How Can the Morphometric Characteristics and Failure Conditions of a Historic Gully Caused by Intense Rainfall Be Reconstructed?
Abstract
:1. Introduction
2. Study Site
2.1. Historical Facts
- Scarp A-A’:
- ○
- Head of the gully: 150 m wide, 50 m deep, head scarp slope > 45°.
- ○
- Lithology: zeolitized basalt and hard layers, rust-coloured, heavily fractured.
- ○
- Movement:
- ∎
- Initiation: possible failure of scarp A-A’ due to high pore pressure;
- ∎
- Progression: saturated material probably flowed rapidly downslope to the Ravine Roche à Jacquot, digging the terrain over 10 m to 30 m deep.
- ○
- Springs: possible outlets along scarp A-A’ after the first collapse, which may have induced the thinning of the terrain.
- Scarp B-B’:
- ○
- Head of the gully: hidden by products of the destabilization of scarp A-A’.
- ○
- Movement:
- ∎
- Initiation: possible failure of part of scarp B-B’ due to high pore pressure;
- ∎
- Progression: the material flowed downslope but stayed quite cohesive compared to the material from the failure of scarp A-A’.
2.2. Geological and Hydrological Setting
- A superficial layer of colluvium made of decimetre- to meter-sized blocks of basalt, incorporated in an unconsolidated sandy matrix, less than 10 m thick [47].
- A deeper layer of loose volcaniclastic deposits of the so-called Intermediate Unit of Grand Ilet of about 50 m in thickness, which come from large old failures of the flanks of the Piton des Neiges volcano. These volcaniclastic deposits are made of heterogeneous materials with variable proportions of blocks and mixed materials [48,49]. They are composed of more or less zeolitized basalts. Alteration of the material forms thin layers of grey clays in some areas (Figure S1). The Intermediate Unit is intensively deformed, in particular due to the movement induced by the slow-moving Grand Ilet landslide, and sensitive to erosion on its steep slopes (>20°) (i.e., badlands) [8,43,47]. The Intermediate Unit holds the Grand Ilet aquifer, which has high conductivity and porosity [50].
3. Method, Data and Modelling Strategy
3.1. Building a Historic Elevation Model
3.2. Hindcast Historic Groundwater Level
3.3. Modelling Gully Incision by Headward Retreat
- Selecting one of the calculated slip surfaces that has a maximum retreat;
- Considering that the failure occurred as far as the selected slip surface, but along the retrieved surface of 1984, which is more realistic than a rotational slip surface;
- Verifying afterward the instability of the terrain with this polygonal slip surface with TALREN®. If the FoS is lower than (or equal to) 1, the topography was modified, and the retrogressive failure assumption validated. On the contrary, if the FoS is higher than 1, we searched for a smaller headward retreat that fulfils the instability conditions.
4. Results
4.1. Pre-and Post-Failure Topographies
4.2. Morphometry of the Gully
4.3. Groundwater Level during Cyclone Hyacinthe
4.4. Gully Incision
4.4.1. The Role of Runoff
4.4.2. Parameter Sensitivity Analyses
4.4.3. Headward Retreat Modelling
5. Discussion
5.1. Retrieved Topographic Conditions of Pre- and Post-Gully Incision
5.2. Hindcast Historic Groundwater Level
5.3. Headward Retreats and Gully Formation
5.4. Gully Incision and Slope Stability
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, J.E.; Schuster, R.L. Documented Historical Landslide Dams from around the World; US Geological Survey: Vancouver, WA, USA, 1991. [CrossRef]
- Van Westen, C.J.; Rengers, N.; Soeters, R. Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Nat. Hazards 2003, 30, 399–419. [Google Scholar] [CrossRef]
- Promper, C.; Puissant, A.; Malet, J.-P.; Glade, T. Analysis of Land Cover Changes in the Past and the Future as Contribution to Landslide Risk Scenarios. Appl. Geogr. 2014, 53, 11–19. [Google Scholar] [CrossRef]
- Carrara, A.; Crosta, G.; Frattini, P. Geomorphological and Historical Data in Assessing Landslide Hazard. Earth Surf. Processes Landf. J. Br. Geomorphol. Res. Group 2003, 28, 1125–1142. [Google Scholar] [CrossRef]
- Devoli, G.; Strauch, W.; Chávez, G.; Høeg, K. A Landslide Database for Nicaragua: A Tool for Landslide-Hazard Management. Landslides 2007, 4, 163–176. [Google Scholar] [CrossRef]
- Humbert, M.; Pasquet, R.; Stieljes, L. Les Risques Géologiques Dans les Cirques de Salazie et de Cilaos (Ile de la Réunion); BRGM: Orléans, France, 1981; p. 97. Available online: http://infoterre.brgm.fr/rapports/81-SGN-543-GEG.pdf (accessed on 30 December 2021).
- Rault, C.; Thiery, Y.; Aunay, B.; Reninger, P.A.; Chaput, M.; Michon, L.; Dewez, T.J.B.; Samyn, K. Landslide Processes Involved in Volcano Dismantling from Past to Present Mechanisms: The Cirque of Salazie a Remarkable Open-Air Laboratory (Reunion Island). J. Geophys. Res. Earth Surf. 2022. in review. [Google Scholar]
- Pinchinot, H. Etude Géologique des Formations Superficielles et du Proche Substratum à Grand Ilet (Cirque de Salazie—La Réunion) Application à la Cartographie du Risque de Mouvements de Versants; Géologie Appliquée, Université Scientifique et Médicale de Grenoble: Grenoble, France, 1984. [Google Scholar]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully Erosion and Environmental Change: Importance and Research Needs. CATENA 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Kirkby, M.; Bracken, L. Gully Processes and Gully Dynamics. Earth Surf. Processes Landf. J. Br. Geomorphol. Res. Group 2009, 34, 1841–1851. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, B.; Qin, W.; Deng, Q.; Luo, J.; Liu, H.; Yang, D.; Wang, H.; Zhao, Y. Primary Environmental Factors Controlling Gully Distribution at the Local and Regional Scale: An Example from Northeastern China. Int. Soil Water Conserv. Res. 2021, 9, 58–68. [Google Scholar] [CrossRef]
- Moeyersons, J. Ravine Formation on Steep Slopes: Forward versus Regressive Erosion. Some Case Studies from Rwanda. CATENA 1991, 18, 309–324. [Google Scholar] [CrossRef]
- Cox, R.; Zentner, D.B.; Rakotondrazafy, A.F.M.; Rasoazanamparany, C.F. Shakedown in Madagascar: Occurrence of Lavakas (Erosional Gullies) Associated with Seismic Activity. Geology 2010, 38, 179–182. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Luyten, E.; Veyret-Picot, M.; Deckers, J.; Haile, M.; Govers, G. Impact of Road Building on Gully Erosion Risk: A Case Study from the Northern Ethiopian Highlands. Earth Surf. Processes Landf. J. Br. Geomorphol. Res. Group 2002, 27, 1267–1283. [Google Scholar] [CrossRef]
- Anderson, R.L.; Rowntree, K.M.; Le Roux, J.J. An Interrogation of Research on the Influence of Rainfall on Gully Erosion. CATENA 2021, 206, 105482. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Van Mele, B.; Demuzere, M.; Bruynseels, A.; Golosov, V.; Bezerra, J.F.R.; Bolysov, S.; Dvinskih, A.; Frankl, A. How Fast Do Gully Headcuts Retreat? Earth Sci. Rev. 2016, 154, 336–355. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Masunaga, T.; Tsubo, M.; Billi, P.; Ebabu, K.; Liyew Berihun, M. Effect of Subsurface Water Level on Gully Headcut Retreat in Tropical Highlands of Ethiopia. Earth Surf. Processes Landf. 2021, 46, 1209–1222. [Google Scholar] [CrossRef]
- Zegeye, A.D.; Langendoen, E.J.; Stoof, C.R.; Tilahun, S.A.; Dagnew, D.C.; Zimale, F.A.; Guzman, C.D.; Yitaferu, B.; Steenhuis, T.S. Morphological Dynamics of Gully Systems in the Subhumid Ethiopian Highlands: The Debre Mawi Watershed. Soil 2016, 2, 443–458. [Google Scholar] [CrossRef] [Green Version]
- Van Asch, T.W.; Malet, J.-P.; Van Beek, L.P.H. Influence of Landslide Geometry and Kinematic Deformation to Describe the Liquefaction of Landslides: Some Theoretical Considerations. Eng. Geol. 2006, 88, 59–69. [Google Scholar] [CrossRef]
- Forte, G.; Pirone, M.; Santo, A.; Nicotera, M.V.; Urciuoli, G. Triggering and Predisposing Factors for Flow-like Landslides in Pyroclastic Soils: The Case Study of the Lattari Mts.(Southern Italy). Eng. Geol. 2019, 257, 105137. [Google Scholar] [CrossRef]
- Dai, W.; Yang, X.; Na, J.; Li, J.; Brus, D.; Xiong, L.; Tang, G.; Huang, X. Effects of DEM Resolution on the Accuracy of Gully Maps in Loess Hilly Areas. CATENA 2019, 177, 114–125. [Google Scholar] [CrossRef]
- Zhao, H.; Kowalski, J. Topographic Uncertainty Quantification for Flow-like Landslide Models via Stochastic Simulations. Nat. Hazards Earth Syst. Sci. 2020, 20, 1441–1461. [Google Scholar] [CrossRef]
- Schmidt, J.; Dikau, R. Modeling Historical Climate Variability and Slope Stability. Geomorphology 2004, 60, 433–447. [Google Scholar] [CrossRef]
- Riquelme, A.; Del Soldato, M.; Tomás, R.; Cano, M.; Jordá Bordehore, L.; Moretti, S. Digital Landform Reconstruction Using Old and Recent Open Access Digital Aerial Photos. Geomorphology 2019, 329, 206–223. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Kennedy, D.M.; Niyazi, Y.; Leach, C.; Konlechner, T.M.; Ierodiaconou, D. Structure-from-motion Photogrammetry Analysis of Historical Aerial Photography: Determining Beach Volumetric Change over Decadal Scales. Earth Surf. Processes Landf. 2020, 45, 2540–2555. [Google Scholar] [CrossRef]
- Lucas, A.; Gayer, E. Decennal Geomorphic Transport from Archived Time Series Digital Elevation Models: A Cookbook for Tropical and Alpine Environments. IEEE Geosci. Remote Sens. Mag. 2021, in press. [Google Scholar] [CrossRef]
- Conforti, M.; Mercuri, M.; Borrelli, L. Morphological Changes Detection of a Large Earthflow Using Archived Images, LiDAR-Derived DTM, and UAV-Based Remote Sensing. Remote Sens. 2021, 13, 120. [Google Scholar] [CrossRef]
- Fernández, T.; Pérez, J.L.; Colomo, C.; Cardenal, J.; Delgado, J.; Palenzuela, J.A.; Irigaray, C.; Chacón, J. Assessment of the Evolution of a Landslide Using Digital Photogrammetry and LiDAR Techniques in the Alpujarras Region (Granada, Southeastern Spain). Geosciences 2017, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Walstra, J.; Dixon, N.; Chandler, J.H. Historical Aerial Photographs for Landslide Assessment: Two Case Histories. Q. J. Eng. Geol. Hydrogeol. 2007, 40, 315–332. [Google Scholar] [CrossRef]
- Gomez, C.; Hayakawa, Y.; Obanawa, H. A Study of Japanese Landscapes Using Structure from Motion Derived DSMs and DEMs Based on Historical Aerial Photographs: New Opportunities for Vegetation Monitoring and Diachronic Geomorphology. Geomorphology 2015, 242, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Rault, C.; Dewez, T.J.B.; Aunay, B. Structure from Motion Processing of Aerial Archive Photographs: Sensitivity Analyses Pave the Way for Quantifying Geomorphological Changes since 1978 in La Réunion Island. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 2, 773–780. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; De Jong, S.M. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef] [Green Version]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-Based Surface Reconstruction in Geomorphometry-Merits, Limits and Developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef] [Green Version]
- Barrand, N.E.; Murray, T.; James, T.D.; Barr, S.L.; Mills, J.P. Optimizing Photogrammetric DEMs for Glacier Volume Change Assessment Using Laser-Scanning Derived Ground-Control Points. J. Glaciol. 2009, 55, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Walstra, J.; Chandler, J.H.; Dixon, N.; Wackrow, R. Evaluation of the Controls Affecting the Quality of Spatial Data Derived from Historical Aerial Photographs. Earth Surf. Process. Landf. 2011, 36, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Ben Slimane, A.; Raclot, D.; Rebai, H.; Le Bissonnais, Y.; Planchon, O.; Bouksila, F. Combining Field Monitoring and Aerial Imagery to Evaluate the Role of Gully Erosion in a Mediterranean Catchment (Tunisia). CATENA 2018, 170, 73–83. [Google Scholar] [CrossRef]
- Thiery, D. Forecast of Changes in Piezometric Levels by a Lumped Hydrological Model. J. Hydrol. 1988, 97, 129–148. [Google Scholar] [CrossRef]
- dos Santos, F.M.; de Oliveira, R.P.; Mauad, F.F. Lumped versus Distributed Hydrological Modeling of the Jacaré-Guaçu Basin, Brazil. J. Environ. Eng. 2018, 144, 04018056. [Google Scholar] [CrossRef]
- Nicolle, P.; Pushpalatha, R.; Perrin, C.; François, D.; Thiéry, D.; Mathevet, T.; Le Lay, M.; Besson, F.; Soubeyroux, J.-M.; Viel, C. Benchmarking Hydrological Models for Low-Flow Simulation and Forecasting on French Catchments. Hydrol. Earth Syst. Sci. 2014, 18, 2829–2857. [Google Scholar] [CrossRef] [Green Version]
- Baills, A.; Vandromme, R.; Desramaut, N.; Sedan-Miegemolle, O.; Grandjean, G. Changing Patterns in Climate-Driven Landslide Hazard: An Alpine Test Site. In Landslide Science and Practice; Global Environmental Change; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 4, pp. 93–98. ISBN 978-3-642-31337-0. [Google Scholar]
- Morgenstern, N.R.; Sangrey, D.A. Methods of Stability Analysis. In Landslides: Analysis and Control; Transportation Research Board: Washington, DC, USA, 1978; Volume 178, pp. 155–171. [Google Scholar]
- Thiery, Y.; Reninger, P.A.; Lacquement, F.; Raingeard, A.; Lombard, M.; Nachbaur, A. Analysis of Slope Sensitivity to Landslides by a Transdisciplinary Approach in the Framework of Future Development: The Case of La Trinité in Martinique (French West Indies). Geosciences 2017, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. Prediction of Ground Displacements and Velocities from Groundwater Level Changes at the Vallcebre Landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [Google Scholar] [CrossRef]
- Edil, T.B.; Vallejo, L.E. Mechanics of Coastal Landslides and the Influence of Slope Parameters. Eng. Geol. 1980, 16, 83–96. [Google Scholar] [CrossRef]
- Duncan, J.M. State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. J. Geotech. Eng. 1996, 122, 577–596. [Google Scholar] [CrossRef]
- Belle, P.; Aunay, B.; Bernardie, S.; Grandjean, G.; Ladouche, B.; Mazué, R.; Join, J.L. The Application of an Innovative Inverse Model for Understanding and Predicting Landslide Movements (Salazie Cirque Landslides, Reunion Island). Landslides 2014, 11, 343–355. [Google Scholar] [CrossRef]
- Belle, P. Contribution des Processus Hydrologiques et Hydrogéologiques aux Glissements de Terrain de Grande Ampleur Application au Contexte Tropical de La Réunion; Sciences de la Terre, Université de la Réunion: Saint-Denis, France, 2014. [Google Scholar]
- Arnaud, N. Les Processus de Démantèlement des Volcans, le Cas d’un Volcan Bouclier en Milieu Océanique: Le Piton des Neiges, Île de la Réunion; Sciences de la Terre, Université de la Réunion: Saint-Denis, France, 2005. [Google Scholar]
- Siebert, L. Landslides Resulting from Structural Failure of Volcanoes. In Catastrophic Landslides: Effects, Occurrence, and Mechanisms; Geological Society of America: Boulder, CO, USA, 2002; Volume 15, pp. 209–235. [Google Scholar] [CrossRef]
- Belle, P.; Aunay, B.; Lachassagne, P.; Ladouche, B.; Join, J.L. Control of Tropical Landcover and Soil Properties on Landslides’ Aquifer Recharge, Piezometry and Dynamics. Water 2018, 10, 1491. [Google Scholar] [CrossRef] [Green Version]
- Le Moigne, B.; Rault, C. Surveillance de l’évolution Des Deux Glissements de Terrain à l’Est de Grand Ilet, Ravine Roche à Jacquot—Bilan Du Suivi Réalisé de 2015 à 2019; BRGM/RP-69492-FR; BRGM: Orléans, France, 2020; p. 36. Available online: http://infoterre.brgm.fr/rapports/RP-69492-FR.pdf (accessed on 30 December 2021).
- Tebebu, T.Y.; Abiy, A.Z.; Zegeye, A.D.; Dahlke, H.E.; Easton, Z.M.; Tilahun, S.A.; Collick, A.S.; Kidnau, S.; Moges, S.; Dadgari, F. Surface and Subsurface Flow Effect on Permanent Gully Formation and Upland Erosion near Lake Tana in the Northern Highlands of Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2207–2217. [Google Scholar] [CrossRef] [Green Version]
- Kraus, K. Photogrammetry; Dummlers Verlag: Bonn, Germany, 1993; Volume 1, p. 397. [Google Scholar]
- Feurer, D.; Vinatier, F. The Time-SIFT Method: Detecting 3-D Changes from Archival Photogrammetric Analysis with Almost Exclusively Image Information. arXiv 2018, arXiv:1807.09700. [Google Scholar]
- Cook, K.L.; Dietze, M. Short Communication: A Simple Workflow for Robust Low-Cost UAV-Derived Change Detection without Ground Control Points. Earth Surf. Dyn. Discuss. 2019, 7, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; Smith, M.W. 3-D Uncertainty-Based Topographic Change Detection with Structure-from-Motion Photogrammetry: Precision Maps for Ground Control and Directly Georeferenced Surveys. Earth Surf. Processes Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- van Asch, T.W.; Malet, J.-P.; van Beek, L.P.; Amitrano, D. Techniques, Issues and Advances in Numerical Modelling of Landslide Hazard. Bull. De La Société Géologique De Fr. 2007, 178, 65–88. [Google Scholar] [CrossRef]
- Bishop, A.W. The Use of the Slip Circle in the Stability Analysis of Slopes. Geotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Duncan, J.M.; Wright, S.G. The Accuracy of Equilibrium Methods of Slope Stability Analysis. Eng. Geol. 1980, 16, 5–17. [Google Scholar] [CrossRef]
- Hungr, O.; Salgado, F.M.; Byrne, P.M. Evaluation of a Three-Dimensional Method of Slope Stability Analysis. Can. Geotech. J. 1989, 26, 679–686. [Google Scholar] [CrossRef]
- Hungr, O. An Extension of Bishop’s Simplified Method of Slope Stability Analysis to Three Dimensions. Geotechnique 1987, 37, 113–117. [Google Scholar] [CrossRef]
- SAGE. Mouvements de Terrain à Grand Ilet Etude Géotechnique; SAGE: Gières, France, 1999; p. 104. [Google Scholar]
- Ginger. Correction Torrentielle de La Ravine Roche à Jacquot—Grand Ilet; IRE2.F.50994-001; Ginger: La Possession, France, 2015; p. 13. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Vandaele, K.; Poesen, J.; Govers, G.; van Wesemael, B. Geomorphic Threshold Conditions for Ephemeral Gully Incision. Geomorphology 1996, 16, 161–173. [Google Scholar] [CrossRef]
- Øygarden, L. Rill and Gully Development during an Extreme Winter Runoff Event in Norway. CATENA 2003, 50, 217–242. [Google Scholar] [CrossRef]
- Hudson, N.W. Soil Conservation; Scientific Publishers: Jodhpur, India, 2015; ISBN 93-88172-45-0. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology; Waveland Press: Long Grove, IL, USA, 2018; ISBN 1-4786-3744-7. [Google Scholar]
- DEAL Réunion. Guide Sur Les Modalités de Gestion Des Eaux Pluviales à La Réunion; Déal Réunion: Paris, France, 2012; p. 92. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Chandler, J.H.; Eltner, A.; Fraser, C.; Miller, P.E.; Mills, J.P.; Noble, T.; Robson, S.; Lane, S.N. Guidelines on the Use of Structure-from-Motion Photogrammetry in Geomorphic Research. Earth Surf. Processes Landf. 2019, 44, 2081–2084. [Google Scholar] [CrossRef]
- Cook, K.L. An Evaluation of the Effectiveness of Low-Cost UAVs and Structure from Motion for Geomorphic Change Detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Chen, X.; Kumar, M.; deB Richter, D.; Mau, Y. Impact of Gully Incision on Hillslope Hydrology. Hydrol. Processes 2020, 34, 3848–3866. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G.; Bovis, M.J.; Hutchinson, J.N. Review of the Classification of Landslides of the Flow Type. Environ. Eng. Geosci. 2001, 7, 221–238. [Google Scholar] [CrossRef]
- Frankl, A.; Poesen, J.; Deckers, J.; Haile, M.; Nyssen, J. Gully Head Retreat Rates in the Semi-Arid Highlands of Northern Ethiopia. Geomorphology 2012, 173, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Voarintsoa, N.R.G.; Cox, R.; Razanatseheno, M.O.M.; Rakotondrazafy, A.F.M. Relation between Bedrock Geology, Topography and Lavaka Distribution in Madagascar. South Afr. J. Geol. 2012, 115, 225–250. [Google Scholar] [CrossRef]
- Riquier, J. Étude Sur Les “Lavaka”. Mémoires De L’institut Sci. De Madagascar. Série D Sci. De La Terre 1954, 6, 169–189. [Google Scholar]
- Micallef, A.; Marchis, R.; Saadatkhah, N.; Pondthai, P.; Everett, M.E.; Avram, A.; Timar-Gabor, A.; Cohen, D.; Preca Trapani, R.; Weymer, B.A.; et al. Groundwater Erosion of Coastal Gullies along the Canterbury Coast (New Zealand): A Rapid and Episodic Process Controlled by Rainfall Intensity and Substrate Variability. Earth Surf. Dyn. 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Fox, G.A.; Wilson, G.V.; Simon, A.; Langendoen, E.J.; Akay, O.; Fuchs, J.W. Measuring Streambank Erosion Due to Ground Water Seepage: Correlation to Bank Pore Water Pressure, Precipitation and Stream Stage. Earth Surf. Processes Landf. J. Br. Geomorphol. Res. Group 2007, 32, 1558–1573. [Google Scholar] [CrossRef]
- Higgins, J.D.; Modeer, V.A. Loess. In Landslides: Investigation and Mitigation; Transportation Research Board: Washington, DC, USA, 1996. [Google Scholar]
- Podwojewski, P.; Janeau, J.L.; Caquineau, S.; Hughes, J. Mechanisms of Lateral and Linear Extension of Gullies (Dongas) in a Subhumid Grassland of South Africa. Earth Surf. Process. Landf. 2020, 45, 3202–3215. [Google Scholar] [CrossRef]
- Wilson, G.V.; Wells, R.; Kuhnle, R.; Fox, G.; Nieber, J. Sediment Detachment and Transport Processes Associated with Internal Erosion of Soil Pipes. Earth Surf. Processes Landf. 2018, 43, 45–63. [Google Scholar] [CrossRef]
Date | Nb Photos | Nb Bands | Resolution | (m) | b/h | GSD (mm) |
---|---|---|---|---|---|---|
1978 | 60 | 1 | 1/27,000 | 4206 | 0.51 | 533 |
1984 | 79 | 1 | 1/27,000 | 4163 | 0.48 | 529 |
Geological Unit | Number of Samples | Yd (kN/m3) | C′ (kPa) | Φ’ (°) |
---|---|---|---|---|
Detritic cover alluvium (DA) | 6 | 21 | 0–10 | 32–40 |
Intermediate Unit (IU–breccias) | >10 * | 21–23 | 5–15 | 23–40 |
Substratum | >10 * | 30 | >40 | >40 |
Geological Unit | Yd (kN/m3) | C′ (kPa) | Φ’ (°) |
---|---|---|---|
Detritic cover alluvium (DA) | 21 | 0 | 32 |
Intermediate Unit (IU–breccias) | 22 | 5 | 23 |
Substratum | 30 | 100 | 40 |
Scenario | FoS for Circular Slip Surface | FoS for Non-Circular (Polygonal) Slip Surface |
---|---|---|
T0 | 1.87 | Not computed |
T1 | 0.98 | Not computed |
T2 | 0.88 | 0.99 |
T3 | 0.90 | 0.97 |
T4 | 0.90 | 0.95 |
T5 | 0.90 | 1.00 |
T6 | 0.88 | 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rault, C.; Thiery, Y.; Aunay, B.; Colas, B.; Reboul, K.; Dewez, T.J.B. How Can the Morphometric Characteristics and Failure Conditions of a Historic Gully Caused by Intense Rainfall Be Reconstructed? Earth 2022, 3, 324-344. https://doi.org/10.3390/earth3010020
Rault C, Thiery Y, Aunay B, Colas B, Reboul K, Dewez TJB. How Can the Morphometric Characteristics and Failure Conditions of a Historic Gully Caused by Intense Rainfall Be Reconstructed? Earth. 2022; 3(1):324-344. https://doi.org/10.3390/earth3010020
Chicago/Turabian StyleRault, Claire, Yannick Thiery, Bertrand Aunay, Bastien Colas, Kahina Reboul, and Thomas J. B. Dewez. 2022. "How Can the Morphometric Characteristics and Failure Conditions of a Historic Gully Caused by Intense Rainfall Be Reconstructed?" Earth 3, no. 1: 324-344. https://doi.org/10.3390/earth3010020
APA StyleRault, C., Thiery, Y., Aunay, B., Colas, B., Reboul, K., & Dewez, T. J. B. (2022). How Can the Morphometric Characteristics and Failure Conditions of a Historic Gully Caused by Intense Rainfall Be Reconstructed? Earth, 3(1), 324-344. https://doi.org/10.3390/earth3010020