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Abstract

:

The load margin is an important index applied in power systems to inform how much the system load can be increased without causing system instability. The increasing operational uncertainties and evolution of power systems require more accurate tools at the operation center to inform an adequate system load margin. This paper proposes an optimization model to determine the parameters of a Physics-Informed Neural Network (PINN) that will be responsible for predicting the load margin of power systems. The proposed optimization model will also determine an optimal location of Phasor Measurement Units (PMUs) at system buses whose measurements will be inputs to the PINN. Physical knowledge of the power system is inserted in the PINN training stage to improve its generalization capacity. The IEEE 68-bus system and the Brazilian interconnected power system were chosen as the test systems to perform the case studies and evaluations. Three different metaheuristics called the Hiking Optimization Algorithm, Artificial Protozoa Optimizer, and Particle Swarm Optimization were applied and evaluated in the test system. The results achieved demonstrate the benefits of inserting physical knowledge in the PINN training and the optimal selection of PMUs at system buses for load margin prediction.
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1. Introduction


Power systems aim to generate, transmit and distribute electrical energy to consumption centers with the lowest economic costs and with high-quality indices. The growing demand for electrical energy and the restrictions on the construction of hydroelectric and thermoelectric plants have been causing challenges in the operation of large power systems [1]. In addition, the integration of intermittent sources of power generation such as wind and photovoltaic plants has contributed to increasing operational challenges [2,3]. In [4], the authors proposed and analyzed a fractional-order multiple-model type 2 fuzzy control to improve the regulation of a power system with renewable energy sources. In [5], the authors proposed and evaluated a set of power system dispatch methods to improve system operating performance considering a set of adversities. In [6], the authors proposed a method to accurately estimate the electromechanical oscillation modes of large-scale power systems. In [7], the authors presented an inertia control for wind turbine generators in power systems with multiple objectives, the main one being the improvement of the system frequency. Thus, each year there is a concern in developing methods capable of assisting or improving the real-time operation of modern power systems.



Advances in various fields of science have led to the development of some beneficial projects for power systems. One of these successful projects is the Synchronized Phasor Measurement System (SPMS), which consists of Phasor Measurement Units (PMUs) at transmission or distribution system buses, Phasor Data Concentrators (PDCs), Global Positioning System (GPS) and communication channels. PMUs at various system buses collect voltage and current measurements in time synchronization using GPS and high sampling rates. The scientific community has proposed several promising methods for the control [8,9,10,11], monitoring [12,13,14,15] and protection [16,17,18,19] of power systems. The reported results show the great benefits of using PMU data for the operation of power systems.



Stability studies have been essential for the operation of power systems for decades, and PMU data have provided great benefits to this field of study. The Voltage Stability Margin (VSM) or load margin (LM) is a stability index usually used in long-term planning that informs how much the system load can increase without problems of non-existence of a system equilibrium point. Before the significant advances in SPMS, the traditional methods for calculating VSM were Continuation Power Flow [20], techniques to determine maximum power transfer [21], graphical curves of the P-Q-V type [22], evaluation of the Jacobian matrix [23] and obtaining the Saddle-Node Bifurcation (SNB) [24], among others. Although these are traditional methods, some challenges persist that hinder their real-time applications, such as the high processing time and the need to have all the information without system errors.



The determination of VSM is traditionally carried out through the static analysis of power systems and, therefore, dynamic models are disregarded. Most methods consist of increasing the load of the entire system and evaluating to what extent there is a guarantee of the existence of an equilibrium point [25]. However, power systems are dynamic systems whose operation is described by a set of differential-algebraic equations and the increase in load can cause the emergence of low-frequency oscillation modes with very low damping ratios and also compromise the stability of the power system or even cause instability [26]. Low-frequency oscillation modes are the focus of small-signal stability studies and require linearization and eigenvalue analysis of the differential-algebraic equations [26].



In order to ensure that the system presents small-signal stability and voltage stability, the LM index will be used instead of the VSM index. The LM is an index that represents the difference between the load level of the base case of power system operation and the load level where an instability scenario occurs, which may be low-frequency oscillation modes with zero or negative damping ratios in angular stability studies or voltage collapse in voltage stability studies [26]. There are few works in the literature capable of providing the LM that meets the requirements of small-signal angular stability and voltage stability at the same time, since this requires working with the differential-algebraic equations of the system.



In [27], the authors innovated by proposing a unified method capable of identifying the LM that meets the threshold requirements of angular stability to small signals and voltage stability. The authors applied the concepts of Hopf Bifurcation (HB) and SNB of dynamical systems and their relations with the power system. The HB is intrinsically related to the emergence of periodic orbits at the equilibrium point of the system and this can be identified in linearized models of the system through the presence of a purely imaginary eigenvalue. The SNB is intrinsically related to the sudden loss of the equilibrium point of the system and this can be identified in linearized models of the system through the presence of purely zero eigenvalues. The direct method proposed by the authors [27] presented successful preliminary results and was capable of correctly identifying the LM of power systems. Later, the authors made some improvements to the original method [28,29], but some challenges still persist. Some of the challenges pointed out by the authors are the difficulty of converging the method for initial conditions of the problem variables far from the real solution, the method requiring many iterations to reach the desired error value and the need for the complete model of the system under analysis with all information without parameter errors.



The availability of PMU data on the current dynamics of the system has allowed the application of different machine learning techniques for power system stability studies and the determination of the LM is one of these applications. In [30], the authors proposed to calculate the VSM through a method based on Artificial Neural Networks (ANNs). In [31], the authors calculate the VSM through Decision Trees (DT). In [32], the authors aim to calculate the VSM using Support Vector Machine (SVM). In [33], the authors calculate the VSM by applying Graph Neural Networks (GNNs). In [34], the authors monitor VSM in real time by applying Convolutional Neural Network (CNN). In [35], the authors determine the VSM using a combination of ANN and energy functions. The application of machine learning methods in determining VSM is promising, but the methods present low performance in large power systems due to the low generalization capacity for scenarios not considered in the training stage, especially for critical system operation scenarios.



Machine learning methods can have their generalization capacity improved by considering physical knowledge in the training process. Recent research in Neural Networks shows that Physics-Informed Neural Networks (PINNs) are successful in generalization capacity by incorporating rules and/or physical laws of the problem under study in their design and formulation of the traditional Neural Network. A set of recent research shows the potential application of different PINNs in power systems [36]. In [37], the authors calculate the rotor angle and the grid frequency by applying a PINN. In [38], the authors determine the AC-Optimal Power Flow of the system by proposing a new PINN design. In [39], the authors promote system identification through proper PINN design. In [40], the authors evaluate the thermal behavior of power transformers through the application of a PINN. In [41], the authors promote the design of a new PINN for the thermal dynamics of buildings. In [42], the authors determine the distribution system voltage prediction by applying a Physics-Informed Graph Convolutional Network. In [43], the authors determine cascading failures in power systems using a Physics-Informed Graph Neural Network. Therefore, PINNs have aroused interest in the scientific community and the results achieved demonstrate their superiority in relation to traditional Neural Networks that are designed only based on empirical knowledge and no physical knowledge.



This paper proposes the design of a PINN for determining the LM of power systems equipped with PMUs. The PINN parameters will be determined by recent metaheuristics that will be subject to evaluation. It is important to mention from the beginning that the architecture of a PINN and ANN are the same and the difference is the training process that presents an additional loss function that must be minimized. In addition, a PMU placement method was developed to select a set of buses whose PMU information will be inputs to the PINN proposed in this research. Case studies were evaluated and compared in the IEEE 68-bus system and Brazilian interconnected power system.



This paper presents its contribution in different sections in the following organization. Section 2 presents the formulation and method for determining the LM of modern power systems considering the requirements of small-signal angular stability and voltage stability. The proposed PINN-based method is described in Section 4, where the PINN architecture, the metaheuristic-based design of PINN and the PMU placement of the system are discussed in the subsections. The case studies with comparative evaluations and discussions are presented in Section 5. The conclusions of the paper with future research directions are presented in Section 6.




2. Method for Calculating the Load Margin


Before applying a machine learning technique to a given application, it is necessary to build a database that is well representative of the main scenarios of the problem. In this research, the database consists of a set of operating points with information on three-phase voltages and the respective load margin. This objective will be achieved through the application of the direct method presented by the authors in [27]. As already mentioned, this is a method that determines the LM while simultaneously meeting the requirements of small-signal angular stability and voltage stability. This method formulates a determined system of variables and equations under the conditions of occurrence of Saddle-Node Bifurcation and Hopf Bifurcation. The vector of variables  M  is described by


  M =       x T     y T    μ    v R T     v I T     w R T     w I T     ω 0      T   



(1)




where x is the vector of variables of the dynamic system such as the angle and speed of the synchronous generators, y is the vector of algebraic variables such as the current and voltage,  μ  is the variable that informs the load level of the system and, thus, defines the LM,   v R   and   v I   are the real and imaginary parts of the eigenvector associated with the linearized matrix of the system and the vector x,   w R   and   w I   are the real and imaginary parts of the eigenvector associated with the linearized matrix of the system and the vector y, and   ω 0   is the real part of the purely imaginary eigenvalue associated with the Hopf Bifurcation.



From the definition of the vector of variables  M  in (1), the set of equations of the determined system of equations and variables can now be described. The system is composed of Equations (2)–(9) described below [27].



	
The two systems of Equations (2) and (3) correspond to the power flow equations of the system that must be satisfied to ensure the existence of an equilibrium point.


  f ( x , y , d , μ ) = 0  



(2)






  g ( x , y , d , μ ) = 0  



(3)







	
From the linearization of the algebraic differential equations, the Jacobian matrix J is determined. The two systems of Equations (4) and (5) correspond to the equations of the purely zero eigenvalue   ( λ = 0 )   that is formed by the real   (   [     v R T     w R T     ]  T  )   and imaginary   (   [     v I T     w I T     ]  T  )   parts of the eigenvector associated with the purely zero eigenvalue. Thus, these equations describe the occurrence of the Saddle-Node Bifurcation.


  J ·      v R       w R      = 0  



(4)






  J ·      v I       w I      = 0  



(5)







	
From the linearization of the algebraic differential equations, the Jacobian matrix J is determined. The two systems of Equations (6) and (7) correspond to the equations of the purely imaginary eigenvalue   (  λ  1 , 2   = ± j  ω 0  )   that is formed by the real   (   [     v R T     w R T     ]  T  )   and imaginary   (   [     v I T     w I T     ]  T  )   parts of the eigenvector associated with the purely imaginary eigenvalue. Thus, these equations describe the occurrence of the Hopf Bifurcation.


  J ·      v R       w R      +  ω 0  ·      v I      0     = 0  



(6)






  J ·      v I       w I      −  ω 0  ·      v R      0     = 0  



(7)







	
The two systems of Equations (8) and (9) correspond to two different ways of normalizing the real   (   [     v R T     w R T     ]  T  )   and imaginary   (   [     v I T     w I T     ]  T  )   parts of the eigenvector of the system. This normalization is necessary to ensure that the system of equations and variables is determined.


       v R T     w R T      ·      v I       w I      = 0  



(8)






       v R T     w R T      ·      v R       w R      +      v I T     w I T      ·      v I       w I      = 1  



(9)










The authors [27] decided to apply Newton’s method to this complete system of equations and thus determine the LM of the system. The preliminary results were satisfactory but a set of challenges were encountered such as (i) the problems of successful convergence of the method due to poor initial conditions, (ii) the requirement of precise parameters of all equations and (iii) the uncertain number of iterations that the algorithm needs to converge satisfactorily. All these issues imply that the method is effective in offline studies of the system, but it is an inadequate method for real-time applications. Thus, a machine learning tool, the Physics-Informed Neural Network, was applied and is described in the next section.




3. Physics-Informed Neural Network (PINN)


A Neural Network architecture called a Physics-Guided Neural Network (PGNN) was proposed in [44] to determine the load margin of power systems. The authors found that the application of traditional ANNs may present difficulties in generalizing the problem to cases other than the training database and, as a consequence, provide load margins that are very different from the real values. Thus, the authors inserted physical knowledge into this preliminary version of the PGNN. This knowledge was to ensure that the voltage signals that are also output from the PGNN meet the power flow requirement of the system at the stability threshold. The PGNN architecture is composed of two Neural Networks where the output of the first is input to the second Neural Network. The architecture of the PINN and ANN are the same, and the difference is the training process that presents an additional loss function that must be minimized during the PINN weight search process.



The input vector of the first Neural Network is described by


   X 1  =      V  1 , 0      θ  1 , 0     ⋯    V   N b  , 0      θ   N b  , 0        



(10)




and presents the voltage magnitude   (  V  i , 0   )   and voltage angle   (  θ  i , 0   )   measurements of a set of system buses   (  N b  )   that are composed of appropriately installed PMUs. PMUs are effective in measuring three-phase voltages and three-phase currents, but preliminary results have shown that three-phase voltage measurements are more effective for the problem of load margin monitoring. Furthermore, it is essential to inform that the measures presented in (10) correspond to the base case of system operation.



The output measurement vector of this first Neural Network is given by


   Y 1  =     μ    V  1 , T      θ  1 , T     ⋯    V   N b  , T      θ   N b  , T        



(11)




and presents the value of the parameter  μ  which informs the system’s load margin and also presents the voltage magnitude and voltage angle measurements of   N b   system buses at the stability threshold operating point.



The database is constructed in such a way that it has the actual input   (  X 1  )   and output   (  Y 1  )   data of the Neural Network. The Neural Network is then designed in such a way as to reduce the error between the estimated output values   (   Y ^  1  )   and the actual output values   (  Y 1  )  . This error function   (  L 1  )   is given by


   L 1  =   Y ^  1  −  Y 1   



(12)







The output measurements   (  Y 1  )   of this first Neural Network at the stability threshold are used to construct the input vector   (  X 2  )   of the second Neural Network as


   X 2  =      V  1 , T      θ  1 , T     ⋯    V   N b  , T      θ   N b  , T        



(13)







The output vector of this second Neural Network is formulated as


   Y 2  =      P  1 , T      Q  1 , T     ⋯    P   N b  , T      Q   N b  , T        



(14)




and presents the active power   (  P  i , T   )   and reactive power   (  Q  i , T   )   measurements at the same stability threshold point. The actual active power and reactive power measurements are calculated by the following formulas [45]:


   P  i , T   =  ∑  k = 1   N b    V  i , T    V  k , T    (  G  i , k   cos  (  θ  i , T   −  θ  k , T   )  +  B  i , k   sin  (  θ  i , T   −  θ  k , T   )  )   



(15)






   Q  i , T   =  ∑  k = 1   N b    V  i , T    V  k , T    (  G  i , k   sin  (  θ  i , T   −  θ  k , T   )  −  B  i , k   cos  (  θ  i , T   −  θ  k , T   )  )   



(16)







Thus, the second Neural Network is designed in such a way as to reduce the error between the vector of real active and reactive power measurements   (  Y 2  )   and the vector of active and reactive power estimates   (   Y ^  2  )  . This purpose is achieved by the following error function   (  L 2  )  


   L 2  =   Y ^  2  −  Y 2   



(17)







The total error function   ( L )   of the PGNN training stage is given by


  L =  β 1  ·  L 1  +  β 2  ·  L 2  =  β 1  ·  (   Y ^  1  −  Y 1  )  +  β 2  ·  (   Y ^  2  −  Y 2  )   



(18)







The first error function   L 1   is the typical function traditionally applied in the design of Neural Networks and is typically considered an experimental design because it aims to determine a map between the input measurements and output measurements. The second error function aims to insert physical knowledge into the design of the Neural Network because it evaluates the guarantees of the existence of the power flow through the association between the three-phase voltage measurements and the active power and reactive power measurements. The weights   β 1   and   β 2   consider how much empirical knowledge and physical knowledge should be required from the PGNN training stage.



The Levenberg–Marquardt method [46] was applied by the authors in the PGNN training stage and the maximum number of epochs was the desired stopping criterion chosen by the authors. Some research shows that this method presents convergence problems in the training process. In addition, the authors do not present a selection of buses to have PMUs installed and whose measurements are inputs to the PGNN. Thus, the method requires many PMU measurements and this can make the design difficult and even make it impossible to install so many PMUs in the system. The next section presents the contributions of the paper, a proposed method to select system buses for LM monitoring and train the PINN.




4. Proposed Method


In this research, a PINN will be designed to calculate the LM of power systems equipped with some appropriately selected PMUs that provide the lowest error in the training step of database cases. It should be noted that the LM must meet the voltage stability and small-signal angular stability thresholds. The PINN training process, i.e., the determination of its parameters, will be carried out through the process of solving an optimization problem using metaheuristics. Section 4.1 describes the optimization model proposed in this research, Section 4.2 describes the recent metaheuristics that were applied and compared to solve the optimization problem and Section 4.3 presents the proposed step-by-step algorithm for the successful design of PINN.



4.1. Optimization Model


The optimization problem is composed of the objective function   (  F  o b j    ( )  )  , the vector of variables   ( W , N )   and the set of equality and/or inequality constraints. The objective function aims to calculate the training error function   ( L )   described in (18) from the definition of the weights   β 1   and   β 2  . The optimization problem then involves minimizing this objective function. The objective function can be formulated as


   F  o b j    ( W , N )  = L =  β 1  ·  L 1  +  β 2  ·  L 2  =  β 1  ·  (   Y ^  1  −  Y 1  )  +  β 2  ·  (   Y ^  2  −  Y 2  )   



(19)







There are two vectors of variables in this research:  W  and  N . The vector of variables   ( W )   of this problem is the weights of the two Neural Networks that make up the PINN and can be formulated as


  W =   w  a , b   c , d     



(20)




where   a = 1 , . . . ,  N a    is the index that informs the number of neurons in a layer and   b = 1 , . . . ,  N b    is the index that informs the number of neurons in the other layer,   c = 1 , 2   is the index that informs the number of connections between two layers and   d = 1 , 2   informs each of the two PINNs.



The vector of variables   ( N )   is a vector with the combinations of buses whose PMU measurements will be used as inputs to the PGNN. If the system has   N b   buses, then the vector  N  has dimension   1 ×  N b   . If the i-th bus is selected to have its PMU measurement as input to the PGNN, then   N ( i ) = 1  ; otherwise,   N ( i ) = 0  . Mathematically, this vector can be formulated as


  N  ( i )  =     1    If   the   i - th   bus   is   selected   to   have   its   PMU   data   as   input   to   the   PGNN      0   Otherwise      



(21)




for   i = 1 , . . . ,  N b   .



From the definition of the objective function and the vectors of variables, the minimization problem of this optimization problem can then be formulated as


    Find    W , N      Minimize     F  o b j    ( W , N )  = l =  β 1  ·  l 1  +  β 2  ·  l 2  =  β 1  ·  (   Y ^  1  −  Y 1  )  +  β 2  ·  (   Y ^  2  −  Y 2  )      



(22)







The PINN training process will run until the maximum epoch limit is reached. The weights   β 1   and   β 2   need to be set by the programmer carefully. If    β 1  = 1   and    β 2  = 0  , then the training will be carried out to obtain a traditional Neural Network where only empirical knowledge is required. On the other hand, if    β 1  = 0.5   and    β 2  = 0.5  , then the training considers both empirical knowledge and physical knowledge in obtaining the PINN parameters.



The minimization problem described in (22) was solved in this research using metaheuristics available in the literature: Hiking Optimization Algorithm (HOA) [47], Artificial Protozoa Optimizer (APO) [48] and Particle Swarm Optimization (PSO) [49]. These three metaheuristics were applied separately in order to be evaluated and compared in solving the problem. Section 4.2 presents details of these metaheuristics.



After successfully completing the PINN training stage, which consists of solving the minimization problem (22), the next step is to perform the testing stage. In this process, the purpose is to evaluate the PINN already designed for scenarios not considered in the training database and thus evaluate the PINN’s ability to correctly calculate the LM of modern power systems. This process is also essential to evaluate whether the selection of buses for a PMU was effective. Three error indices were applied in this stage: (i) Mean Square Error (MSE), (ii) Root Mean Square Error (RMSE) and (iii) Mean Absolute Percentage Error (MAPE), whose equations are given by


  M S E =   1 n    ∑  i  n     y i  −   y ^  i   2   



(23)






  R M S E =     1 n    ∑  i  n     y i  −   y ^  i   2     



(24)






  M A P E =   1 n    ∑  i  n      |   y i  −   y ^  i   |    y i     



(25)




where n represents the number of samples,    y ^  i   represents the estimated measurement and   y i   represents the real/true measurement. The lower the values of these three indices, the better the PINN performance in the testing stage.




4.2. Algorithms


The optimization model developed in (22) can be solved by different methods. In this research, metaheuristics were chosen to solve this optimization model. Each of these metaheuristics are described below in detail showing their inspiration and search mechanisms.



4.2.1. Hiking Optimization Algorithm (HOA)


The HOA is a metaheuristic proposed by [47] that attempts to mimic the human activity of hiking. The authors found a similarity between the hiking process and the search for optimal solutions in optimization problems. Tobler’s Hiking Function (THF) is employed in the mathematical formulation of HOA mainly to determine the walking velocity of hikers and considers the distance covered and the elevation of the terrain.



To understand the mechanisms that define the HOA metaheuristic, we must understand that THF is formulated as


   W  i , t   = 6  e   3.5 · |   S  i , t    + 0.05 |     



(26)




where   W  i , t    is the velocity of the i-th hiker at the t-th iteration and   S  i , t    is the parameter that describes the slope of the terrain or trail where the hiker carries out his or her activity and is formulated as


   S  i , t   =    d h   d x    = tan  θ  i , t    



(27)




  θ  i , t    is the slope angle of the terrain or trail, and takes a value in the range   [ 0 ,  50 ∘  ]  ,   d x   is the difference in distance the hiker has covered and   d h   is the difference in elevation the hiker has covered.



Throughout the HOA iterative process, the hiker’s velocity and positions are updated based on the hiker’s individual and collective thinking principle in the process of exploring the environment. The velocity   W  i , t    of the hiker for each t iteration of the HOA is formulated as


   W  i , t   =  W  i , t − 1   +  γ  i , t   ·  (  β  b e s t   −  α  i , t   ·  β  i , t   )   



(28)




where   W  i , t    and   W  i , t − 1    represent the current and previous velocities of the i-th hiker,   γ  i , t    is a random value collected from a uniform distribution in the interval [0, 1],   β  b e s t    is the lead hiker who provided the best objective function of interest and   α  i , t    represents the sweep factor of the i-th hiker and can take a value in the interval   [ 1 , 3 ]  . This factor   α  i , t    is applied to ensure that the group of hikers is close to the lead hiker.



From this definition of the speed of each of the hikers, the positions of each hiker are updated by the following formulation:


   β  i , t + 1   =  β  i , t   +  W  i , t    



(29)







In most applications of metaheuristics in optimization problems, the initialization of variables considerably affects the process for the best solution and even the successful convergence of the method. With this in mind, the authors [47] decided to apply the technique of random initialization of the hikers’ positions given by


   β  i , t   =  ϕ j 1  +  δ j  ·  (  ϕ j 2  −  ϕ j 1  )   



(30)




where   δ  i , t    is a random value collected from a uniform distribution in the interval [0, 1] and the minimum and maximum values that the position variable   β  i , t    can assume are   ϕ j 1   and   ϕ j 2  .




4.2.2. Artificial Protozoa Optimizer (APO)


APO is also a recent metaheuristic that seeks to mimic the behavior of protozoa in the wild and was proposed by the authors [48]. The algorithm aims to apply some protozoan behaviors such as dormancy, foraging and reproductive behaviors in the search for the best value of the optimization problem.



The algorithm proposed by the authors was constructed by three processes: (i) foraging, (ii) dormancy and (iii) reproduction, which are defined below:




	
Foraging: In this process, protozoa may be subjected to internal factors such as foraging of protozoa and external factors such as environmental influences. There are two modes in this process: (i) autotrophic mode and (ii) heterotrophic mode. The positions of protozoa in autotrophic mode are


   X i  n e w   =  X i  + f ·   X j  −  X i  +   1  n p    ·  ∑  k = 1   n p    w a  ·  (  X  k −   −  X  k +   )   ⊙  M f   



(31)






   X i  =      x i 1     x i 2    ⋯    x i  d i m        



(32)






   X i  = s o r t  (  X i  )   



(33)






  f = r a n d ·  1 + cos     i t e r   i t e  r  m a x      · π    



(34)






  n  p  m a x   =    p s − 1  2    



(35)






   w a  =  e  −    | f (  X  k −   ) |   | f (  X  k +   ) + e p s |       



(36)






   M f   [ d i ]  =      1 ,     if   di   is   in   randperm   ( dim , dim ·   i ps   )       0 ,    otherwise      



(37)




where   X i   represents the original position of the i-th protozoan,   X i  n e w    is the new position of the i-th protozoan,   X j   is the j-th protozoan randomly chosen,   X  k −    is the protozoan randomly chosen in the k-th paired neighbor that has a rank index value lower than i,   X  k +    is the protozoan randomly chosen in the k-th paired neighbor that has a rank index value higher than i,   p s   numerically represents the population size, rand represents a value from a uniform distribution in the interval [0, 1], f is the foraging factor of this process,   i t e  r  m a x     represents the maximum number of iterations,   i t e r   represents the current iteration in the method,   n p   represents the number of neighbor pairs in the current iteration of this method based on the behavior of the protozoa among the existing external factors,   n  p  m a x     represents the largest value for   n p  ,   e p s   takes the value of 2.2204 × 10−16,   w a   represents a weight factor value, ⊙ represents the Hadamard product,   M f   represents a mapping vector that can assume the value 0 or 1 and has the size of   1 × d i m  , and   d i   represents a dimensional index value   d i ∈ [ 1 , 2 , … , d i m ]  .



In heterotrophic mode, the protozoan positions assume the following formulations:


   X i  n e w   =  X i  + f ·   X  n e a r   −  X i  +   1  n p    ·  ∑  k = 1   n p    w h  ·  (  X  i − k   −  X  i + k   )   ⊙  M f   



(38)






   X  n e a r   =  1 ± R a n d ·  1 −    i t e r   i t e  r  m a x        ⊙  X i   



(39)






   w h  =  e  −    | f (  X  i − k   ) |   | f (  X  i + k   ) + e p s |       



(40)






  R a n d =      r a n  d 1      r a n  d 2     ⋯    r a n  d  d i m         



(41)




where   X  n e a r    represents the nearby location of the protozoan,   X  i − k    represents the   ( i − k )  -th protozoan of the entire group chosen from the k-th paired neighbor and its rank index value is   i − k  ,   X  i + k    represents the   ( i − k )  -th protozoan of the entire group chosen from the k-th paired neighbor and its rank index value is   i + k  ,   w h   assumes a weight factor value and   R a n d o m   represents a vector of random values from a uniform distribution in the interval [0, 1].



	
Dormancy: A typical behavior of protozoa is that experienced in stressful situations where they assume dormant behavior even as a guarantee of survival in adverse situations. In this process, the positions of protozoa follow the following formulations:


   X i  n e w   =  X  m i n   + R a n d ⊙  (  X  m a x   −  X  m i n   )   



(42)






   X  m i n   =      l  b 1      l  b 2     ⋯    l  b  d i m         



(43)






   X  m a x   =      u  b 1      u  b 2     ⋯    u  b  d i m         



(44)




where   X  m a x    is the vector with the largest positions,   X  m i n    is the vector with the smallest positions,   u  b  d i     represents a maximum value of the   d i  -th variable,   l  b  d i     represents a minimum value of the   d i  -th variable.



	
Reproduction: Asexual reproduction is a standard behavior in the life of protozoa. Thus, there are formulations of this process and they are given by the following mathematical formulations:


   X i  n e w   =  X i  ± r a n d ·   X  m i n   + R a n d ⊙  (  X  m a x   −  X  m i n   )   ⊙  M r   



(45)






   M r   [ d i ]  =      1 ,     if   di   is   in   randperm   ( dim , dim · rand )       0 ,    otherwise      



(46)




where   M r   represents a mapping vector that can assume the value 0 or 1 and has the size   1 × d i m  , and ± represents a disturbance that in this process in question can be direct or reverse.









4.2.3. Particle Swarm Optimization (PSO)


In order to evaluate the application of traditional metaheuristics in the optimization problem proposed in this research, the PSO metaheuristic developed in 1995 was chosen and carefully evaluated in this research [49]. The authors developed the PSO algorithm to perfectly imitate the natural and strategic behavior of particles in space. This algorithm has few operations and is easy to implement. Over the years, many researchers have applied PSO in electrical engineering research lines [50,51,52]. In this algorithm, the positions of the particles in space are the variables to be determined in the proposed optimization problem, and throughout the iterative process of the algorithm these positions are updated according to the objective function and the velocity of each particle. Mathematically, the procedure for updating the particle positions in each iteration can be formulated as


   v i  k + 1   = ω  v i k  +  c 1   r 1   (  x i L  −  x i k  )  +  c 2   r 2   (  x G  −  x i k  )   



(47)






   x i  k + 1   =  x i k  +  v i  k + 1    



(48)




where the position of the i-th particle in the   k + 1  -th iteration is given by the vector x and the velocity of the particle is given by the vector v. There are other parameters of this formulation that are described below. The parameter omega is a value that represents the percentage of the previous velocity of the particle that will be applied to the next iteration, the parameters   c 1   and   c 2   are fixed during the iterations and are usually chosen between 0 and 2, the parameters   r 1   and   r 2   assume random values at each iteration from a uniform distribution whose limits are between 0 and 1,   x l   represents the vector with the best objective function for each particle throughout the iterative process and is updated at each iteration, and   x G   represents the vector with the best objective function among all the particles up to the present iteration of the algorithm and this vector is updated in all iterations when necessary. In this research, the maximum limit of iterations or epochs defines the stopping criterion. Upon reaching this limit, the vector   x G   will be the final solution to the problem.





4.3. Step-by-Step Algorithm


From the description of the optimization model and the operators of each of the metaheuristics, the following step-by-step algorithm was developed and followed for the successful design of PINN:




	
Step 01: Definition of the test system and obtaining the database of system operating points and respective load margins.



	
Step 02: Splitting the database into training and testing stages.



	
Step 03: Definition of parameters and models of the training and testing stages.



	
Step 04: Definition of metaheuristic parameters.



	
Step 05: Execution of the training step—initialize the PINN variables randomly, Equations (20) and (21), and the number of epochs to zero   (  n e  = 0 )  .



	
Step 06: Execution of the training stage—for each epoch   (  n e  <  N E  m a x   )  , search for the PINN variables that minimize the objective function of the Equation (19).



	
Step 07: Execution of the training stage: this stage ends when the counter reaches the maximum number of epochs.



	
Step 08: Execution of the test stage: evaluation of the PINN designed through indexes for a database not considered in the PINN training stage.








Figure 1 presents the flowchart of the proposed method for designing a PINN.





5. Case Studies and Discussion


Based on all the motivation, problem formulation and description of the proposed method presented in detail in the last sections, this section presents case studies in the IEEE 68-bus system and Brazilian interconnected power system with the application of the proposed method. The IEEE 68-bus test system has already been developed in different software and the base case operation was defined as a benchmark in reference [53] for future studies of the small-signal stability of power systems. The IEEE 68-bus test system is composed in its standard form of 68 buses and 16 synchronous generators, in addition to transmission lines, transformers and loads modeled as constant power. the Brazilian interconnected power system (BIPS) has 1792 synchronous generators, 35 wind generators, 9917 buses and 8187 transmission lines, and the base case operation is in [54]. Thus, the proposed method can be applied in these two test system and evaluate its ability to correctly calculate the load margin of a power system composed of a limited and selected set of PMUs in some buses of the system.



The development of a database of system operating points with their load margin values is the first step in evaluating the PINN-based method. From the initial operating point of each test system, 20,000 new operating points were constructed with guarantees of power flow existence and meeting the reactive power limits of the generators from the random variation of the reactive power and active power of the loads in the constant power model in the range between −20% and +20%. For each of these 20,000 operating points, the load margin was calculated, thus totaling 20,000 load margins of the test systems. To obtain each of the load margins, the active power and reactive power of all loads increased in the same proportion with the constant power factor.



Figure 2 and Figure 3 show the histograms of these 20,000 load margins constructed for the IEEE 68-bus system and Brazilian interconnected power system, respectively. Some interesting facts can be concluded from these figures. There are cases of load margins ranging from 0% to 18% in the IEEE 68-bus system and from 0% to 25% in the Brazilian interconnected power system. Load margins greater than 5% are desirable for the safe and stable operation of the power system. Cases of low load margins require preventive and/or corrective control measures and need to be reported to the power system operator. There is a uniform distribution of the different load margins in the range between 0% and 18% in the IEEE 68-bus system and from 0% to 25% in the Brazilian interconnected power system. This uniformity is useful in dividing the cases for the PINN training and testing stages because there will be a representation across the entire load margin range.



In the training phase, 70% of the cases in the database will be used to determine the PINN weights by solving the proposed optimization model, and the remaining 30% of the cases will be used in the PINN testing phase to evaluate its effectiveness in correctly determining the load margin in new operating cases that are not part of the training database. As mentioned previously, the PINN input measurements will be magnitude and angle measurements of the system bus voltages collected by PMUs, and these measurements are naturally subject to noise. Thus, a noise of 1% standard deviation of a Gaussian distribution was applied to the voltage measurements.



After constructing and dividing the test system database, the next step is to perform the PINN training stage using the proposed optimization model. Three metaheuristics called HOA, APO and PSO were applied and compared in the proposed method. The population of the metaheuristics was set to 50 and the stopping criterion was the maximum number of epochs chosen as 5000. The other parameters of the metaheuristics were the same as those suggested by the authors who proposed the metaheuristics themselves. Since one of the objectives of the proposed method is to select the system buses whose measurements will be input to the PINN, the maximum number of selected buses   (  N  b P M U s   )   was compared by five values—10, 15, 20, 25 and 30 for the IEEE 68-bus system and 1000, 1500, 2000, 2500 and 3000 for the Brazilian interconnected power system—to evaluate the performance and feasibility of the proposed method in being able to correctly select and find the number of buses. Firstly, the results of the training and testing stages of the IEEE 68-bus system will be presented, followed by the results of the Brazilian interconnected power system.



Table 1 shows the results achieved for the IEEE 68-bus system in terms of RMSE after the optimization model reached the maximum epoch limit for each metaheuristic and maximum number of selected buses in the PINN training stage. From these results, it is possible to make some evaluations of the PINN training stage:




	
In all cases, the training error given by the RMSE index was less than   7 ×  10  − 3    . Thus, the optimization model was able to find the appropriate values for the PINN weights in the supervised training stage with low RMSE values.



	
In comparative terms of metaheuristics, HOA presented better performance in solving the proposed optimization model than APO and PSO, as it converged with the lowest RMSE value. Regardless of the maximum number of selected buses,    N  b P M U s   = 10  ,    N  b P M U s   = 15  ,    N  b P M U s   = 20  ,    N  b P M U s   = 25   and    N  b P M U s   = 30  , HOA presented the best performance.



	
Now we will evaluate the maximum number of selected buses. Among the five values chosen—   N  b P M U s   = 10  ,    N  b P M U s   = 15  ,    N  b P M U s   = 20  ,    N  b P M U s   = 25   and    N  b P M U s   = 30  —   N  b P M U s   = 15   presented the lowest RMSE value. This shows that many PMU measurements are not always beneficial to reduce the PINN training error rate. Furthermore, the greater the number of selected buses, the greater the number of input measurements and the greater the number of PINN weights that must be projected.








The next step in the evaluation of the proposed method is to execute the test step in PINN for a set of cases not considered in the PINN training step. In this step, there are 6000 cases (30%) in the database. Table 2, Table 3 and Table 4 show the values of the RMSE, MSE and MAPE indices obtained for each of the metaheuristics and the maximum number of selected buses. From these results, it is possible to perform the following evaluations:




	
In all cases, the values of the RMSE, MSE and MAPE error indices were low and prove the ability of the PINN to correctly determine the load margin of power systems for scenarios not considered in the PINN training stage.



	
A reduced set of buses from a 68-bus system was sufficient to provide voltage measurements for the PINN capable of correctly determining the load margin of power systems. As observed in the PINN training stage and also verified in the PINN testing stage, 15 buses (   N  b P M U s   = 15  ) provided the lowest error index values in both the PINN training and testing. Thus, there is an optimal value of buses for determining the load margin based on PINN.



	
Again, the HOA metaheuristic performed better than the APO and PSO metaheuristics as it provided the lowest values for the RMSE, MSE and MAPE error indices. However, all evaluated metaheuristics presented low error values, showing the effectiveness of the PINN design optimization model.



	
In the PINN design of this research, the weights   β 1   and   β 2   of the loss function were equal in this research, that is, the PINN training was performed considering the same weights of empirical knowledge and physical knowledge. The results showed that these equal weights were promising in the PINN design.








Table 5 shows the results achieved for the Brazilian interconnected power system in terms of RMSE after the optimization model reached the maximum epoch limit for each metaheuristic and maximum number of selected buses in the PINN training stage. From these results, it is possible to make some evaluations of the PINN training stage:




	
In all cases, the training error given by the RMSE index was less than   7 ×  10  − 3    . Thus, the optimization model was able to find the appropriate values for the PINN weights in the supervised training stage with low RMSE values.



	
In comparative terms of metaheuristics, HOA presented better performance in solving the proposed optimization model than APO and PSO, as it converged with the lowest RMSE value. Regardless of the maximum number of selected buses,    N  b P M U s   = 1000  ,    N  b P M U s   = 1500  ,    N  b P M U s   = 2000  ,    N  b P M U s   = 2500   and    N  b P M U s   = 3000  , HOA presented the best performance.



	
Now we will evaluate the maximum number of selected buses. Among the five values chosen—   N  b P M U s   = 1000  ,    N  b P M U s   = 1500  ,    N  b P M U s   = 2000  ,    N  b P M U s   = 2500   and    N  b P M U s   = 3000  —   N  b P M U s   = 2000   presented the lowest RMSE value. This shows that many PMU measurements are not always beneficial to reduce the PINN training error rate. Furthermore, the greater the number of selected buses, the greater the number of input measurements and the greater the number of PINN weights that must be projected.








The next step in the evaluation of the proposed method is to execute the test step in PINN for a set of cases not considered in the PINN training step. In this step, there are 6000 cases (30%) in the database. Table 6, Table 7 and Table 8 show the values of the RMSE, MSE and MAPE indices obtained for each of the metaheuristics and the maximum number of selected buses. From these results, it is possible to perform the following evaluations:




	
In all cases, the values of the RMSE, MSE and MAPE error indices were low and prove the ability of the PINN to correctly determine the load margin of power systems for scenarios not considered in the PINN training stage.



	
A reduced set of buses from a 68-bus system was sufficient to provide voltage measurements for the PINN capable of correctly determining the load margin of power systems. As observed in the PINN training stage and also verified in the PINN testing stage, 2000 buses (   N  b P M U s   = 2000  ) provided the lowest error index values in both the PINN training and testing. Thus, there is an optimal value of buses for determining the load margin based on PINN.



	
Again, the HOA metaheuristic performed better than the APO and PSO metaheuristics as it provided the lowest values for the RMSE, MSE and MAPE error indices. However, all evaluated metaheuristics presented low error values, showing the effectiveness of the PINN design optimization model.



	
In the PINN design of this research, the weights   β 1   and   β 2   of the loss function were equal in this research, that is, the PINN training was performed considering the same weights of empirical knowledge and physical knowledge. The results showed that these equal weights were promising in the PINN design.









6. Conclusions


This paper presents a proposed optimization model for PMU bus selection and the design of a Physics-Informed Neural Network to determine the load margin in modern power systems. Three different metaheuristics were applied and evaluated in solving this proposed optimization model in the IEEE 68-bus system and Brazilian interconnected power system. From the development, execution and results analysis of the proposed method, the following general conclusions can be drawn:




	
The low error values achieved in the PINN testing stage demonstrate the success of the proposed method in determining the appropriate PINN parameters and thus correctly calculating the load margin. The metaheuristics were effective in solving the optimization model, with the Hiking Optimization Algorithm metaheuristic being superior.



	
The proposed method was also successful in selecting a number of buses from the test system whose voltage measurements would be inputs to the PINN. The results showed that there is an optimal value of number of buses that provides an optimal error value in the PINN test stage.



	
The generalization of the Neural Network was improved by applying a loss function with physical characteristics in the training stage. The increase in the generalization capacity of PINN allowed a better prediction of the load margin as can be observed in the results obtained in the PINN testing stage.
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Figure 1. Flowchart of the proposed method for designing a PINN. 
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Figure 2. Histogram of distribution of operating conditions and load margins for the IEEE 68-bus system. 
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Figure 3. Histogram of distribution of operating conditions and load margins for the Brazilian interconnected power system. 
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Table 1. RMSE values of the IEEE 68-bus system after completing the PINN training stage using different metaheuristics.
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	Algorithm
	     N bPMUs  = 10    
	     N bPMUs  = 15    
	     N bPMUs  = 20    
	     N bPMUs  = 25    
	     N bPMUs  = 30    





	Hiking Optimization Algorithm
	   4.245 ×  10  − 3     
	   3.392 ×  10  − 3     
	   4.021 ×  10  − 3     
	   4.587 ×  10  − 3     
	   5.391 ×  10  − 3     



	Artificial Protozoa Optimizer
	   4.559 ×  10  − 3     
	   3.583 ×  10  − 3     
	   4.367 ×  10  − 3     
	   4.801 ×  10  − 3     
	   5.622 ×  10  − 3     



	Particle Swarm Optimization
	   5.175 ×  10  − 3     
	   4.008 ×  10  − 3     
	   4.862 ×  10  − 3     
	   5.419 ×  10  − 3     
	   6.253 ×  10  − 3     










 





Table 2. RMSE values of the IEEE 68-bus system after performing the PINN testing step using different metaheuristics.






Table 2. RMSE values of the IEEE 68-bus system after performing the PINN testing step using different metaheuristics.





	Algorithm
	     N bPMUs  = 10    
	     N bPMUs  = 15    
	     N bPMUs  = 20    
	     N bPMUs  = 25    
	     N bPMUs  = 30    





	Hiking Optimization Algorithm
	   5.392 ×  10  − 3     
	   4.281 ×  10  − 3     
	   5.115 ×  10  − 3     
	   5.607 ×  10  − 3     
	   6.499 ×  10  − 3     



	Artificial Protozoa Optimizer
	   5.671 ×  10  − 3     
	   4.453 ×  10  − 3     
	   5.408 ×  10  − 3     
	   5.992 ×  10  − 3     
	   6.813 ×  10  − 3     



	Particle Swarm Optimization
	   6.316 ×  10  − 3     
	   5.195 ×  10  − 3     
	   5.997 ×  10  − 3     
	   6.571 ×  10  − 3     
	   7.429 ×  10  − 3     
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	Algorithm
	     N bPMUs  = 10    
	     N bPMUs  = 15    
	     N bPMUs  = 20    
	     N bPMUs  = 25    
	     N bPMUs  = 30    





	Hiking Optimization Algorithm
	   2.907 ×  10  − 5     
	   1.833 ×  10  − 5     
	   2.616 ×  10  − 5     
	   3.144 ×  10  − 5     
	   4.224 ×  10  − 5     



	Artificial Protozoa Optimizer
	   3.216 ×  10  − 5     
	   1.983 ×  10  − 5     
	   2.925 ×  10  − 5     
	   3.590 ×  10  − 5     
	   4.642 ×  10  − 5     



	Particle Swarm Optimization
	   3.989 ×  10  − 5     
	   2.699 ×  10  − 5     
	   3.596 ×  10  − 5     
	   4.318 ×  10  − 5     
	   5.519 ×  10  − 5     










 





Table 4. MAPE values of the IEEE 68-bus system after performing the PINN testing step using different metaheuristics.
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	Algorithm
	     N bPMUs  = 10    
	     N bPMUs  = 15    
	     N bPMUs  = 20    
	     N bPMUs  = 25    
	     N bPMUs  = 30    





	Hiking Optimization Algorithm
	   1.549 ×  10  − 4     
	   1.108 ×  10  − 4     
	   1.467 ×  10  − 4     
	   1.671 ×  10  − 4     
	   1.923 ×  10  − 4     



	Artificial Protozoa Optimizer
	   1.896 ×  10  − 4     
	   1.361 ×  10  − 4     
	   1.611 ×  10  − 4     
	   1.835 ×  10  − 4     
	   2.206 ×  10  − 4     



	Particle Swarm Optimization
	   2.165 ×  10  − 4     
	   1.842 ×  10  − 4     
	   2.076 ×  10  − 4     
	   2.251 ×  10  − 4     
	   2.594 ×  10  − 4     










 





Table 5. RMSE values of the Brazilian interconnected power system after completing the PINN training stage using different metaheuristics.
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	Algorithm
	     N bPMUs  = 1000    
	     N bPMUs  = 1500    
	     N bPMUs  = 2000    
	     N bPMUs  = 2500    
	     N bPMUs  = 3000    





	Hiking Optimization Algorithm
	   5.781 ×  10  − 3     
	   5.178 ×  10  − 3     
	   4.695 ×  10  − 3     
	   5.007 ×  10  − 3     
	   5.862 ×  10  − 3     



	Artificial Protozoa Optimizer
	   5.947 ×  10  − 3     
	   5.641 ×  10  − 3     
	   4.991 ×  10  − 3     
	   5.619 ×  10  − 3     
	   6.276 ×  10  − 3     



	Particle Swarm Optimization
	   6.413 ×  10  − 3     
	   6.074 ×  10  − 3     
	   5.610 ×  10  − 3     
	   5.943 ×  10  − 3     
	   6.681 ×  10  − 3     










 





Table 6. RMSE values of the Brazilian interconnected power system after performing the PINN testing step using different metaheuristics.
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	Algorithm
	     N bPMUs  = 1000    
	     N bPMUs  = 1500    
	     N bPMUs  = 2000    
	     N bPMUs  = 2500    
	     N bPMUs  = 3000    





	Hiking Optimization Algorithm
	   6.819 ×  10  − 3     
	   6.162 ×  10  − 3     
	   5.705 ×  10  − 3     
	   6.314 ×  10  − 3     
	   6.918 ×  10  − 3     



	Artificial Protozoa Optimizer
	   7.214 ×  10  − 3     
	   6.503 ×  10  − 3     
	   6.072 ×  10  − 3     
	   6.519 ×  10  − 3     
	   7.346 ×  10  − 3     



	Particle Swarm Optimization
	   7.537 ×  10  − 3     
	   6.957 ×  10  − 3     
	   6.616 ×  10  − 3     
	   7.008 ×  10  − 3     
	   7.684 ×  10  − 3     










 





Table 7. MSE values of the Brazilian interconnected power system after performing the PINN testing step using different metaheuristics.
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	Algorithm
	     N bPMUs  = 1000    
	     N bPMUs  = 1500    
	     N bPMUs  = 2000    
	     N bPMUs  = 2500    
	     N bPMUs  = 3000    





	Hiking Optimization Algorithm
	   4.650 ×  10  − 5     
	   3.797 ×  10  − 5     
	   3.255 ×  10  − 5     
	   3.987 ×  10  − 5     
	   4.786 ×  10  − 5     



	Artificial Protozoa Optimizer
	   5.204 ×  10  − 5     
	   4.229 ×  10  − 5     
	   3.687 ×  10  − 5     
	   4.250 ×  10  − 5     
	   5.396 ×  10  − 5     



	Particle Swarm Optimization
	   5.681 ×  10  − 5     
	   4.840 ×  10  − 5     
	   4.377 ×  10  − 5     
	   4.911 ×  10  − 5     
	   5.901 ×  10  − 5     










 





Table 8. MAPE values of the Brazilian interconnected power system after performing the PINN testin