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Abstract: Electric vehicles (EVs) have emerged as the best alternative to conventional fossil fuel-based
vehicles due to their lower emission rate and operating cost. The escalating growth of EVs has
increased the necessity for distributed charging stations. On the other hand, the fast charging of EVs
can be improved by the use of efficient converters. Hence, the fractional order proportional resonant
(FOPR) controller-based current-fed bidirectional DC-DC converter is proposed in this work for EV
charging applications. The output capacitance of the switches is utilized to achieve the resonance
condition for zero voltage switching (ZVS) and zero current switching (ZCS). The proposed converter
topology is implemented using the MATLAB Simulink tool. The result analysis verified that the
proposed converter topology provides better switching characteristics for different operating modes,
which is necessary for a high-voltage EV charger. Hence, it is proved that the proposed converter is
more efficient for battery charging in EVs.

Keywords: current-fed dual active bridge; FOPR controller; ZVS; phase shift; pulse width modulation

1. Introduction

The power electronic converter is a device that converts power from one form to
another by changing the voltage levels. Based on the type of conversion, the converters
are categorized into AC-DC, DC-DC, AC-AC, and DC-AC converters, which are used
in renewable energy conversion, electric vehicles, industrial automation, and consumer
electronics. [1]. DC-DC converters are extensively used in modern electronic systems to
transfer power from the source to the load [2]. The isolated DC-DC converters meet multiple
power conversion applications’ input and output requirements [3]. The bidirectional
converters are gaining more attention due to the advantage of power conversion in both
directions. The bidirectional converter is widely used in EV charging applications due
to its ability to power conversion between the grid and EVs. The existing bidirectional
DC-DC converter is characterized as voltage-fed or current-fed [4]. The unidirectional and
bidirectional converters are used in EV charging applications to charge the EV batteries. In
a buck converter, the output voltage is lower than the input voltage, whereas the output
voltage is higher than the input voltage in the boost converter [5].

Furthermore, the converters are categorized into voltage-fed and current-fed convert-
ers depending on the input source. The voltage-fed converters require a high winding ratio
between the primary and secondary sides of the transformer to enhance the boosting action,
which causes system complexities like higher voltage spikes across the switches [6,7]. The
voltage-fed converters are affected by shoot-through problems. The current-fed DC-DC
converter minimizes input current ripples [8]. Due to the improved short circuit protection,
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the current-fed power converters are used in lower and higher current meritorious appli-
cations [9]. The current-fed converters minimize the input filter requirement and higher
voltage gains [10]. Furthermore, the current-fed topology reduces the switches’ conduction
losses and current rating [11]. The soft switching operation is the major requirement of
the converter topology, which includes ZVS and ZCS that is achieved by proper converter
modeling, which improves the system efficiency [12,13].

In recent power generation technologies, batteries have been used for power storage
and power transmission applications [14]. The battery charging application needs an
efficient converter to cope with the charging and discharging behavior of the battery.
The converter design for battery application must consider some necessary aspects like
current ripple, voltage ripple, and voltage variations [15]. Thus, due to their high power
density, current-fed bidirectional DC-DC converters are used in battery applications [16].
The bidirectional DC-DC converters control the power flowing from the energy storing
devices [17]. The current-fed three-port DC-DC converters are employed in battery charging
applications due to their efficacy in performance [18]. The current-fed double inductor
push–pull converter is used in the current charger for higher-voltage capacitors [19]. Due
to the multiport interface’s ability, the current-fed dual active bridge DC-DC converters are
used in energy storage systems [20].

Moreover, an improved charging mechanism was introduced in [21], which suggested
that the model ensures high-power quality under different power supply modes. The
high-power charging and its control mechanism are suggested in [22]. In advance, multi-
agent systems [23,24] are used in microgrid. Various converter configurations are discussed
in [25] to assess their performance under EV operation. By analyzing existing works in the
literature section, it was found that the bidirectional DC-DC converters in battery charging
applications reduce the voltage stress and current ripples. In particular, several research
works previously reported to have implemented the converter’s isolated topology. In the
isolated topologies, isolation material is required between the conductors and cores for high-
frequency transformers. At the same time, insolation is affected by environmental factors
and thermal effects [26]. To improve the gain of the converter circuit, the transformer and
transfer capacitor is added by the author in [27]. The suggested model has the drawback
of the large size of inductors. Hence, the current-fed bidirectional DC-DC converter is
proposed in this work to overcome these issues.

The widespread use of EVs has increased the demand for cost-effective and high-speed
charging facilities in the EV application. Currently, EV batteries have utilized a significant
portion of the EV cost. Hence, more research has been conducted on minimizing switching
losses and improving power generation. Although several topologies are developed in this
sector, they have some issues, like lower efficiency, switching losses, and high-frequency
switching. Moreover, the complexities are increased in the model due to a large number of
components and transformer windings. The novelty of this work is the proposed topology
of the current-fed DC-DC converter and its controller

To reduce the voltage stress across switches and eliminate voltage spikes at switches,
a half-bridge inverter with two main switches is used. Moreover, a full-bridge controlled
rectifier with four switches is used in the high-voltage side of the converter. A sliding
mode controller was utilized in [28] for reducing uncertainties in DC-to-DC buck convert-
ers. Neutral–point–clamped power converters are controlled using sliding mode control
with gain adaptation in [29]. Coati-optimized FOPID controllers for non-isolated DC–DC
converters in EV charging stations were suggested in [30]. Traditional control techniques,
such as proportional–integral (PI) and sliding mode control, have been widely employed
to regulate the output voltage and current of converters. However, these techniques often
suffer from limitations such as sensitivity to parameter variations, external disturbances,
and chattering phenomena. To address these challenges, this paper proposes a novel FOPR
controller for DC-DC converters to transfer the power using phase shift modulations for
power transfer and pulse width modulation for voltage matching. The proposed FOPR con-
troller offers several advantages over conventional controllers. The operating modes and
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relevant mathematical equations are modeled for the proposed system. The contribution of
the work is given as follows:

• Model current-fed bidirectional DC-DC converter with fewer switches in the EV
charging application.

• Enhance the switching pulse generation using the FOPR controller-based pulse width
modulation technique.

• Evaluate the converter topology under ZVS and ZCS operating conditions.

The structure of the paper is organized as follows: Section 2 provides some of the
related works for bidirectional DC-DC converters with different control strategy. Section 3
explains the proposed methodology with operating modes of the proposed converter and
FOPR controller. Section 4 discusses the implemented Matlab results and performance
comparison with existing works. Section 5 involves the conclusion and future work.

2. Related Works

Some of the existing methods used for EV charging applications with different con-
verters are discussed in this section.

Ranjan and Pati [31] suggested the non-isolated half-bridge topology for the converter
used in the EV application. That suggested model was implemented to provide bidirectional
flow under normal and abnormal conditions. That model was designed by combining
the step-up DC voltage and step-down DC voltage. The control scheme was divided into
four blocks to examine the system’s condition. The controller blocks 1, 2, 3, and 4 consist of
current sensing, error circuit, comparator, and logic gates, respectively. In that model, the
converter increases the output voltage to 40 V for 14 V input voltage.

Wu et al. [32] introduced the isolated DC-DC converter with a high gain ratio for
EV storage systems. That proposed model was investigated under battery discharging
and charging modes under step-up and step-down modes. The proportional–integral–
derivative (PID) controller controlled that suggested converter model. The microcontroller
unit generated switching pulses to the converter during the variation in input voltage. Thus,
that converter model achieved wider and higher voltage gains. Moreover, the switching
losses were minimized by the ZVS strategy.

Park et al. [33] proposed the current-fed resonant converter using asymmetric pulse
width modulation (APWM). The current-fed models were the boost converter for increasing
the power flow. Moreover, it was operated in buck mode for backward power conversion.
The APWM strategy regulates the output voltage based on the variations in input voltage.
Moreover, the ZVS capability of the model was verified based on the PWM signals and the
voltage of the power switch.

Tomar et al. [34] proposed an isolated current-fed bidirectional DC-DC converter in
the Reconfigurable Split Battery (RSB) for charging EVs. That converter model can be
worked in different charging and discharging modes to charge the RSB voltage source. In
discharging mode, voltage gain was high, and the charging of the grid from the batteries
was allowed. In charging mode, RSB chooses the corresponding pattern to insert a high
current caused by high potential differentiation. Converters were provided with ZVS for
MOSFET and ZCS for converter diodes.

Wu et al. [35] proposed the buck–boost current-fed isolated DC-DC converter to
reduce the voltage spike and Transient Current Mutation. That suggested model was
implemented in the EV chargers and other energy storage systems to provide the buck and
boost modes of operation. In addition, the switching algorithm was introduced between the
buck and boosted modes of operation to minimize the voltage spikes across the switches.
The smooth operation was performed by comparing inductor current control and system
control variables.

Piasecki et al. [36] suggested a single active bridge to protect against overvoltage. The
simulated model of that suggested converter shows the improvements in that model. A
two-level AC-DC converter was initially modeled along with the control strategies on
the grid side. The suggested converter model allows galvanic isolation between the EV
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battery and the main supply. Moreover, the stability was improved by adding multiple
parallel modules.

Liu et al. [37] suggested an isolated two-stage energy storage system converter model.
That suggested model comprises two converter loops, such as open loop fixed frequency
and buck converter for regulating the voltage. An asymmetrical resonant tank was modeled
to produce different voltage gains. In the energy storage system application, an integrated
transformer with leakage reactance was designed to improve the power density.

The major disadvantage of EVs is the recharging point, which involves short driving
range, low speed, battery replacement, and charging duration. Boost chargers with con-
verters and controllers were used to minimize the charge duration [33,38]. The buck–boost
converter could not obtain the high voltage gain because of poor efficiency [35]. The fly-
back converter has drawbacks of more electromagnetic interference, high ripple current,
and more losses. Moreover, the bidirectional DC-DC converter has some issues, such as
noise, which is more expansive and needs more choppers due to an unstable voltage sup-
ply [34]. The existing converter topologies yield voltage stress across the switches, reducing
conversion capability. In addition, the buck–boost converters have a lower duty ratio and
cannot provide a lower output voltage over a wide input voltage range [28]. Hence, an
efficient current-fed converter topology is required for battery charging applications to
achieve ZVS and ZCS.

3. Proposed Methodology

In this proposed work, a converter is designed for the EV application, which is excited
by the voltage source converted to current. This paper aimed to design a current-fed
isolated bidirectional DC/DC converter with a novel topology varying the number of
switches, capacitors, and transformers from the existing converter topology. The FOPR-
controlled modified phase shift pulse width modulation generates the switching signals.
A high-frequency transformer isolates the inverter and rectifier of the system. The FOPR-
based controller provides switching pulses to the inverter and converter. Switching pulses
transfer power from input to output if the output exceeds the reference voltage.

Similarly, if the output voltage exceeds the input side, power is transferred from the
output to the input side. The proposed modulation technique smoothens the switching
condition of each switch on both the primary and secondary lines of the converter. The
novel approach for designing the current-fed bidirectional DC-DC converter is depicted in
Figure 1.
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Figure 1. Proposed FOPR-controlled current-fed DC-DC converter.

3.1. Proposed Current-Fed Isolated Bidirectional DC/DC Converter

The proposed architecture of the current-fed isolated bidirectional DC-DC converter is
depicted in Figure 2. The switching signals for the proposed converter are generated by
FOPR-controlled modified pulse width phase shift modulation. L1 and L2 constitute the
input inductors, which provide current to the respective switches. The leakage reactance
of the transformer Xlr is modeled as Lr inductor. The half-bridge inverter consists of the
main switches Sa and Sb and the auxiliary switches Sa1 and Sb1. A high-frequency step-
up transformer is used to isolate the output from the input; further, the purpose of the
transformer is to step up the input voltage.
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Figure 2. Proposed bidirectional DC-DC converter. Figure 2. Proposed bidirectional DC-DC converter.

The proposed topology of the converter is suitable for vehicular applications, which
are excited by a voltage source that is converted into current. The proposed converter
topology consists of parallel diodes such as Da, Da1, Db, Db1, Dc, De, Dd, and Df and
parasitic capacitors such as Ca, Ca1, Cb, Cb1, Cc, Ce, Cd, and Cf. Moreover, the inductances
L1 and L2 are used as current sources, and the leakage inductances Lr are connected to the
transformer. The switching cycles are divided into 12 stages. The half switching cycle of the
proposed converter is explained in detail. The key waveforms of the proposed converter
are depicted in Figure 3.
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3.2. Modes of Operation

Several modes of operation explain how the proposed converter topology works. The
modes of operation of the proposed converter are depicted in Figure 4. Moreover, a detailed
explanation of every operating mode is explained below.

➢ Mode 0: In this mode, the switches Sa and Sb1 are closed on the primary side, and the
switches Sd and Se are closed on the rectifying side or the secondary side converter.
The inductor L1 stores energy by the switch Sa, and power is transferred from input
to output. The current flow through the circuit in mode 0 is depicted in Figure 4a.
The equation mentioned below gives the current flowing through the transformer or
leakage inductance in this mode.

ilr =
−Vpq

Xlr
= −I(0) (1)

Xlr = ωLr (2)

ω = 2 × π × f (3)

where f is the switching frequency, ω is the angular frequency, Xlr is the leakage
reactance of the transformer, Lr is the leakage inductance, ilr is the current flow
through the transformer, and Vpq is the voltage between points p and q.

➢ Mode 1 (δ0 − δ1): In this mode, at δ0, the switch Sb1 is turned off, and switches Sa in
the primary side and Sd and Se in the secondary side are closed. At the instant that Sb1
is turned off, Lr, Cb, and Cb1 begin to resonate, eliminating the voltage spikes at the
switch Sb1 during turn-off. In the resonance, the condition Cb discharges the energy,
and Cb1 charges. The current flowing through the circuit during mode 1 operation is
shown in Figure 4b.

➢ Mode 2 (δ1 − δ2): Cb is discharged fully, and therefore, Db starts conducting. Since
Db is conducting, the voltage across the switch Sb is zero to obtain the ZVS. From the
instant of δ1, the switch Sb can be turned on in the ZVS condition that is mathematically
framed in the following equations. In this mode, Sa is conducted on the primary side,
and Sb and Se are closed on the secondary side. δ1 − δ2 is the extra duration in which
the main switch conducts for more than 0.5 d (d is the duty cycle). This extra duration
is expressed below in terms of the duty cycle.

(δ2 − δ1) = (d − 0.5)2π (4)

δ2 = δ1 + (d − 0.5)2π (5)

ilr(δ1−2) = −I(0) +
1
Lr

δ∫
δ1

Vpqdt (6)

ilr = −I(0) +
Vpq(δ − δ1)

2Xlr
(7)

Vpq =
N1

N2
× Vout (8)

ilr = −I(0) +
N1Vout(δ − δ1)

2N2Xlr
(9)

Here, δ signifies the time duration, and N1 and N2 are the number of windings in the
primary and secondary sides of the transformer. Current in the transformer primary
during this mode is expressed in Equation (9). Vout is the voltage fed at the load,
the same as the transformer’s secondary side voltage. The current flowing direction
during mode 2 is shown in Figure 4c.
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➢ Mode 3 (δ2 − δ3): In this mode, at δ2, the switch Sa is turned off, and the switches Sb
in the primary side and Sd and Se in the secondary side are closed. At the instant Sa
is turned off, Lr, Ca, and Ca1 begin to resonate, eliminating the voltage spikes at the
switch Sa during turn-off. In the resonance, the condition Ca1 discharges the energy,
and Ca will charge. The current flowing through the transformer during this mode is
derived as follows.

ilr(δ2−3) = −I(0) +
1
Lr

δ2∫
δ1

Vpqdt +
1
Lr

δ∫
δ2

Vpqdt (10)

iir(δ2−3) = −I(0) +
Vpq(d − 0.5)2π

2Xlr
+

Vpq[δ − δ1 − (d − 0.5)2π)]

Xlr
(11)

iir(δ) = −I(0) +
Vpq(d − 0.5)π

Xlr
+

Vpq[δ − δ1 − (d − 0.5)2π)]

Xlr
(12)

iir(δ) = −I(0) +
N1Vout(d − 0.5)π

N2Xlr
+

N1Vout[δ − δ1 − (d − 0.5)2π)]

N2Xlr
(13)

The term (d − 0.5)2π is the extra duration for which the main switches Sa or Sb are
closed during the one-half cycle. The current flowing direction of mode 3 is shown in
Figure 4d.

➢ Mode 4 (δ3 − δ4): In this mode, Ca1 is discharged fully, and therefore, Da1 starts
conducting. Since Da1 is closed, the voltage across the switch Sa1 is zero. From the
instant of δ3, the switch Sa1 can be turned on in the ZVS condition. The current
through the leakage inductance reverses to a positive direction in the middle of this
mode. In this mode, Sb is conducted on the primary side, and Sd and Se are conducted
on the secondary side, but both are turned off δ4. The current flowing direction of
mode 4 is shown in Figure 4e.

➢ Mode 5 (δ4 − δ5): In this mode of operation, switches Se and Sd are turned off on the
secondary side. On the primary side, Sb and Sa1 are already in conduction. During
this mode, Lr, Cc, Cd, Ce, and Cf begin to oscillate. The capacitors of just turned-off
switches charge (Cd and Ce), and the other two capacitors (CV and Cf) discharge
through the leakage inductance of the transformer. The current flowing direction of
mode 5 is shown in Figure 4f.

➢ Mode 6 (δ5 − δ6): In this mode, diodes Dc and Df in the secondary side conduct; hence,
the voltage across and current through the switches are zero [39–41]. The current
flowing direction of mode 6 is shown in Figure 4g.

The equivalent circuit for the resonant condition is shown in Figure 5. The current
flowing away from the positive plate of the capacitor Cb means Cp is discharging in a
similar way Cb1 is charging.

Both the current from i2 and ilr is utilized for charging the capacitor Cb. The voltage
across the capacitor Cp is clamped at Vpp. This instance is the perfect time to switch on the
Sc and Sf switches, which are turned on by both ZVS and ZCS conditions. On the primary
side, the Sb and Sa1 switches are in conduction.

Table 1 shows the details of the mode transition. The above mode explanation is
limited only to the first half-cycle, since the circuit is symmetrical. The next half-cycle
operation is similar to the first half-cycle.
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Figure 5. Resonant equivalent circuit.

Table 1. Details of mode transition.

Mode Number Duration (s) Conduction Turn ON Turn OFF

Mode 0 0 − δ0 SaSb1SdSe - -

Mode 1 δ0 − δ1 SaSdSe - Sb1

Mode 2 δ1 − δ2 SaDbSdSe Sb -

Mode 3 δ2 − δ3 SbSdSe - Sa

Mode 4 δ3 − δ4 SbSdSeDa1 Sa1 -

Mode 5 δ4 − δ5 Sa1Sb - SdSe

Mode 6 δ5 − δ6 Sa1SbDcD f ScS f -

3.3. Voltage Matching by Varying Duty Cycle

The following equation gives the transformation ratio of the linear transformer.

N1

N2
=

Vpq

Vrs
(14)

Vrs and Vout are the same, substitute these in the above equation as follows:

N1

N2
=

Vpq

Vout
(15)

The average voltage across the inductors L1 or L2 during the energy storing period (d)
and energy releasing period (1 − d) is zero, so write it below.

Vind + (Vin − Vpq)(1 − d) = 0 (16)

Using Equations (15) and (16), the duty cycle for the main switches is calculated
as below.

d = 1 − N2Vin
N1Vout

(17)

From the above duty cycle equation, for boost mode operation, the duty cycle is more
than 0.5. The duty cycle is varied using the pulse width modulation technique to obtain the
required output voltage across the load.

3.4. Power Transfer by Phase Shift (α)

The phase shift angle α is the angle between Vpq and Vrs; by changing the phase shift
angle, the magnitude and the direction of power transfer are modulated. If Vpq is leading
with respect to Vrs by an angle of α, then power is transformed from input to output. If
Vrs leads Vpq by an angle of α, then power is transformed from the output to the input, or
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the input side battery is charged. As mentioned below, the phase shift range is lag or leads
90 degrees.

α ∈ (−0.5π ≤ α ≤ 0.5π) (18)

3.5. ZVS Condition

The following three conditions control the ZVS of the switches used in the primary
side converters for the boost mode of operation.

Condition 1
|ilr(δ0)| > i2(δ0) (19)

Vpq

Xlr
>

1
L2

β∫
0

Vindt (20)

where β is (dTs)/8, Ts is the time period of switching frequency, and d is the duty cycle of
the main switches.

Vpq

Xlr
>

Vin
L2

[
dTs

8

]
(21)

From the above equation, it is clear that the magnitude of I(0) should be less than the
upper limit of the current flowing through the inductor L2.

Condition 2

When the main switch Sa is switched off, the current through the transformer should
be less than the current through the inductor L2.

ilr(δ2) < i2(δ2) (22)

−I(0) +
N1Vout(d − 0.5)π

N2Xlr
<

Vin
L2

[
dTs

8

]
(23)

Condition 3

In this instant, the transformer current should reverse its direction completely.

ilr(δ4) > 0 (24)

The main switch Sb should be switched on to satisfy this condition by controlling the
angle α.

3.6. Control Strategy Using FOPR Controller

The magnitude and direction of the transferred power are controlled by varying the
phase shift angle α, whereas voltage matching is conducted by varying the pulse width
modulation of the duty cycle d of the two main switches Sa and Sb.

Vout =
N2Vin

N1(1 − d)
(25)

Pout =
N1VinVoutα(π − α)

N2Xlrπ
W (26)

The power transfer from the low voltage input side to the load side is performed by
boost mode, whereas reverse power transfer is performed by buck mode of conduction. The
FOPR-based controller is implemented to perform the voltage and power modulations [42].
The basic block of the FOPR controller is given in Figure 6.
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In the proposed system, a DC voltage source is applied as input; generally, a bidirec-
tional DC-DC converter battery is fed as input. Bidirectional converters are used in those
practical applications, since the battery delivers and charges the power sequentially. The
converter operates in boost mode when the output voltage exceeds the reference set voltage.
The transformer’s primary and secondary side voltage is matched by varying the pulse
width variation of the duty cycle. Power is transferred from the input low-voltage side to
the output high-voltage side.

The output of the FOPR controller is the outcome of adding three terms, of which
two depend on the controller’s output and one term depends on the error signal. The
diagrammatic representation of the FOPR controller implemented in this present work
is shown in the figure above. Here, Kp and Ki are constants, ω0 is the angular switching
frequency, and µ is a fractional number. The FOPR controller’s advantages are wider
bandwidth and maximum gain for the selected frequency.

3.7. Design Calculation

➢ Output voltage

The voltage at the higher end of the proposed converter is obtained by applying the
values of Equation (25).

Vin = 25 (27)

N2

N1
= 2 (28)

d = 0.55 (29)

Vout = 111.11V (30)

The output voltage is calculated for a duty ratio of 55 percent of the main switches
with a transformation ratio of 2. The input voltage range is used here from 18 V to 25 V
upper limit. Hence, the battery is in discharging mode.

➢ Leakage reactance of the transformer

The leakage reactance of the step-up transformer is an important part of the proposed
system. Its value is obtained from the output power equation mentioned in Equation (26).
The output power of 2 KW is designed, and a phase shift angle of α = 30 is considered for
designing the leakage reactance of the step-up transformer.

2000 =
25 × 111 × 0.523(3.14 − 0.523)

2 × Xlr × 3.14
(31)

Xlr = 0.3023 Ω (32)

A higher frequency of 100 kHz is employed in the inverter stage, which is provided to
design the transformer leakage reactance.

2 × π × f × Lr = 0.3023 Ω (33)
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Lr = 49µH (34)

➢ Calculation of maximum transformer current

The maximum current that flows through the transformer’s leakage reactance is
obtained from Equation (1).

Vpq =
Vin

1 − d
(35)

Here, Vpq is the voltage across the primary side of the transformer, which is calculated
from the duty cycle of the main switches.

Vpq =
25

(1 − 0.55)
(36)

Vpq = 56V (37)

ilr =
56

0.3023
(38)

Here, ilr = 184 A; this is the maximum limit of inductor current passing through the
leakage reactance of the transformer.

➢ Input inductors

The input inductors L1 and L2 are designed based on the switching frequency duty
cycle and its permissible ripple voltage.

Lx =
Vind

∆ixFsF
(39)

Lx =
25 × 0.55

18 × 100 × 103 H (40)

Lx = 8.5µH (41)

The input inductor values are calculated for a duty cycle of 55 percent with 18 A ripple.

4. Simulation Results

The proposed bidirectional current-fed DC-to-DC converter model’s simulation model
is shown below. The simulation for the proposed converter is performed by using Mat-
lab/Simulink. The Simulink block of the proposed work is shown in Figure 7.

Electricity 2024, 5, FOR PEER REVIEW 13 
 

 

3023.0
56

=lri  (38) 

Here, ilr = 184 A; this is the maximum limit of inductor current passing through the 
leakage reactance of the transformer. 
 Input inductors 

The input inductors L1 and L2 are designed based on the switching frequency duty 
cycle and its permissible ripple voltage. 

sx

in
x Fi

dV
L

∆
=  (39) 

HLx 31010018
55.025
××

×
=

 
(40) 

HLx µ5.8=
 

(41) 

The input inductor values are calculated for a duty cycle of 55 percent with 18 A 
ripple. 

4. Simulation Results 
The proposed bidirectional current-fed DC-to-DC converter model’s simulation 

model is shown below. The simulation for the proposed converter is performed by using 
Matlab/Simulink. The Simulink block of the proposed work is shown in Figure 7. 

 
Figure 7. Simulation model for the proposed DC-to-DC converter. 

FOPR is used to provide a switching sequence based on the mode of charging or 
discharging. The converter operates in boost mode during the discharging mode, and the 
converter operates in buck mode for charging. The parameters used in the simulation are 
mentioned in Table 2. 

  

Figure 7. Simulation model for the proposed DC-to-DC converter.



Electricity 2024, 5 1034

FOPR is used to provide a switching sequence based on the mode of charging or
discharging. The converter operates in boost mode during the discharging mode, and the
converter operates in buck mode for charging. The parameters used in the simulation are
mentioned in Table 2.

Table 2. Simulation parameters.

Parameter Symbol Value

Input voltage Vin 25 V

Output voltage Vout 111 V

Switching frequency F5 100 kHz

Transformation ratio N1: N2 1:2

Input inductance L1 8.5 µH

Input inductance L2 8.5 µH

Leakage reactance Lr 90 µH

Clamping capacitor Cp 2.6 µF

Output capacitor C 10 µF

Duty cycle d 0.55

Proportional constant Kp 0.5

Integral constant Ki 0.6

Fractional order µ 0.6

Selected angular frequency ω0 6.18 × 105 rad/s

4.1. Discharging Boost Mode

The voltage across the primary and secondary side transformer is shown in Figure 8.
The output voltage across the respective transformer matches well with the expected
pattern of the output waveform. The results show that the voltage across the secondary
side is increased more than the primary side of the transformer when the converter is in
boost mode.
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In the proposed converter, a high switching frequency boosts the output voltage with
a reduced input inductance value. Hence, the weight of the inductor and the transformer
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core area subsequently decreased the cost. The current measured at the inductor is shown
in Figure 9.
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Figure 9. Current through the inductor. (a) L1, (b) L2, and (c) leakage reactance.

The pattern of the waveforms matches well with the expected current waveforms.
From the diagrams, the instant of δ0, the inductor current L2 is lesser than the magnitude of
the current flowing through the leakage reactance. Also, δ2, the current through the leakage
inductor is less than the input inductor L2 during the instant. Hence, the conditions for
ZVS are satisfied, and all the switches will operate in ZVS conditions. The small amount of
current circulation allows the diode to conduct to ensure ZCS operation.

In most cases, ZCS is achieved while ZVS is a turn-off. Similarly, the conditions are
applied for ZCS, and the switches are operated in ZCS conditions. Since the conditions
are satisfied, all the switches, both on the inverting side and rectifying side switches, are
operated in ZVS further by utilizing the output capacitance for the resonant circuit, and the
voltage spikes at the switches are eliminated. The voltage spikes are reduced and turned on
at ZVS using the FOPR controller. The voltage stress at the main switch Sa and Sb during
on time is only 50 V. Figures 10–13 depict the voltage stress at switches Sa, Sa1, Sb, Sb1, Sc,
Sf, Sd, and Se. Since the inductors are selected based on the condition for ZVS and ZCS,
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spikes across the switches are eliminated by utilizing the output capacitance for resonant
circuit voltage.

Electricity 2024, 5, FOR PEER REVIEW 16 
 

 

ZCS, spikes across the switches are eliminated by utilizing the output capacitance for res-
onant circuit voltage. 

 
(a) 

 
(b) 

Figure 10. Gate pulse, voltage, and current through switches Sa and Sa1 during (a) turn-on and (b) 
turn-off. 

 
(a) 

Figure 10. Gate pulse, voltage, and current through switches Sa and Sa1 during (a) turn-on and
(b) turn-off.

Electricity 2024, 5, FOR PEER REVIEW 16 
 

 

ZCS, spikes across the switches are eliminated by utilizing the output capacitance for res-
onant circuit voltage. 

 
(a) 

 
(b) 

Figure 10. Gate pulse, voltage, and current through switches Sa and Sa1 during (a) turn-on and (b) 
turn-off. 

 
(a) 

Figure 11. Cont.



Electricity 2024, 5 1037
Electricity 2024, 5, FOR PEER REVIEW 17 
 

 

 
(b) 

Figure 11. Gate pulse, voltage, and current through switches Sb and Sb1 during (a) turn-on and (b) 
turn-off. 

 
(a) 

 
(b) 

Figure 12. Gate pulse, voltage, and current through switches Sc and Se during (a) turn-on and (b) 
turn-off. 

Figure 11. Gate pulse, voltage, and current through switches Sb and Sb1 during (a) turn-on and
(b) turn-off.

Electricity 2024, 5, FOR PEER REVIEW 17 
 

 

 
(b) 

Figure 11. Gate pulse, voltage, and current through switches Sb and Sb1 during (a) turn-on and (b) 
turn-off. 

 
(a) 

 
(b) 

Figure 12. Gate pulse, voltage, and current through switches Sc and Se during (a) turn-on and (b) 
turn-off. 

Figure 12. Gate pulse, voltage, and current through switches Sc and Se during (a) turn-on and
(b) turn-off.



Electricity 2024, 5 1038
Electricity 2024, 5, FOR PEER REVIEW 18 
 

 

 
(a) 

 
(b) 

Figure 13. Gate pulse, voltage, and current through switches Sd and Se during (a) turn-on and (b) 
turn-off. 

The output rectified voltage is shown in Figure 14. Using the FOPR controller, the 
power is transformed from input to output in the boost mode of operation. Using the 
FOPR-based modulation technique, the output voltage and the transferred power are con-
trolled elegantly. 

 
Figure 14. Output voltage in discharging of battery (boost mode). 

From the results, it is verified that the proposed FOPR has improved the switching 
pulse generation for all the switches in the converter topology, thereby minimizing the 
stress on switches. 
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The output rectified voltage is shown in Figure 14. Using the FOPR controller, the
power is transformed from input to output in the boost mode of operation. Using the
FOPR-based modulation technique, the output voltage and the transferred power are
controlled elegantly.
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From the results, it is verified that the proposed FOPR has improved the switching
pulse generation for all the switches in the converter topology, thereby minimizing the
stress on switches.
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4.2. Recharging Buck Mode

The power transfer is reversed in the recharging buck mode by reversing the phase
shift angle α. In this mode, the DC voltage of 240 V is converted to the high-frequency
alternating voltage across primary and secondary windings in the transformer. The voltage
across the primary is measured at around 73 V, as shown in Figure 15.
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Figure 15. Voltage across primary transformer in recharging mode.

The power is transferred from the secondary side’s high voltage to the primary side’s
low voltage. The converter between the secondary and primary sides can act as a boost
converter in discharging mode and a buck converter in charging mode. The negative
direction of the current implies the power in the reverse direction. The average charging
current of the battery is around 5 A, which flows through the input low-voltage side.
Figure 16 shows the flow of current in the buck mode.
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Figures 17–20 depicts the voltage stress at switches Sa, Sa1, Sb, Sb1, Sc, Sd, Se, and Sf
during the buck mode of operation. Since the inductors are selected based on the condition
for ZVS and ZCS, the output capacitance for resonant circuit voltage spikes across the
switches is eliminated.
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Figure 20. Gate pulse, voltage, and current through switches Sd and Se during (a) turn-on and
(b) turn-off in recharging mode.

The rectified output voltage in the recharging mode of the battery is shown in Figure 21.
It shows that the recharging mode of the battery will provide a voltage rating of 24 V. Using
the FOPR-based control strategy, the current and voltage are controlled in the network.
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Figure 21. Output voltage in recharging of battery (buck mode).

The voltage spike on converter switches will reduce the conversion efficiency of
the converter [43], as the voltage spikes occur due to imbalance voltages or light load
conditions. The modulation techniques will avoid spikes over high-power and high-
voltage applications. The voltage spike reduction by the proposed methodology is shown
in Figure 22, as it shows that the proposed FOPR-based modulation technique reduces the
voltage spikes in the converter without switching losses.
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4.3. Discussion

In this section, the proposed work is compared with existing converter topologies in
a bidirectional isolated converter [32], current-fed bidirectional converter [34], two-stage
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converter [37], novel isolated converter [43], high step-up/-down converter [44], and ZVS
bidirectional converter [45]. The comparative analysis of voltage gain in Figure 23 indicates
that the proposed controller had a higher voltage gain; thus, it can be used in numerous
high-power applications. Therefore, the suggested converter topology and modulation
technique are well suited for EV charging applications.

Figure 23. Comparative analysis of voltage gains [32,34,37,43–45]. (a) Buck mode and (b) boost mode.

The comparative analysis of converter efficiency is shown in Figure 24. The converter
topology used in [34] does not have enough conversion efficiency to provide only lower
power at the output. Whereas the converter topology used in [37] has better efficiency,
it has many components. Compared to these converter topologies, it is verified that the
proposed topology has higher efficiency than other topologies.
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Figure 24. Comparative analysis of conversion efficiency [32,34,37,43–45]. (a) Buck mode and
(b) boost mode.

Table 3 presents a comparison of power loss in various components of a power elec-
tronic converter for existing methods. By analyzing the power loss values, we can assess the
relative performance and efficiency of these designs. The proposed design demonstrates
lower power losses in all components compared to the reference designs, suggesting im-
proved efficiency and potentially lower operating costs. Lower power losses in individual
components can lead to improved overall system efficiency, reduced component stress,
smaller and lighter systems, and lower operating costs.

Table 3. Comparative analysis of losses.

Types of Loss [32] [43] [44] Proposed

MOSFET loss 88.74 W 8.13 W 66 W 8 W

Magnetic component loss 10.6 W 31.16 W 11 W 10.35 W

Capacitor loss 11.3 W 39.81 W 4 W 8 W

Line loss 7.35 W 20.90 W 8 W 7.98 W

The comparative analysis of voltage spike reduction using the optimized duty cy-
cle modulation strategy [46] and hybrid modulation [47] is shown in Figure 25. The
comparative analysis shows that the existing methods have not reduced the spikes at a
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considerable level. The proposed method significantly minimizes the voltage spikes to the
minimum level.
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5. Conclusions

This paper proposes a novel bidirectional current-fed DC-DC converter for the EV
charging application. Here, the converter is designed with eight switches, and the proposed
FOPR-based pulse width modulation strategy provides the controlling pulses. Moreover,
the ZVS and ZCS conditions are verified in the converter model during no-load and full-
load conditions. The ZVS is achieved by adding a clamping capacitor with the auxiliary
switches. The proposed work is implemented on the Matlab/Simulink model, and the
results are verified in terms of charging and discharging modes. The inductor current and
output voltage are verified for both the charging and discharging modes of operations.
In this proposed topology, the voltage spikes are minimized by the output capacitance
and high-frequency transformer leakage. Moreover, the turn-on voltage of the converter is
lower in both the buck and boost modes of operation. Due to the lower turn-on voltage,
the voltage spikes in the system are reduced. Moreover, the results imply that the proposed
topology is more effective for high-efficiency power converter applications through reduced
switching losses. While experimental validation is crucial, the comprehensive simulation
analysis provides strong evidence of the converter’s potential. Future work will focus on
hardware prototyping, advanced control strategies, and multi-mode operation to further
enhance the converter’s capabilities and real-world applicability.
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