Rethinking Rehabilitation of Salt-Affected Land: New Perspectives from Australian Experience
Abstract
:1. Introduction
2. Salinity, Area of, Distribution in Australia and Severity of
2.1. Primary and Secondary Salinity
2.2. The Farmer’s Perspective
2.2.1. Farmer Responses to Salinity
2.2.2. Institutional Constraints and Opportunities
3. Soil Salinity and Plant Productivity
4. Halophytes as Cash Species
5. Towards a Systems Approach to Halophyte Agriculture
6. Economic Rationale and Decision Making
7. An Essential Role of the Land User
8. Valuing Water
9. Investment Sources
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boserup, E. The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure; Aldine Transaction: New Brunswick, NJ, USA, 2005; ISBN 9780202307930. [Google Scholar]
- Scott, G.C. Against the Grain: A Deep History of the Earliest States; Yale University Press: Newhaven, CT, USA, 2017. [Google Scholar]
- Razzaq, A.; Wani, S.H.; Saleem, F.; Yu, M.; Zhou, M.; Shabala, S. Rewilding crops for climate resilience: Economic analysis and de novo domestication strategies. J. Exp. Bot. 2021, 72, 6123–6139. [Google Scholar] [CrossRef] [PubMed]
- Freibauer, A.M.; Bruno, G.; Damianova, Z.; Faroult, E.; Girona, J.; Gomis, I.; O’Brien, L.; Treyer, S. Sustainable food production in a resource-constrained world. Eur. Choices 2011, 10. [Google Scholar] [CrossRef]
- Liu, M.M.; Pan, T.; Allakhyerdiev, S.I.; Yu, M.; Shabala, S. Crop halophytism: An environmentally sustainable solution for global food security. Trends Plant Sci. 2020, 25, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Zaid, A.; Asgher, M.; Wani, I.A.; Wani, S.H. Role of Triacontanol in Overcoming Environmental Stresses. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives; Roy Choudhury, A., Tripathi, D.K., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 491–509. [Google Scholar]
- Pan, T.; Liu, M.; Kreslavski, V.D.; Zharmukhamedov, S.K.; Nie, C.; Yu, M.; Kuznetsov, V.V.; Allakhverdiev, S.I.; Shabala, S. Non-stomatal limitation of photosynthesis by soil salinity. Crit. Rev. Environ. Sci. Technol. 2020, 51, 791–825. [Google Scholar] [CrossRef]
- Wilson, S.M. Dryland and Urban Salinity Costs across the Murray-Darling Basin. An Overview & Guidelines for Identifying and Valuing the Impacts; Murray-Darling Basin Commission: Canberra, Australia, 2004; ISBN 1 876830 883. [Google Scholar]
- UNEP. A Snapshot of the World’s Water Quality: Towards a Global Assessment; United Nations Environment Programme: Nairobi, Kenya, 2016; ISBN 978-92-807-3555-0. [Google Scholar]
- Thorslund, J.; van Vliet, M.T.H. A global dataset of surface water and groundwater salinity measurements from 1980–2019. Sci. Data 2020, 7, 231. [Google Scholar] [CrossRef]
- Crellin, C. Global Freshwater Availability Trends. Future Directions International, Dalkeith. 2018. Available online: https://www.futuredirections.org.au/publication/global-freshwater-availability-trends-underlying-regional-security-threats/ (accessed on 30 August 2021).
- Spies, B.; Woodgate, P. Salinity Mapping Methods in the Australian Context; Department of Heritage and Environment: Canberra, Australia, 2005. [Google Scholar]
- Pannell, D.J.; McFarlane, D.J.; Ferdowsian, R. Rethinking the externality issue for dryland salinity in Western Australia. Aust. J. Agric. Resour. Econ. 2001, 45, 459–475. [Google Scholar] [CrossRef] [Green Version]
- Curtis, A.; MacKay, J.; Van Nouhuys, M.; Lockwood, M.; Byron, I.; Graham, M. Exploring Landholder Willingness and Capacity to Manage Dryland Salinity: The Goulburn Broken Catchment; Johnstone Centre Report No. 138; Charles Sturt University: Albury, NSW, Australia, 2000. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Palmgren, M.G.; Edenbrandt, A.K.; Vedel, S.E.; Andersen, M.M.; Landes, X.; Osterberg, J.T.; Falhof, J.; Olsen, L.I.; Christensen, S.B.; Sandoe, P.; et al. Are we ready for back-to-nature crop breeding? Trends Plant Sci. 2015, 20, 155–164. [Google Scholar] [CrossRef]
- Yolcu, S.; Alavilli, H.; Lee, B.H. Natural genetic resources from diverse plants to improve abiotic stress tolerance in plants. Int. J. Mol. Sci. 2020, 21, 212285667. [Google Scholar] [CrossRef]
- Lopez-Marques, R.L.; Noerrevang, A.F.; Ache, P.; Moog, M.; Visintainer, D.; Wendt, T.; Osterberg, J.T.; Dockter, C.; Jorgensen, M.E.; Salvador, A.T.; et al. Prospects for the accelerated improvement of the resilient crop quinoa. J. Exp. Bot. 2020, 71, 5333–5347. [Google Scholar] [CrossRef]
- Atwell, B.J.; Wang, H.; Scafaro, A.P. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci. 2014, 215, 48–58. [Google Scholar] [CrossRef]
- Fernie, A.R.; Yang, J.B. De novo domestication: An alternative route toward new crops for the future. Mol. Plant 2019, 12, 615–631. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; Day, D.A.; Fricke, W.; Watt, M.; Arsova, B.; Barkla, B.J.; Bose, J.; Byrt, C.S.; Chen, Z.H.; Foster, K.J.; et al. Energy costs of salt tolerance in crop plants. New Phytol. 2020, 225, 1072–1090. [Google Scholar] [CrossRef] [Green Version]
- Fita, A.; Rodriguez-Burruezo, A.; Boscaiu, M.; Prohens, J.; Vicente, O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front. Plant Sci. 2015, 6, 978. [Google Scholar] [CrossRef] [Green Version]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Shabala, S.; Mackay, A. Ion transport in halophytes. Adv. Bot. Res. 2011, 57, 151–199. [Google Scholar]
- Flowers, T.J.; Galal, H.K.; Bromham, L. Evolution of halophytes: Multiple origins of salt tolerance in land plants. Funct. Plant Biol. 2010, 37, 604–612. [Google Scholar] [CrossRef]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte agriculture: Success stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- Squires, V.R.; Ayoub, A.T. Halophytes Resource for Livestock and for Rehabilitation of Degraded Lands; Kluwer Academic: London, UK, 1994. [Google Scholar]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1994, 18, 227–255. [Google Scholar] [CrossRef]
- El Shaer, H.M.; Squires, V.R. Halophytic and Salt Tolerant Feedstuffs: Impacts, Physiology and Reproduction of Livestock; CRC, Taylor and Francis: Boca Raton, FL, USA, 2016; p. 427. [Google Scholar]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Al-Azzawi, M.; Aronson, J.; Flowers, T.J. eHALOPH a Database of Salt-Tolerant Plants: Helping put Halophytes to Work. Plant Cell Physiol. 2016, 57, e10. [Google Scholar] [CrossRef] [Green Version]
- Adolf, V.I.; Jacobsen, S.E.; Shabala, S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd). Environ. Exp. Bot. 2013, 92, 43–54. [Google Scholar] [CrossRef]
- Zou, C.S.; Chen, A.J.; Xiao, L.H.; Muller, H.M.; Ache, P.; Haberer, G.; Zhang, M.L.; Jia, W.; Deng, P.; Huang, R.; et al. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res. 2017, 27, 1327–1340. [Google Scholar] [CrossRef]
- Bazile, D.; Jacobsen, S.-E.; Verniau, A. The global expansion of quinoa: Trends and limits. Front Plant Sci. 2016, 7, 622. [Google Scholar] [CrossRef] [Green Version]
- Yensen, S.B.; Weber, C.W. Composition of Distichlis palmeri grain, a saltgrass. J. Food Sci. 1986, 51, 1089–1090. [Google Scholar] [CrossRef]
- Yensen, S.B. Characterisation of the Proteins and Flour of Distichlis palmeri (Vasey) grain and Distichlis spp. Fibre. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 1995. [Google Scholar]
- Ralph, J.P. Potential Applications of Distichlis palmeri Grain in the Production of Food for Human Consumption; Regency Technical Services Report; Appendix B Final Report NyPa ‘Wild Wheat’ Product Proving Trials Final Report; Report No. BIF02395; AusIndustry: Canberra, Australia, 2004. [Google Scholar]
- Bresdin, C.; Glenn, E.P. Distichlis palmeri: Perennial grain yields under saline paddy-style cultivation of grains on seawater. J. Agric. Environ. Sci. 2016, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Panta, S.; Lane, P.; Doyle, R.; Hardie, M.; Haros, G.; Shabala, S. Halophytes as a possible alternative to desalination plants: Prospects of recycling saline wastewater during Coal Seam Gas operations. In Halophytes for Food Security in Drylands; Khan, M.A., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 317–329. ISBN 978-0-12-801854-5. [Google Scholar]
- Öztürk, M.; Waisel, Y.; Khan, M.A.; Görk, G. Biosaline Agriculture and Salinity Tolerance in Plants; Burkhauser Verlag: Basel, Switzerland, 2006. [Google Scholar]
- Barrett-Lennard, E.G.; George, R.J.; Hamilton, G.; Norman, H.C.; Masters, D.G. Multi-disciplinary approaches suggest profitable and sustainable farming systems for valley floors at risk of salinity. Aust. J. Exp. Agric. 2005, 45, 1415–1424. [Google Scholar] [CrossRef]
- Leake, J.E. The role of Distichlis spp. cultivars in altering groundwater and soil conditions. In Proceedings of the Hydrological Society of South Australia; Australian Geomechanics Society and International Association of Hydrogeologists. 2003. Available online: http://www.nypa.com.au/uploads/6/2/0/6/6206024/the_role_of_nypa_distichlis_spp_cultivars2016_rev.pdf (accessed on 12 May 2021).
- Munns, R.; Gilliham, M. Salinity tolerance of crops—What is the cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasouli, F.; Kiani-Pouya, A.; Tahir, A.; Shabala, L.; Chen, Z.H.; Shabala, S. A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions. Environ. Exp. Bot. 2021, 181, 104300. [Google Scholar] [CrossRef]
- Zeng, F.R.; Shabala, S.; Maksimovic, J.D.; Maksimovic, V.; Bonales-Alatorre, E.; Shabala, L.; Yu, M.; Zhang, G.P.; Zivanovic, B.D. Revealing mechanisms of salinity tissue tolerance in succulent halophytes: A case study for Carpobrotus rossi. Plant Cell Environ. 2018, 41, 2654–2667. [Google Scholar] [CrossRef] [PubMed]
- Shabala, S.; Chen, G.; Chen, Z.H.; Pottosin, I. The energy cost of the tonoplast futile sodium leak. New Phytol. 2020, 225, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Shabala, S.; Bose, J.; Hedrich, R. Salt bladders: Do they matter? Trends Plant Sci. 2014, 19, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Ceccoli, G.; Ramos, J.; Pilatti, V.; Dellaferrera, I.; Tivano, J.; Taleisnik, E.; Vegetti, A. Salt glands in the Poaceae family and their relationship to salinity tolerance. Bot. Rev. 2015, 81, 162–178. [Google Scholar] [CrossRef] [Green Version]
- Dassanayake, M.; Larkin, J.C. Making plants break a sweat: The structure, function, and evolution of plant salt glands. Front. Plant Sci. 2017, 8, 406. [Google Scholar] [CrossRef] [Green Version]
- Bose, J.; Munns, R.; Shabala, S.; Gilliham, M.; Pogson, B.; Tyerman, S.D. Chloroplast function and ion regulation in plants growing on saline soils: Lessons from halophytes. J. Exp. Bot. 2017, 68, 3129–3143. [Google Scholar] [CrossRef]
- Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014, 65, 1241–1257. [Google Scholar] [CrossRef]
- Barrett-Lennard, E.G. The interaction between waterlogging and salinity in higher plants: Causes, consequences, and implications. Plant Soil 2003, 253, 35–54. [Google Scholar] [CrossRef]
- Bennett, S.J.; Barrett-Lennard, E.G.; Colmer, T.D. Salinity and waterlogging as constraints to saltland pasture production: A review. Agric. Ecosyst. Environ. 2009, 129, 349–360. [Google Scholar] [CrossRef]
- Barrett-Lennard, E.G.; Setter, T.L. Developing saline agriculture: Moving from traits and genes to systems. Funct. Plant Biol. 2010, 37, iii–iv. [Google Scholar] [CrossRef] [Green Version]
- Revell, D.K.; Norman, H.C.; Vercoe, P.E.; Phillips, N.; Toovey, A.; Bickell, S.; Hulm, E.; Hughes, S.; Emms, J. Australian perennial shrub species add value to the feed base of grazing livestock in low- to medium-rainfall zones. Anim. Prod. Sci. 2013, 53, 1221–1230. [Google Scholar] [CrossRef]
- Karakas, S.; Culli, M.A.; Kayas, C.; Dikilitas, M. Halophytic companion plants improve growth and physiological parameters of Tomato Plants grown under Salinity. Pak. J. Bot. 2016, 48, 21–28. [Google Scholar]
- Solen, L.; Finger, R.; Buchmann, N.; Gosal, A.S.; Hortnagl, L.; Huguenin-Elie, O.; Jeanneret, P.; Luscher, A.; Schneider, M.K.; Huber, R. Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. J. Environ. Manag. 2019, 251, 109372. [Google Scholar]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Bond, A.J.; Saison, C.L.A.; Lawley, V.R.; O’Connor, P.J. Bridging the urban-rural divide between ecosystem service suppliers and beneficiaries: Using a distributed community nursery to support rural revegetation. Environ. Manag. 2019, 64, 166–177. [Google Scholar] [CrossRef]
- Pannell, D.J. Explaining the non-Adoption of Practices to prevent Dryland salinity in western Australia: Implications for Policy. In Land Degradation; SEA Working Paper 99/08 Sustainability and Economics in Agriculture GRDC Project UWA251; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Squires, V.R. Better Land Stewardship: An Economic and Environmental Imperative, If There is to be Sustainable Development. In Rangeland Stewardship in Central Asia; Balancing Improved Livelihoods, Biodiversity Conservation and Land Protection; Chapter 2; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Squires, V.R. Ecological restoration: Global challenges, social aspects and environmental benefits: An overview. In Ecological Restoration: Global Challenges, Social Aspects and Environmental Benefits; Squires, V.R., Ed.; Nova Science Publishers: New York, NY, USA, 2016. [Google Scholar]
- Bustan, A.; Pasternak, D.; Pirogova, I.; Durikov, M.; Devries, T.T.; El-Meccawi, S.; Degen, A.A. Evaluation of saltgrass as a fodder crop for livestock. J. Sci. Food Agric. 2005, 85, 2077–2084. [Google Scholar] [CrossRef]
- Lymbery, A.J.; Kay, G.D.; Doupe, R.G.; Partridge, G.J.; Norman, H.C. The potential of a salt-tolerant plant (Distichlis spicata cv. NyPa Forage) to treat effluent from inland saline aquaculture and provide livestock feed on salt-affected farmland. Sci. Total Environ. 2013, 445, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.M.; Lyre, D.A.; Mateo-Sagasta, J.; Ismail, S.; Akhtar, M.J.U. Financial analysis of halophyte cultivation in a desert environment using different saline water resources for irrigation. In Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes; Hasanuzzaman, M., Nahar, K., Öztürk, M., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Glenn, E.P.; Pitelka, L.F.; Olsen, M.W. The use of halophytes to sequester carbon. Water Air Soil Pollut. 1992, 64, 251–263. [Google Scholar] [CrossRef]
- Squires, V.R. Soil pollution and remediation: Issues, progress and prospects. vegetation in degraded land areas. In Capacity Building Workshop for Asia and the Pacific; Centre for the Management of Arid Environments, Curtin University: Kalgoorlie, WA, Australia, 2001. [Google Scholar]
- Toderich, K.N.; Shuyskaya, E.V.; Ismail, S.; Gismatullina, L.G.; Radjabov, T.; Bekchanov, B.B.; Aralova, D.B. Phytogenic resources of halophytes of central Asia and their role for rehabilitation of sandy desert degraded rangelands. Land Degradation Develop. 2009, 20, 386–396. [Google Scholar] [CrossRef]
- Manousaki, E.; Kalogerakis, N. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res. 2011, 50, 656–660. [Google Scholar] [CrossRef]
- Leake, J.E. Biosphere carbon stock management: Addressing the threat of abrupt climate change in the next few decades. An editorial comment. Clim. Chang. 2008, 87, 329–334. [Google Scholar] [CrossRef]
- Barrow, C.J. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Leake, J.E. Potential for carbon sequestration through grassland restoration in sustainable grassland and pasture management in Asia. In Proceedings of a Regional Consultation, Lanzhou, China; FAO: Rome, Italy. 2015. Available online: http://www.iid.org/uploads/6/2/0/6/6206024/potential_for_carbon_sequestration_through_grass_land_restoration_presntation_fao_lanzhou_2015.pdf (accessed on 12 May 2021).
- Issiri, D.; Lal, R. Carbon Sequestration for Climate Change Mitigation and Adaptation; Springer Publishing AG: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Masters, D.G.; Revell, D.; Norman, H. Managing livestock in degrading environments Odongo. In Sustainable Improvement of Animal Production and Health; Garcia, N.E., Viljoen, M.G.J., Eds.; FAO: Rome, Italy, 2010; pp. 255–267. [Google Scholar]
- Qadir, M.; Quillerou, E.; Nagia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Res. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Haros, G.; Leake, J.E. Are the outcomes that are vital for the survival of mankind achievable in an era of global warming? In A Better World; Tudor Rose for the High-Level Political Forum; UNCCD: Bonn, Germany, 2018; Volume 4, ISBN 978-0-9956487-5-3. [Google Scholar]
- Salzman, J. The collision of aspiration and reality in payments for ecosystem services. In Transformational Change in Environmental and Natural Resource Management, a Guide to Policy Excellence; Young, M., Esau, C., Eds.; Routledge: London, UK, 2016. [Google Scholar]
- Leake, J.E. Investment in Land Restoration: New perspectives with Special Reference to Australia. Land 2021, 10, 156. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; McMahon, T.A.; Dudding, M.; Brinkley, A.J. Technical and economic evaluation of the conjunctive use of surface and groundwater in the Campaspe Valley, north-central Victoria, Australia. Water Res. Manag. 1995, 9, 251–275. [Google Scholar] [CrossRef]
- Heaney, A.; Beare, S.; Bell, R. Evaluating improvements in irrigation efficiency as a salinity mitigation option in the South Australian Riverland. Aust. J. Agric. Resour. Econ. 2001, 45, 477–493. [Google Scholar] [CrossRef] [Green Version]
- Tongway, D.J.; Ludwig, J.A. Restoring Disturbed Landscapes: Turning Principles into Practice; Island Press: Washington, DC, USA, 2011; p. 189. ISBN 9781597265812. [Google Scholar]
- Campbell, A. Two steps forward, one step back. the ongoing failure to capture synergies in natural resource management (Australia). In Transformational Change in Environmental and Natural Resource Management; Young, M., Esau, C., Eds.; Routledge: London, UK, 2016. [Google Scholar] [CrossRef]
- Young, M.D. Transformational change: In search of excellence. In Transformational Change in Environmental and Natural Resource Management; Young, M., Esau, C., Eds.; Earthscan Studies in Natural Resources Management; Taylor and Francis: London, UK, 2016; pp. 1–13. [Google Scholar]
- Leake, J.E.; Morison, J.B. Land Repair Fund: A model for exploiting the nexus between land repair, improved production and profit. Australas. Agribus. Rev. 2016, 16, 3. [Google Scholar]
- Lockwood, M.; Davidson, J.; Curtis, A.; Stratford, E.; Griffith, R. Multi-level Environmental Governance: Lessons from Australian natural resource management. Aust. Geogr. 2009, 40, 169–186. [Google Scholar] [CrossRef]
- Sinclair, F.; Coe, R. The options by context approach: A paradigm shift in agronomy. Exp. Agric. 2019, 55, 1–13. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. United Nations World Water Development Report, Water and Climate Change; UNESCO: Paris, France, 2020; Available online: https://www.unwater.org/publications/world-water-development-report-2020/ (accessed on 12 May 2021).
- Partridge, G.L.; Sarre, G.A.; Lymbery, A.J.; Jenkins, G.L.; Doupe, R.G.; Kay, G.G.D.; Michael, R.J.; Willett, D.J.; Erler, D. New Technologies for Sustainable Commercial Finfish Culture. In Fisheries; R&D Report 2005/213. 2008. Available online: https://www.frdc.com.au/project/2005-213 (accessed on 12 May 2021).
- Yensen, N.P.; Hinchman, R.R.; Negri, M.C.; Mollock, G.N.; Settle, T.; Keiffer, C.S.; Carty, D.J.; Rodgers, B.; Martin, R.; Erickson, R. Using halophytes to manage oilfield saltwater: Disposal by irrigation/evapotranspiration and remediation of spill. In Proceedings of the 6th International Petroleum Environmental Conference, Houston, TX, USA, 16–18 November 1999; pp. 1134–1188. [Google Scholar]
- Gunning, D.; Maguire, J.; Burnell, G. The development of sustainable saltwater-based food production systems: A review of established and novel concepts. Water 2016, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Toze, S. Reuse of effluent water—Benefits and risks. Agric. Water Manag. 2006, 80, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Marcum, K.B.; Yensen, N.P.; Leake, J.E. Genotypic variation in salinity tolerance of Distichlis spicata turf ecotypes. Aust. J. Exp. Agric. 2007, 47, 1506–1511. [Google Scholar] [CrossRef]
- Patel, S. Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. Biotech 2016, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.; Scalici, C.; Vaccari, D.; Cipollina, A.; Tamburini, A.; Micale, G. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. J. Member. Sci. 2016, 500, 33–45. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. United Nations World Water Development Report 2021: Valuing Water. 2021. Available online: https://www.unwater.org/publications/un-world-water-development-report-2021/ (accessed on 12 May 2021).
- Pagella, T.F.; Sinclair, F.L. Development and use of a typology of mapping tools to assess their fitness for supporting management of ecosystem service provision. Landsc. Ecol. 2014, 29, 383–399. [Google Scholar] [CrossRef] [Green Version]
- Lefroy, E.C.; Flugge, F.; Avery, A.; Hume, I. Potential of current perennial plant-based farming systems to deliver salinity management outcomes and improve prospects for native biodiversity: A review. Aust. J. Exp. Agric. 2005, 45, 1357–1367. [Google Scholar] [CrossRef] [Green Version]
- Tucker, W. Debunking: 8 Myths about Carbon Offsetting. Ecosystem Market Place. 2020. Available online: https://www.ecosystem-marketplace.com/articles/debunked-eight-myths-carbon-offsetting/ (accessed on 22 July 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leake, J.E.; Squires, V.; Shabala, S. Rethinking Rehabilitation of Salt-Affected Land: New Perspectives from Australian Experience. Earth 2022, 3, 245-258. https://doi.org/10.3390/earth3010016
Leake JE, Squires V, Shabala S. Rethinking Rehabilitation of Salt-Affected Land: New Perspectives from Australian Experience. Earth. 2022; 3(1):245-258. https://doi.org/10.3390/earth3010016
Chicago/Turabian StyleLeake, John E., Victor Squires, and Sergey Shabala. 2022. "Rethinking Rehabilitation of Salt-Affected Land: New Perspectives from Australian Experience" Earth 3, no. 1: 245-258. https://doi.org/10.3390/earth3010016
APA StyleLeake, J. E., Squires, V., & Shabala, S. (2022). Rethinking Rehabilitation of Salt-Affected Land: New Perspectives from Australian Experience. Earth, 3(1), 245-258. https://doi.org/10.3390/earth3010016