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Abstract: The significant growth in demand for electricity has led to increasing congestion on
distribution networks. The challenge is twofold: it is needed to expand and modernize our grid to
meet this increased demand but also to implement smart grid technologies to improve the efficiency
and reliability of electricity distribution. In order to mitigate these congestions, novel approaches
by using flexibility sources such as battery energy storage can be used. This involves the use of
battery storage systems to absorb excess energy at times of low demand and release it at peak times,
effectively balancing the load and reducing the stress on the grid. In this paper, two optimal power
flow formulations are discussed: the branch flow model (non-convex) and the relaxed bus injection
model (convex). These formulations determine the optimal operation of the flexibility sources,
i.e., battery energy storage, with the objective of minimizing power losses while avoiding congestions.
Furthermore, a comparison of the performance of these two formulations is performed, analyzing the
objective function results and the flexibility operation. For this purpose, a real Spanish distribution
network with its corresponding load data for seven days has been used.

Keywords: optimal power flow; flexibility; network congestion; convex optimization

1. Introduction

Today, a remarkable and accelerated transformation is taking place in the electrification
of European countries, as the European Union has set two significant challenges related to
emission reductions, the first being that greenhouse gas emissions should be reduced by
20 percent compared to the 1990 level and the second being that each Member State should
achieve 20 percent of its energy consumption from renewable sources [1–3].

Due to this increased electrification, electricity distribution systems have to evolve and
adapt to changing requirements to facilitate and accommodate this change. These changes
include handling higher loads, accommodating higher currents, managing bi-directional
power flows, optimizing network configurations for efficiency, and mitigating congestion
using flexibility sources [4].

In order to contribute to the stability of the electricity system, flexibility can be defined
as the ability to change generation or consumption patterns in response to an external signal
(activation signals). This is an important force for the drivers, some examples of which are:
integrating renewable energy, which is intermittent and difficult to predict; electrifying
systems that consume more, including electric vehicles; maintaining the balance between
production and demand; and helping to decarbonize the electricity system [5,6].

Different authors propose using flexibility to solve grid congestions. Authors in [7]
discuss all aspects of electric vehicle deployment, particularly their grid support functions
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in the vehicle-to-grid (V2G) system. It also examines the integration of the electrified fleet
with renewable energy sources into the smart grid. In a nutshell, the authors use the V2G
capabilities of EVs and analyze their potential, but they do not consider the optimization of
flexibility, i.e., the use of flexibility in an optimal way.

The study [8] examines the technical feasibility and potential benefits of using energy
storage to increase the transmission capacity of congested transmission systems serving
regions of the country with large amounts of renewable energy generation. It also includes
a brief description of the various storage applications and reviews previous work by EPRI
and others investigating the use of storage in the transmission system. In short, it uses
energy storage but does not rely on optimization. In contrast, several studies [9–11] propose
a market-based mechanism to alleviate distribution grid congestions through a centralized
and coordinated home energy management system (HEMS). In this model, the distribution
system operator (DSO) applies dynamic tariffs (DT) and daily power-based network tariffs
(DPT) to manage congestions induced by EVs and HP. Definitely, it uses demand as network
flexibility but does not realize optimal power flows (OPF) [12,13].

Another source of flexibility to be taken into account is the variation of the demand in
the industry. In the literature [14–17], it is studied how to implement this new concept to
the distribution networks. However, no optimization of the power flow is carried out.

Optimising engineering problems involves three steps. The first part is based on the
mathematical formulation of the problem to be solved. At this point we are in the various
cases of optimization that are explained in the literature [18]. The second part is to choose
a programming environment and to model the equations for that specific environment.
Nowadays there are many different types of languages, and therefore it is interesting
to have a comparison between them, and this comparison is done in the literature [19].
Finally, there is the choice of the solver that will do the solving and return the value of the
objective function. There are many solvers, the most common being Gurobi, GLPK, CPLEX,
and IPOPT.

With regard to the optimization of congested electricity distribution networks, this is
explained in [20], but no source of flexibility is used. OPF formulations have been analyzed
in [21–23]. One of them is a non-convex OPF. This implies that finding the global optimal
solution cannot be guaranteed. To solve this, for radial networks, the convex second-
order cone optimal power flow (SOCP-OPF) [24–26] has been studied. While [24,25] study
the properties of the SOCP-OPF formulation, ref. [26] includes photovoltaic and diesel
generators into the model.

The aim of this paper is to analyze two optimal power flow model formulations used in
the literature: (i) the so-called bus injection model (BIM), a non-convex, non-linear optimal
power flow model, and (ii) the branch flow model (BFM), a relaxed convex second-order
cone optimization problem. Our contributions include a comparative evaluation of BIM
and BFM in terms of network loss optimization, focusing on metrics such as execution time
and loss minimization. In addition, these models can provide optimal battery scheduling
based on specific battery capacities and locations. The objective of this battery scheduling
is to reduce the load in distribution lines when a predefined threshold is exceeded, thereby
ensuring the safety levels of the distribution networks.

In this work, we also evaluate the proposed models through a real congestion manage-
ment case study. Our goal is to offer valuable insights and solutions for designing power
distribution systems that are robust and resilient for a sustainable future.

The content of this study is structured as follows: Section 2 describes the methodology
used in this work, while Section 3 includes the formulation of the first model, called the
bus injection Model, the formulation of the second proposed model, called the branch flow
Model, the formulation of the battery model and the objective function of the problem.
The case study in Section 4 shows the characteristics and peculiarities of the network under
study. The simulation results are presented in Section 5. Finally, in Section 6, conclusions
are drawn.
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2. Methodology

The methodology shown in Figure 1 describes two different optimization models for
battery scheduling within an electricity distribution network. This methodology considers
the parameters of the network, generation profiles, demand profiles, and battery parameters
to create and execute the optimization analysis.
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Figure 1. Flowchart of the article methodology.

Module 1—Distribution network modelling: Using Pandapower, a Python-based
software, this module constructs a detailed model of the distribution network. This process
simulates the realistic network behavior and interactions.
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Module 2—Power flow simulation: Using the standard Newton-Raphson method,
this module performs a power flow simulation to determine critical metrics such as branch
power flows, voltage deviations at each bus, and transformer loads. This simulation
identifies potential network overloads and areas for improvement.

Assessment of loading criteria: An integral part of the methodology is the assess-
ment of network assets against pre-defined DSO thresholds. Exceeding these thresholds
triggers the implementation of the optimal battery charge/discharge schedule to mitigate
congestion risks and improve network reliability.

Module 3—Optimization model comparison: This module entails a comparative anal-
ysis of two optimization models: the branch-current-based model (BIM) and the branch-
flow model (BFM). The primary objective is to minimize overall network losses, adhering
to the following criteria: BIM Optimization Model: This model formulates an admittance
matrix encapsulating the power flow equations and network constraints, including battery
model constraints and optimal congestion management strategies. The evaluation focuses
on performance metrics such as execution time and the effectiveness of loss minimization.
BFM Optimization Model: Contrasting the BIM, the BFM does not incorporate an admit-
tance matrix but still models the power flow equations and network constraints, along with
battery model constraints and optimal congestion management. The evaluation similarly
emphasizes the efficiency in execution time and loss reduction. Finally, the optimization
problem is solved using an interior point solver combined by the branch and bound for
tracking the binary variables.

3. OPF Formulations
3.1. Bus Injection Model Formulation

The calculation of the variables in an electrical network is usually carried out using load
flow. This method makes it possible to obtain the power flowing through the network and
the different voltage or current values at each point in the network. However, the operation
of the network entails the need to satisfy specific demands and safety constraints. The task
of operating the network, therefore, is to fulfill this demand while complying with grid
constraints and minimizing a specific objective function simultaneously. This operation is
obtained by applying an optimization problem based on the load flow equations, which is
called optimal power flow.

Admittance matrix

The bus injection model (BIM) equations require several network characteristics to
be obtained. Specifically, it is first necessary to obtain the admittance matrix of the grid in
order to carry out all the calculations. The admittance matrix is very well known, but in
this article, its basis is recalled as being key to the development of the model in question.

The matrix size is n × n, where n is the number of nodes in the network. For its
calculation, it is necessary to differentiate between the diagonal elements of the matrix and
the off-diagonal elements. The method to follow for each is:

(i) Diagonal elements (Yii): equals the sum of all admittances connected to bus i (i = 1, . . . , n).
(ii) Elements outside the diagonal (Yij): equals the admittance between bus i and j

(i, j = 1, . . . , n; i ̸= j) changed sign.

This gives the admittance matrix Ybus. This can also be expressed as the sum of two
matrices, the real part (Gbus) and the imaginary part (Bbus) of Ybus, as shown in Equation (1).
This form is used in this model as it allows working only with real values, making the
calculations much more straightforward.

[Ybus] =


Y11 Y12 . . . Y1n
Y21 Y22 . . . Y2n

...
...

. . .
...

Yn1 Yn2 . . . Ynn

 = [Gbus] + j[Bbus] (1)
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BIM Formulation

First, the indices associated with the variables or parameters are shown in Table 1.
These indicate more precisely which specific element the variable or parameter refers to.
Table 2 shows the nomenclature of the variables used in this formulation, and Table 3
depicts the required model parameters. These have a fixed value that is given by the
network characteristic itself.

Table 1. Indices for the BIM model.

Index Definition

n = (1 . . . N) Nodes of the network (slack node: n = 1)
m = (1 . . . M) Nodes of the network
F Nodes of the network where there are batteries
L Lines (n, m) that connect nodes n and m
T Simulation periods

Table 2. BIM model variables.

Variable Definition

Vnt Voltage at node n at time t
δnt Voltage angle at node n at time t
Pnt Active power injected into the network through node n at time t
Qnt Reactive power injected into the network through node n at time t
PGnt Active power generated at node n at time t
QGnt Reactive power generated at node n at time t
Pnmt Active power transferred from node n to node m at time t
Qnmt Reactive power transferred from node n to node m at time t

Table 3. BIM model parameters.

Parameter Definition

Pdnt Active power consumed at node n at time t
Qdnt Reactive power consumed at node n at time t
Gnm Real part of the admittance matrix between nodes n and m
Bnm Imaginary part of the admittance matrix between nodes n and m
glnm Real part of the admittance matrix between nodes n and m via line l
blnm Imaginary part of the admittance matrix between nodes n and m via line l
Vslack Voltage at the slack node
Smaxnm Maximum apparent power on the line connecting nodes n and m
LPmax Maximum line loading percentage

OPF-BIM Equations

The BIM formulation is the most common formulation and is mainly based on node-
related variables. The power balances at the nodes are shown in Equations (2) and (3).

Pnt = Vnt

n

∑
m=1

(Vmt(Gnm · cos(δnt − δmt) + Bnm · sin(δnt − δmt))) ∀t ∈ T; ∀n ∈ N; (2)

Qnt = Vnt

n

∑
m=1

(Vmt(Gnm · sin(δnt − δmt)− Bnm · cos(δnt − δmt))) ∀t ∈ T; ∀n ∈ N; (3)

This power is related to generation and demand according to Equations (4) and (5).
In this way, power injected into the grid is considered positive and negative if consumed.

Pnt = PGnt − Pdnt ∀t ∈ T; ∀n ∈ N; (4)
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Qnt = QGnt − Qdnt ∀t ∈ T; ∀n ∈ N; (5)

In order to solve the load flow, it is necessary to fix the voltage and angle of a particular
node. As usual, the chosen Slack node corresponds to the connection to the high-voltage
transformer. The modulus of the voltage and its angle are set according to (6):

Vnt = Vslack ∀t ∈ T; n = 1; (6)

nt = 0 ∀t ∈ T; n = 1; (7)

The main objective of this optimization is that the lines do not exceed a certain per-
centage of load. To achieve this, it is necessary to obtain variables concerning the lines and
not only concerning the nodes. In this formulation, as seen in the (8) and (9) equations,
the powers between nodes are calculated to impose a limit on them, thus limiting their load.

Pnmt = Vnt(gnnlVnt − gnnlVmt cos(δnt − δmt) + bnmlVmt sin(δnt − δmt)) ∀t ∈ T; ∀(n, m) ∈ L; (8)

Qnmt = −Vnt(bnnlVnt + bnnlVmt cos(δnt − δmt) + gnmlVmt sin(δnt − δmt)) ∀t ∈ T; ∀(n, m) ∈ L; (9)

For the BIM model, the constraint is given by the maximum apparent power of the
line, so the Equation (10)

P2
nmt + Q2

nmt = (LPmax · Smax m)
2 ∀t ∈ T; ∀(n, m) ∈ L; (10)

3.2. Brach Flow Model Formulation

A second-order cone problem (SOCP) is an optimization problem that is convex,
leading to global optimum solutions. To obtain an SOCP using the BFM formulation
and find a globally optimal solution, we make a relaxation of the equations, which is
explained below.

Branch Flow Model Formulation

The indices of this model add two more elements that take into account whether nodes
are the origin or the destination of a line. This is seen in the Table 4.

Table 4. BFM model indices.

Index Definition

N Nodes of the network (slack node: n = 1)
L Lines (n, m) going from node n (origin) to node m (destination)
u(n) Nodes m ∈ N that are the origin of node n ∈ N
d(n) Nodes m ∈ N that are the destination of node n ∈ N
F Nodes of the network where there are batteries
T Simulation periods

In this model, the bus voltage and line current are squared, and the angle of the
voltages is not taken into account, as can be seen in Table 5.

Table 5. Variables of the BFM model.

Variable Definition

vnt Square of the voltage at node n at time t
inmt Square of the current flowing between node n and m at time t
Pnt Active power injected into node n at time t
Qnt Reactive power injected into node n at time t
PGnt Active power generated at node n at time t
QGnt Reactive power generated at node n at time t
Pnmt Active power transferred from node n to node m at time t
Qnmt Reactive power transferred from node n to node m at time t
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In the BFM model, no use is made of the admittance matrix, and the resistance and
impedance of each line are used directly. Below is the Table 6 with the parameters.

Table 6. Parameters of the BFM model.

Parameter Definition

rmn Resistance of the line from node n to m
xmn Reactance of the line from node n to m
vslack Square of the voltage at the slack node
Pdnt Active power consumed at node n at time t
Qdnt Reactive power consumed at node n at time t
imaxnm Maximum square of the current in the line from node n to m
LPmax Maximum line loading percentage

OPF-BFM Equations

The second formulation of the optimal load flow is called the branch flow model
(BFM). Unlike the previous one, this model uses mainly line variables instead of node
variables and is designed for radial networks.

The slack node’s active and reactive power balances are shown in (11) and (12),
respectively. This differs from the others as it will always be the source node of the
lines and never the destination node. The balance at the rest of the nodes is detailed in
(13) and (14). This considers the power losses caused by the resistance and inductance of
the lines. The consumption at a node is equal to the input power minus the output power.

PG
nt = ∑

m∈d(n)
Pnmt ∀t ∈ T; n = 1; (11)

QG
nt = ∑

m∈d(n)
Qnmt ∀t ∈ T; n = 1; (12)

Pnt = ∑
m∈u(n)

(Pnmt − rmn · imnt)− ∑
m∈d(n)

Pnmt ∀t ∈ T; ∀n ∈ N \ {1}; (13)

Qnt = ∑
m∈u(n)

(Qnmt − xmn · imnt)− ∑
m∈d(n)

Qnmt ∀t ∈ T; ∀n ∈ N \ {1}; (14)

The consumption equations are shown in Equations (15) and (16). They represent the
expected demand minus the power generated at that node. Unlike the BFM model, positive
power is considered at a node if consumed and negative injected into the grid.

Pnt = Pdnt − PGnt ∀t ∈ T; ∀n ∈ N; (15)

Qnt = Qdnt − QGnt ∀t ∈ T; ∀n ∈ N; (16)

The voltage drop is expressed according to (17). As in the previous case, the slack
voltage is set to a specific value. These voltages refer to the bus voltage squared, just
as the current is also the line current squared. This variable change makes it possible to
obtain linear equations, facilitating their calculation. In addition, it should be noted that
the admittance matrix is not necessary in this formulation.

vmt = vnt − 2(rnmPnmt + xnmQnmt) + inmt(r2
nm + x2

nm) ∀t ∈ T; ∀n ∈ N; ∀m ∈ M; (17)

vnt = vslack ∀t ∈ T; n = 1 (18)

The power flowing between nodes is expressed according to (19). However, this
constraint is clearly non-linear and also non-convex. This is a problem for its resolution,
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as it makes it challenging to obtain the global optimum of the problem. To solve it,
the constraint is relaxed to transform into (20), obtaining a convex constraint.

inmt =
P2

nmt + Q2
nmt

vnt
∀t ∈ T; ∀n ∈ N; ∀m ∈ d(n); (19)

inmt · vnt ≥ P2
nmt + Q2

nmt∀t ∈ T; ∀n ∈ N; ∀m ∈ d(n); (20)

This relaxation, however, can lead to a physically meaningless result if the equality is
not satisfied. For this reason, once the simulation has been carried out, it is necessary to
check that the result obtained complies with the equality constraint. If this is not the case,
the objective function must be modified, and an iterative process must be executed.

For the BFM model, according to the percentage of the maximum allowable load, the square
of the current flowing through the lines is also limited according to the expression (21).

inmt = (imax
nm · LPmax)2

∀t ∈ T; ∀n ∈ N; ∀m ∈ d(n);
(21)

3.3. Battery Model

Batteries have the unique ability to inject and absorb power flows in a controlled man-
ner. This allows the load on a line to be dynamically adjusted and energy to be efficiently
redistributed. Challenges such as grid congestion, integrating intermittent renewables, and im-
proving power supply stability and quality can be addressed by harnessing this capability.

Battery formulation

The battery variables are the same in both models and are discussed in Table 7:

Table 7. Battery variables.

Variable Definition

SOCnt State of charge of the battery at node n at time t (Non-negative variable)
PDis

nt Battery discharge power at node n at time t (Non-negative variable)
PCh

nt Battery charging power at node n at time t (Non-negative variable)
αnt Binary variable indicating whether the battery at node n is charging at time t

Subsequently, the battery-related parameters are also shown, which, as with the
variables, are the same for both models. Below is the Table 8 with the parameters

Table 8. Battery parameters.

Parameter Definition

η Battery efficiency
Cn Battery capacity at node n
SOCminnt Minimum state of charge of the battery at node n
SOCmaxnt Maximum state of charge of the battery at node n
PDisn,Max Maximum battery discharge power at node n
PChn,Max Maximum battery charging power at node n

Battery equations

Next, the sources of flexibility, in this case batteries, are modeled. Each battery’s state
of charge (SOC) is calculated according to (22). This considers the battery’s performance,
which produces power losses when interacting with the grid.

SOCnt =
PCh

nt · ∆T · η

Cn
− PDis

nt · ∆T
Cn · η

+ SOCn(t−1) ∀t ∈ T \ {1}; ∀n ∈ F; (22)
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Battery charging is limited to an operating range according to (23) to increase the life
cycle of the battery, as this avoids complete charge/discharge cycles. Each battery’s initial
state of charge is shown in (24).

SOCmin
n ≤ SOCnt ≤ SOCmax

n ∀t ∈ T; ∀n ∈ F; (23)

SOCnt = SOCini
n si t = 1; ∀n ∈ F; (24)

The charging and discharging power of the battery is restricted according to (25) and (26),
respectively. This ensures that the battery is constantly charging or discharging.

PDis
nt · (1 − αnt) ≤PDis

n,Max ∀t ∈ T; ∀n ∈ F; (25)

PCh
nt · αnt ≤PCh

n,Max ∀t ∈ T; ∀n ∈ F; (26)

The power generated at nodes with flexibility is shown in (27) and is equal to the
discharge power minus the load power.

PG
nt = PDis

nt − PCh
nt ∀t ∈ T; ∀n ∈ F; (27)

3.4. Object Function

The objective function is the last equation to be defined in the optimization problem,
aimed at minimizing the network losses. Thus, in the first model, the objective function to
be minimized is expressed as (28):

Obj = ∑
(n,T)

Pnt (28)

On the other hand, in the second model, the objective function minimized is seen in
expression (29).

Obj = ∑
(n,m,T)

rmn · inmt (29)

It can be seen that in both functions, the same is calculated but in different ways due to
the different model formulations. However, this does not affect the result. In both models,
the losses are minimized either by Ohm’s law or by the basic formulae for electricity
transmission networks.

4. Case Study

The network used in the analysis of this study is a 116-node Spanish distribution
network with a rated voltage of 25 kV, while the rated power at the first section (from node
1 to node 2) is 10.5 MVA. It consists of a mainline with two branches, as seen in Figure 2.
The characteristics and parameters of the network can be found in Appendix A.

External
grid

1 2 3 49

5150 52 53 92

11693 94 95 96

Figure 2. Study distribution network structure and topology.
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Focusing on the energy demand data of the network, these are distributed over the
different nodes. The demand for each node in the network can be seen in Figure 3. In this
figure, the aim is to show the behavior of these nodes and to see the scale of magnitude of
the consumption, which ranges between 0 and 0.6.

Figure 3. Apparent power demanded hourly by each network node over one year.

On the other hand, the aggregate demand at the slack node of such a network over a
year can be seen in Figure 4. It can be seen that there are some peaks in demand at 9 and
10 MVA. However, the demand remains relatively constant throughout the year at around
4 MVA base and 7 MVA peak. It should be noted that there are times when demand is 0,
and this is supposed to be due to network maintenance days.

Note that if we look at the enlargement of Figure 4, we can observe a periodicity in the
behavior of consumption, where consumption is higher during the week than at weekends.

Once all the data are known, the optimal power flow models developed can be
analyzed and tested.
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Figure 4. Apparent power aggregated to the slack node throughout the year and zoom of the week
with the highest consumption of the year.

5. Results

The results obtained have been validated with a load flow calculation tool (Matpower),
verifying that the results comply with the power flow equations.

5.1. Line Congestion Analysis at the Initial Situation

Currently, the analyzed network does not have a source of flexibility. A series of
power flows are carried out during different periods of high demand to check whether
the network needs congestion mitigation mechanisms. Specifically, the most interesting
analysis focuses on the week with the highest consumption from days 202 to 209, which
corresponds to 22th July to 28th July. The overall result for all lines can be seen in Figure 5.

As the above figure can be difficult to interpret, as an example, the result for the most
congested line is shown in Figure 6:

It can be seen that line 9 of the network is overloaded up to four times. Accordingly,
the distribution system operator (DSO) is evaluating the installation of a flexibility source
based on a battery at node 49 to avoid grid congestion.
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Figure 5. Power flow result. Apparent power is flowing through each line of the network.

Figure 6. Apparent power flowing through line 9 of the network when carrying out a power flow.

5.2. Optimal Battery Operation for Grid Congestion Management

The proposed battery is planned to be installed at node 49, as the network configu-
ration is a bifurcation network, with node 49 being the point where it splits in two. This
is the optimal node to avoid the congestion. Figure 5 shows how, from one line onwards,
the distribution of the power circulating in the network drops considerably, and this change
occurs at this node where there is a bifurcation.

The characteristics of the battery are shown in Table 9. As an initial hypothesis, an ini-
tial state of charge of 50% is assumed, as this is not a very high and quite probable value.

Table 9. Battery parameters.

Parameter Definition

Initial battery charge 50%
Battery capacity 35 MW
Battery efficiency 90%
Maximum battery power 3 MW

With the introduction of the battery, we can start to decongest the network. We will
limit the maximum apparent power that can circulate through the line to 90%. The limit is
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set at 90% for distribution system operator security reasons. This is because the predictions
they make can be erroneous, thus ensuring that the network always works correctly.

To operate the battery optimally and avoid congestion, the optimal power flow ex-
plained in Sections 2 and 3 is executed. The result of the battery operation is shown in
Figure 7.

Figure 7. Percentage load of network line 9 for each study model (Power Flow, BIM, and BFM) and
maximum power and safety limits of the DSO.

It can be observed that the periods of congestion on line 9 have disappeared and that,
in general, the grid operates more smoothly, i.e., its load percentage is lower in cases where
optimal power flows are used, thanks to the use of the battery. The battery optimizes the
operation of the network and reduces the load on the distribution lines by feeding and
withdrawing energy from the network.

It will be on display that the optimal power flow of the line never reaches the safety
limit set by the DSO (yellow discontinuous line); this is an important aspect to highlight as
in some scenarios, the DSO forecast can be wrong, and this 10% safety limit prevents the
network from operating under stress.

5.3. Comparison between the Two Optimization Models

We will compare the two models in different areas of interest to decide which is more
optimal and scalable once we have seen that the two models are valid for decongesting
the network.

On the one hand, we will focus on battery usage. If we look at Figure 8, we can see
that both models’ instantaneous state of charge is the same. This is quite logical, as they
both optimize the SOC.

Figure 9 shows the change in the behavior of the stresses of the nodes during optimiza-
tion; it can be seen that these generally have smaller and flatter peaks. However, as there
were no problems before, now there are no problems either, although the behavior is better.

On the other hand, a box/whisker plot is used to analyze the result of the objective
function. In Figure 10, it is possible to see that the function of the BFM model is slightly
better than that of the BIM model. If we calculate the real error between the two solutions,
we can see that the maximum difference is 0.11641 in the first iteration. This difference
decreases as the days go by.
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Figure 8. State-of-charge behavior of the network storage system over 7 time periods.

Result of power flow voltages

Result of optimal power flow voltages BIM and BFM

Figure 9. Comparison between voltage results for power flow and optimal power flow.
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Figure 10. BoxPlot of objective function results with BIM and BFM models.

Then, the modelstat of the optimizations is studied, as it gives us information about
the model concerned: validation of the model, effective optimization, and the possibility of
generalizing to new scenarios. In our case, the modelstat for the two models is different.
For the BIM model, it is 8, which in GAMS means proven optimal, meaning that it has been
mathematically proven to meet all the requirements of the problem but that the model does
not assure you that it is the best solution. However, in the BFM it is 1, which in GAMS
means globally optimal, meaning that it is the best probable solution.

When looking at the results concerning the computational time of operation of each
model in Figure 11, it can be seen that the time taken by the BFM to perform each optimiza-
tion is approximately four times longer than the BIM model.

Figure 11. Comparison of Computational Time Using BIM and BFM Models.

Specifically, in Table 10, the calculation time of each period is analyzed, leaving a list
of the values of the 7 optimized periods.
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Table 10. Computation Time Values for BIM and BFM.

Period Computation Time BIM (s) Computation Time BFM (s)

1 104.42 306.252
2 86.149 527.227
3 75.3 324.046
4 72.966 362.967
5 70.792 456.844
6 91.234 405.74
7 84.457 337.046

6. Conclusions

This paper investigates asset congestions in power distribution lines, which could
occur due to increasing electrification. This work compares two optimal power flow models,
the bus injection model and the branch flow model, to minimize losses and mitigate the
congestion. The study demonstrates that these models maintain congestion below 90% of
the line capacity, highlighting the identical resource management efficiency of both models.
Another interesting finding is that battery usage is identical in both formulations when
mitigating line congestions, indicating consistent resource management.

In addition, the objective function value of the BFM model was slightly higher than that
of the BIM model, underlining the effectiveness of the proposed formulation The maximum
difference between the two solutions in the simulation of one day is 0.11, corresponding to
the first day simulated; the following days, the error between the two models is of the order
of 0.01. In this case, the relaxation gap remains zero throughout the optimization period,
suggesting robustness in solving the proposed problem. In terms of computation times,
the BIM model is notably more efficient than the BFM as observed in Table 10, in practically
all simulation periods the computation time of the BFM is four times longer than the
computation time of the BIM. However, it is important to consider that the BFM model
achieves a global optimum. In the case study of this paper, the results of the objective
function are quite similar. However, generally speaking, BIM cannot ensure finding a
global optimum.

Finally, when observing the voltage drops in the network nodes, it can be seen that
even though there are no problems with the voltage limits, when the optimization is
carried out and the battery is introduced, the levels improve with respect to the initial case;
specifically, before introducing the battery, the voltage peaks dropped to 0.992 pu and now
only to 0.994 pu, as can be seen in Figure 9. It should be noted that, in the battery state of
charge, in this case the results of the BIM and the BFM are identical.

For future research directions, it is suggested to explore the integration of demand-side
flexibility or electric vehicles to alleviate excessive stress on batteries. This approach would
leverage three sources of flexibility and enhance adaptability within the electricity grid.
Such areas offer new opportunities to further improve the efficiency and management of
the electricity system. In addition, it is also suggested to introduce different renewable
generation sources, such as photovoltaic or wind, together with their respective generation
profiles to analyze the dynamic behavior of the grid.
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Appendix A. Parameters of the Study Network

Table A1. Characteristics of the case study network.

from to Length
(km)

r (Ω·
km)

x (Ω·
km) from to Length

(km)
r (Ω·
km)

x (Ω·
km)

0 1 0.125 0.078 0.1050 58 59 0.126 0.078 0.1050
1 2 0.201 0.078 0.1020 59 60 0.074 0.078 0.1050
2 3 0.197 0.078 0.1020 60 61 0.019 0.078 0.1050
3 4 0.133 0.078 0.1050 61 62 0.027 0.078 0.1050
4 5 0.132 0.078 0.1020 62 63 0.063 0.078 0.1050
5 6 0135 0.078 0.1020 63 64 0.109 0.078 0.1050
6 7 0.534 0.078 0.1050 64 65 0.008 0.078 0.1050
7 8 0.802 0.078 0.1050 65 66 0.034 0.078 0.1050
8 9 0.061 0.125 0.1130 66 67 0.131 0.078 0.1050
9 10 0.365 0.078 0.1020 67 68 0.046 0.078 0.1050

10 11 0.007 0.078 0.1020 68 69 0.02 0.078 0.1050
11 12 0.021 0.078 0.1020 69 70 0.016 0.078 0.1050
12 13 0.378 0.078 0.1050 70 71 0.017 0.078 0.1050
13 14 1.115 0.078 0.1020 71 72 0.086 0.078 0.1050
14 15 0.019 0.078 0.1050 72 73 0.045 0.078 0.1050
15 16 0.086 0.078 0.1050 73 74 0.006 0.078 0.1050
16 17 0.154 0.078 0.1050 74 75 0.04 0.078 0.1020
17 18 0.019 0.078 0.1050 75 76 0.053 0.078 0.1050
18 19 0.02 0.078 0.1050 76 77 0.091 0.078 0.1050
19 20 0.13 0.078 0.1050 77 78 0.052 0.078 0.1050
20 21 0.053 0.078 0.1050 78 79 0.045 0.078 0.1020
21 22 0.051 0.078 0.1050 79 80 0.044 0.078 0.1020
22 23 0.088 0.078 0.1050 80 81 0.053 0.078 0.1020
23 24 0.31 0.078 0.1020 81 82 0.055 0.078 0.1050
24 25 0.31 0.078 0.1020 82 83 0.019 0.078 0.1050
25 26 0.001 0.078 0.1020 83 84 0.168 0.078 0.1050
26 27 0.05 0.078 0.1050 84 85 0.01 0.125 0.1090
27 28 0.047 0.078 0.1050 85 86 0.002 0.125 0.1090
28 29 0.064 0.078 0.1020 86 87 0.013 0.078 0.1020
29 30 0.067 0.078 0.1050 87 88 0.006 0.078 0.1020
30 31 0.02 0.078 0.1050 88 89 0.018 0.078 0.1020
31 32 0.04 0.078 0.1020 89 90 0.03 0.078 0.1020
32 33 0.041 0.078 0.1020 90 91 0.075 0.125 0.1130
33 34 0.078 0.078 0.1050 91 92 0.056 0.125 0.1130
34 35 0.013 0.078 0.1050 49 93 0.16 0.125 0.1090
35 36 0.04 0.078 0.1050 93 94 0.073 0.078 0.1020
36 37 0.01 0.078 0.1050 94 95 0.036 0.193 0.1330
37 38 0.009 0.078 0.1050 95 96 0.004 0.125 0.1130
38 39 0.334 0.078 0.1050 96 97 0.003 0.193 0.1330
39 40 0.041 0.078 0.1020 97 98 0.127 0.193 0.330
40 41 0.047 0.078 0.1020 98 99 0.006 0.125 0.1130
41 42 0.504 0.078 0.1050 99 100 0.055 0.193 0.1330
42 43 0.07 0.078 0.1050 100 101 0.017 0.078 0.1050
43 44 0.015 0.078 0.1050 101 102 0.011 0.078 0.1050
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Table A1. Cont.

from to Length
(km)

r (Ω·
km)

x (Ω·
km) from to Length

(km)
r (Ω·
km)

x (Ω·
km)

44 45 0.011 0.078 0.1050 102 103 0.105 0.193 0.1330
45 46 0.03 0.078 0.1050 103 104 0.049 0.078 0.1050
46 47 0.059 0.078 0.1050 104 105 0.053 0.078 0.1050
47 48 0.096 0.078 0.1050 105 106 0.033 0.193 0.1330
48 49 0.057 0.078 0.1050 106 107 0.04 0.125 0.1130
49 50 0.104 0.078 0.1050 107 108 0.009 0.125 0.1130
50 51 0.073 0.078 0.1050 108 109 0.454 0.193 0.1330
51 52 0.176 0.078 0.1050 109 110 0.121 0.193 0.1330
52 53 0.014 0.078 0.1050 110 111 0.013 0.125 0.1130
53 54 0.102 0.078 0.1050 111 112 0.015 0.125 0.1130
54 55 0.102 0.078 0.1050 112 113 0.093 0.193 0.1330
55 56 0.11 0.078 0.1050 113 114 0.026 0.078 0.1050
56 57 0.049 0.078 0.1050 114 115 0.031 0.078 0.1050
57 58 0.04 0.078 0.0970 115 116 0.123 0.193 0.1330
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