formula:

MAE =
∑n

i=1|yi − xi|
n

(2)

Furthermore, the mean absolute percentage error (MAPE) [56] is included for the
generalized measurement of relative error since it is an interpretable scale-independent
metric. The usage of MAPE is restricted to the evaluation of the total demand for the final
ensemble models due to the existence of zeros in some of the clustered time series. Given
the same information for the calculation of MAE, MAPE can be defined as:

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − xi
xi

∣∣∣∣ (3)

Secondly, the mean squared error (MSE) [57] and root mean squared error (RMSE) [58]
are included as quadratic scale-dependent loss functions that could denote the impact of
large errors since errors are squared before they are averaged. Additionally, the simul-
taneous examination of MAE and RMSE could determine the variation of errors for the
ensemble models since a large difference between the values of those metrics could denote
great variance in the individual errors of the test sample, indicating the occurrence of large
errors. Given the same information used to calculate the previous metrics, MSE and RMSE
could be calculated using the following formulae:

MSE =
n

∑
i=1

(yi − xi)
2

n
(4)
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3. Results

In this section, we analyze the performance of the ensemble models by providing an
overview of the error metrics based on the data available in this case study. Since this
project focuses on the implementation of a deterministic membership selection technique on
stacking and voting ensembles, all nine ensemble estimators discussed in the experiments
presented earlier are compared to the standalone estimators in the cluster-based aggregate
framework in order to distinguish the most efficient ensemble structures and outline the
potential performance benefits of this approach. The main motivation for the development
and subsequent comparison of those models stems from the uncertainty that some values
could introduce during the training of estimators, resulting in regions where suboptimal
fitting could occur. Intuitively, unstable estimator performance could be observed in
regions where local maxima could be detected due to the sudden change in the value of
electricity consumption or due to the irregularity of the consumption pattern, resulting in
large errors. Therefore, the prioritization of points or regions where peaks are not observed
would be considered as a safer starting point for the fair performance comparison of base
learners and the examination of optimization benefits through the combination of multiple
estimated time series. Since the discovery of base learner combinations that reduce the
forecasting error in a given machine learning task is a challenging process and a given
ensemble structure does not guarantee improved performance when applied to different
datasets, adaptive ensembles could result in more robust estimation and the examination
of fundamental time series characteristics such as peak and non-peak points could lead to
flexible ensemble structures that yield performance benefits when diverse time series are
processed, such as the clustered load of different client types. The performance comparison
includes the computation of MAPE, MAE, MSE and RMSE for all models. The stacking
ensembles utilizing the list of best peak estimators, the list of best non-peak estimators and
the merged list containing a single instance of all members from both lists, are labeled as SRP,
SRNP and SRA, respectively. Similarly, the voting ensemble structures featuring a uniform
weight strategy are labeled as VRUP, VRUNP and VRUA. Lastly, the voting ensemble
models featuring an occurrence-based weight strategy derived from the frequencies of
estimators in the merged list before duplicate removal are labeled as VROWP, VROWNP
and VROWA, respectively.

Figure 15 presents the error metrics of the standalone models as well as the ensemble
structures on the optimal assignment of clients into two clusters based on the silhouette
analysis. The examination of MAPE and MSE shows that the ensemble methods follow-
ing this membership selection strategy yielded improved forecasting performance when
compared to the standalone estimators. Additionally, the simultaneous examination of
MAE and RMSE indicates that there is a small variation in the magnitude of the errors
in standalone models and each ensemble structure but the occurrence of large errors is
unlikely. The stacking and voting regressors utilizing the membership list derived from per-
formant non-peak estimators yielded the most distinct improvement and relatively smaller
benefits can be observed from the ensembles based on peak membership. Furthermore,
the implementation of a uniform and occurrence-based weight strategy resulted in similar
forecasting performances for voting ensembles that utilized the peak as well as the merged
membership lists. However, a more substantial difference in error metrics can be observed
in the comparison of the voting estimators utilizing the non-peak membership list, where
uniform weights resulted in lower metrics.

Figure 16 provides an overview of the error metrics derived from the inertia-based
elbow method for optimal clustering. Similar to the examination of the silhouette optimal
cluster selection, it is evident that the stacking and voting ensembles based on the non-
peak membership list yield improved performance in this forecasting task, resulting in
lower MAPE values. The values of MAE, MSE and RMSE for those models remain close
to the lowest value of the KNN regressor, denoting the overall stability of the ensemble
models. However, this observation does not hold true for all ensemble models since voting
ensembles following an occurrence-based weight strategy yielded MAE, MSE and RMSE
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values closer to the average standalone predictors while yielding a smaller improvement of
MAPE, denoting fewer substantial benefits derived from the model fusion in this case.
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Consequently, the inspection of both optimal clustering strategies shows that the
implementation of flexible ensemble models in the cluster-based framework could improve
the overall load forecasting performance when considering ensemble members that per-
formed well on the prediction of non-peak observations during training. This deduction
partly verifies the intuitive assumption that regions with sudden peaks in the clustered
data may introduce a level of uncertainty which could result in unstable estimator be-
havior, leading to the unfair performance evaluation of base learners for membership
selection. The uniformly weighted voting regressor based on non-peak influenced mem-
bership achieved, approximately, a 16.5% improvement over the average MAPE value of
standalone estimators while utilizing the silhouette analysis for optimal clustering. Sim-
ilarly, the stacking non-peak influenced regressor achieved a 17.2% improvement in the
experiment. Furthermore, the experiment utilizing the elbow method for the selection of
the optimal number of clusters showed that the previously examined models yielded a
10.4% and 13.8% MAPE improvement over the average of the standalone values, respec-
tively. It is worth noting that in this second experiment the stacking regressor considering
the merged list of peak and non-peak influenced membership yielded an 11.9% MAPE
improvement, showing slightly better performance when compared to the VRUNP model.
The examination of those metrics denotes an overall reduction in MAPE, comparable to
the average reduction observed in the implementation of ensemble learning for short-term
forecasting over different sets of estimators in recent research results presented in [19] as
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well as [59,60]. Since the successful implementation of an ensemble model typically yields
a small improvement when compared to the best base estimator, a similar behavior can be
observed in our study, achieving approximately the same level of error metric reduction
when compared to relevant studies. The main difference highlighted in our approach
is related to the discovery and examination of optimal base estimator sets from a wider
estimator space in an attempt at eliminating the uncertainty of the initial ensemble member
selection process. Therefore, our work aims to shift the focus from the individual proposal
of specific ensemble structures to member selection strategies that generate appropriate
sets of estimators for the training of a given time series.
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4. Discussion

This research project examined the performance of structurally flexible ensemble
estimators on the cluster-based aggregate framework for the improvement of short-term
total demand predictions. The proposed approach implemented a membership selection
strategy focusing on the evaluation of peak and non-peak data points given different
perspectives that consider sets of observations on the actual as well as the estimated time
series derived from segments of the training set. This process resulted in the development
of nine ensemble models consisting of three stacking and six voting regression structures
that covered several ensemble member combinations. Consequently, a case study was
carried out for the evaluation of those models on a dataset including the load profiles
of 370 clients. The research findings indicated that the ensemble models were able to
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improve the forecasting accuracy for clustered load estimation, resulting in more robust
combinatorial structures. The experiments showed that voting and stacking ensembles
influenced by the membership set of non-peak performant base learners could provide more
significant forecasting improvements, yielding MAPE scores of 3.68 and 3.65, respectively,
when silhouette analysis is used for optimal clustering. Similarly, those models achieved
MAPE scores of 3.76 and 3.62, respectively, when an inertia-based elbow method was
utilized for optimal clustering and the stacking ensemble including peak as well as non-
peak performant base learners resulted in adequate performance, achieving a MAPE value
of 3.7.

Since the discovery of efficient base learner combinations is not a straightforward
process and one specific ensemble structure may not guarantee the reduction in error
in a given forecasting task, we believe that this adaptive approach contributes towards
the deterministic member selection through the inspection of fundamental time series
characteristics. Additionally, it is evident that a standalone estimator may not perform well
when processing time series that exhibit different patterns, resulting in unstable overall
metrics for the aggregate values. The average performance of some robust and optimally
tuned standalone estimators could be drastically affected by the input data as well as the
data collection process. Different electricity consumer types and various data collection
characteristics such as the start of the load monitoring period could impact the prediction
accuracy and the recalibration process of the forecasting models. Consequently, it could be
observed that some estimators may outperform others with minimal context related to the
justification of the difference in performance, leading to less interpretable implementations
that follow arbitrary model selection processes. Therefore, the main advantage of this
proposed approach is the efficient combination of base learners through a simple and
well-defined process that could be seamlessly integrated in ensemble regression tasks for
the energy sector. The performance hinderances introduced by the extreme cases where
the response of a standalone estimator yields irregularly high error metrics on certain
data points are diminished through the consideration of multiple estimated time series.
Moreover, the focus is shifted towards the inspection of data points where the estimators are
expected to perform optimally, reinforcing the fairness of comparison and setting additional
criteria towards member selection in ensemble learning.

On the other side of the spectrum, there are a few disadvantages in the application of
this method that should be mentioned for completeness. Since cluster-based frameworks
often lead to computationally expensive models, the integration of flexible ensemble
learners in this paradigm could increase the computational cost due to the training and
processing of multiple estimators. Therefore, the complexity of each candidate base learner
could be restricted since the tuning, training and processing of several deep neural network
architectures and hybrid structures would increase the execution time substantially due
to the increased number of hyperparameters as well as the overall latency encountered
when loading and storing data during training, rendering them inefficient for short-term
forecasting tasks and real time applications. However, advances in distributed computing
could remedy this issue through the parallelization of data processing tasks. It is evident
that the proposed approach could be implemented in multi-threaded distributed systems
since there is a clear distinction between standalone and aggregate tasks. Consequently,
the inspection of each base learner and the membership evaluation process for each cluster
could be easily parallelized, resulting in a scalable hybrid structure.

Future research projects could explore different time series characteristics and combine
them in order to extend the current membership evaluation strategy, resulting in the discov-
ery of additional ensemble structures. Since this study primarily focused on load features,
isolating their impact for the inspection of base learners in an environment containing
only the load profiles from different types of customers anonymously, the inspection of
time series elements derived from different types of features could provide significant
insights towards the development of more robust ensemble estimators, depending on data
availability. Furthermore, the proposed strategy could be applied to multiple unclustered
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time series or load profiles processed in different clustering or aggregation frameworks
in order to examine the performance of adaptive peak and non-peak ensemble learning
through more diverse experiments. Lastly, the impact of several vital parameters to the
definition of the forecasting tasks could be studied, such as the forecasting horizon, and
the customer base size could be studied in an attempt at quantifying the scalability of this
approach in different client groups as well as the versatility of the method.

5. Conclusions

The intricacies of very short-term total electricity demand forecasting tasks add a layer
of ambiguity to combinatorial modeling since the challenges derived from increasingly
diverse and rapidly growing client groups could hinder the efficiency of robust estimators.
Additionally, the inclusion of estimators in hybrid and combinatorial approaches is often
influenced by expert knowledge and general performance indicators in similar forecasting
tasks. Therefore, the criteria for the selection of base estimators are not explicitly linked
to the shape and the individual characteristics of a given dataset, resulting in a seemingly
arbitrary estimator selection process. This phenomenon could be easily observed in the im-
plementation of ensemble learning models where small refinements to the error metrics are
expected when several estimators are optimally combined. Since this optimal combination
differs depending on the available data and the problem formulation, this performance
boost is not guaranteed and is often derived from extensive experimentation.

In this project, we presented an estimator selection strategy that generates base esti-
mator sets capable of achieving this performance boost through the examination of peak
and non-peak observations from multiple evaluation perspectives during training. This
membership strategy aims to adapt to different shapes of time series and output estimator
groups that outperform the standalone estimators when combined in a stacking or voting
ensemble structure. The case study presented in this work focused on the effect of load
features and utilized the cluster-based aggregate framework since the clustered time se-
ries derived from a diverse set of clients monitored from different starting points would
introduce a degree of unpredictability between consecutive samples that would intuitively
cause certain models to underperform as the shape of the time series could be drastically
different between clusters. As a result, three stacking models and six voting models were
evaluated on a group of clustered time series for the prediction of total demand based on
the most important numbers of clusters derived from the silhouette and elbow methods.
Through our experiments, we observed that base estimator sets generated from the pro-
posed strategy led to consistently more performant ensemble models when the criteria
influencing the selection of estimators involved the examination of non-peak observations.
It is worth noting that in some ensemble structures the merged set of estimators selected
from the examination of peak and non-peak observations performed adequately well. In
conclusion, this work attempts to reinforce the basis of ensemble and hybrid modeling
through a well-defined and easily interpretable criteria-based approach which is tuned
based on the input time series in order to boost predictive performance.
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