Incorporating Climate Uncertainty into Conservation Planning for Wildlife Managers
Abstract
:1. Introduction
2. Wildlife Management and Conservation under Climate Uncertainty
3. Species Status Assessments (SSAs)
4. Habitat Conservation Plans (HCPs)
5. Nature-Based Solutions (NbS)
6. Better Preparation for a Climatically Uncertain Future
7. Policy Considerations
8. Conclusions
- Increase the number of staff capable of providing technical assistance on how to address climate change.
- Build staff capacity by improving coordination and awareness related to climate science and ecological effects to better develop a climate literate work force.
- Fund or conduct additional research syntheses that elucidate ecological response to climate change and identify plausible future scenarios.
- Continue to develop and co-create with partners collaborative conservation frameworks that incorporate climate science.
- Expand training opportunities to increase coverage of decision-making under climate uncertainty.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borland, H.G. The History of Wildlife in North America, 1st ed.; National Wildlife Federation: Washington, DC, USA, 1975; pp. 1–208. [Google Scholar]
- Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England, 2nd ed.; Hill and Wang: New York, NY, USA, 2003; pp. 1–288. [Google Scholar]
- Herman, W.C. The last passenger pigeon. Auk 1948, 95, 77–80. [Google Scholar]
- Isenberg, A.C. The Destruction of the Bison: An Environmental History, 1750–1920, 1st ed.; Cambridge University Press: New York, NY, USA, 2000; pp. 1–206. [Google Scholar]
- Fischman, R.L. The National Wildlife Refuges Coordinating a Conservation System through Law, 1st ed.; Island Press: Washington, DC, USA, 2003; pp. 1–296. [Google Scholar]
- Rodrigues, A.S. Are global conservation efforts successful? Science 2006, 313, 1051–1052. [Google Scholar] [CrossRef]
- Hoffman, M.; Duckworth, J.W.; Holmes, K.; Mallon, D.P.; Rodrigues, A.S.; Stuart, S.N. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 2015, 29, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Bolam, F.C.; Mair, L.; Angelico, M.; Brooks, T.M.; Burgman, M.; Hermes, C.; Hoffman, M.; Martin, R.W.; McGowan, P.J.K.; Rodrigues, A.S.L.; et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Lett. 2021, 14, e12762. [Google Scholar] [CrossRef]
- Hoffmann, M.; Hilton-Taylor, C.; Angulo, A.; Böhm, M.; Brooks, T.M.; Butchart, S.H.; Carpenter, K.E.; Chanson, J.; Collen, B.; Cox, N.A.; et al. The impact of conservation on the status of the world’s vertebrates. Science 2010, 330, 1503–1509. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.; Stolton, S.; Visconti, P.; Woodley, S.; Kingston, N.; Lewis, E.; et al. Area-based conservation in the twenty-first century. Nature 2020, 586, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Geldmann, J.; Barnes, M.; Coad, L.; Craigie, I.D.; Hockings, M.; Burgess, N.D. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 2013, 161, 230–238. [Google Scholar] [CrossRef]
- Barnes, M.D.; Craigie, I.D.; Dudley, N.; Hockings, M. Understanding local-scale drivers of biodiversity outcomes in terrestrial protected areas. Ann. N. Y. Acad. Sci. 2017, 1399, 42–60. [Google Scholar] [CrossRef] [PubMed]
- Donald, P.F.; Sanderson, F.J.; Burfield, I.J.; Bierman, S.M.; Gregory, R.D.; Waliczky, Z. International conservation policy delivers benefits for birds in Europe. Science 2007, 317, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.P.; Holmes, N.D.; Butchart, S.H.; Tershy, B.R.; Kappes, P.J.; Corkery, I.; Croll, D.A. Invasive mammal eradication on islands results in substantial conservation gains. Proc. Natl. Acad. Sci. USA 2016, 113, 4033–4038. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP.241; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Butchart, S.H.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.; Almond, R.E.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H.M., et al., Eds.; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar] [CrossRef]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef]
- Nogueira, J.G.; Sousa, R.; Benaissa, H.; De Knijf, G.; Ferreira, S.; Ghamizi, M.; Gonçalves, D.V.; Lansdown, R.; Numa, C.; Prié, V.; et al. Alarming decline of freshwater trigger species in western Mediterranean key biodiversity areas. Conserv. Biol. 2021, 35, 1367–1379. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, 6471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Clark, M.; Williams, D.R.; Kimmel, K.; Polasky, S.; Packer, C. Future threats to biodiversity and pathways to their prevention. Nature 2017, 546, 73–81. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 1–151. [Google Scholar]
- Pounds, J.A.; Bustamante, M.R.; Coloma, L.A.; Consuegra, J.A.; Fogden, M.P.; Foster, P.N.; La Marca, E.; Masters, K.L.; Merino-Viteri, A.; Puschendorf, R.; et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006, 439, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Sinervo, B.; Mendez-De-La-Cruz, F.; Miles, D.B.; Heulin, B.; Bastiaans, E.; Villagrán-Santa Cruz, M.; Lara-Resendiz, R.; Martínez-Méndez, N.; Calderón-Espinosa, M.L.; Meza-Lázaro, R.N.; et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 2010, 328, 894–899. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrows, M.T.; Schoeman, D.S.; Richardson, A.J.; Molinos, J.G.; Hoffmann, A.; Buckley, L.B.; Moore, P.; Brown, C.; Bruno, J.F.; Duarte, C.M.; et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 2014, 507, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Benning, T.L.; LaPointe, D.; Atkinson, C.T.; Vitousek, P.M. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system. Proc. Natl. Acad. Sci. USA 2002, 99, 14246–14249. [Google Scholar] [CrossRef] [Green Version]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.; Oreskes, N.; Doran, P.T.; Anderegg, W.R.; Verheggen, B.; Maibach, E.W.; Carlton, J.S.; Lewandowsky, S.; Skuce, A.G.; Green, S.A.; et al. Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environ. Res Lett 2016, 11, 048002. [Google Scholar] [CrossRef]
- Walker, W.E.; Harremoës, P.; Rotmans, J.; Van Der Sluijs, J.P.; Van Asselt, M.B.; Janssen, P.; Krayer von Krauss, M.P. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integr. Ass. 2003, 4, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Klauer, B.; Brown, J.D. Conceptualising imperfect knowledge in public decision making: Ignorance, uncertainty, error and “risk situations”. Environ. Res. Eng. Manag. 2004, 27, 124–128. [Google Scholar]
- Lawler, J.J.; Tear, T.H.; Pyke, C.; Shaw, M.R.; Gonzalez, P.; Kareiva, P.; Hansen, L.; Hannah, L.; Klausmeyer, K.; Aldous, A.; et al. Resource management in a changing and uncertain climate. Front. Ecol. Environ. 2010, 8, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Gregory, R.; Arvai, J.; Gerber, L.R. Structuring decisions for managing threatened and endangered species in a changing climate. Conserv. Biol. 2013, 27, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Peterson, G.D.; Cumming, G.S.; Carpenter, S.R. Scenario planning: A tool for conservation in an uncertain world. Conserv. Biol. 2003, 17, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.J.; Runyon, A.N.; Gross, J.E.; Schuurman, G.W.; Miller, B.W. Divergent, plausible, and relevant climate futures for near-and long-term resource planning. Clim. Chang. 2021, 167, 38. [Google Scholar] [CrossRef]
- Mcclure, M.M.; Alexander, M.; Borggaard, D.; Boughton, D.; Crozier, L.; Griffis, R.; Jorgensen, J.; Lindley, S.; Nye, J.; Rowland, M.J.; et al. Incorporating climate science in applications of the US Endangered Species Act for aquatic species. Conserv. Biol. 2013, 27, 1222–1233. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function, 2nd ed.; Island Press: Washington, DC, USA, 2012; pp. 1–248. [Google Scholar]
- Thorne, J.H.; Seo, C.; Basabose, A.; Gray, M.; Belfiore, N.M.; Hijmans, R.J. Alternative biological assumptions strongly influence models of climate change effects on mountain gorillas. Ecosphere 2013, 9, 108. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.; Morelli, T.L.; Morisette, J.T.; Munoz, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magness, D.R.; Hoang, L.; Belote, R.T.; Brennan, E.J.; Carr, W.; Chapin, F.S., III; Clifford, K.R.; Morrison, W.; Morton, J.M.; Sofaer, H.R. Management Foundations for Navigating Ecological Transformation by Resisting, Accepting, or Directing Social-Ecological Change. BioScience 2021, 71, 30–44. [Google Scholar] [CrossRef]
- Hoffman, J.R. Working with Climate-related Uncertainty in Section 7 Consultation. Climate-Informed Section 7 Consultation. 2019. Available online: https://sites.google.com/view/climate-informedsec7/ (accessed on 15 September 2021).
- Buenau, K.E.; Cullinan, V.; Vernon, C.R.; Huber, C.J. Science Information to Support Missouri River Piping Plover and Least Tern Effects Analysis; Report Prepared for the Army Corps of Engineers; Army Corps of Engineers: Richland, WA, USA, 2015. [Google Scholar]
- Murphy, D.D.; Weiland, P.S. Guidance on the Use of Best Available Science under the U.S. Endangered Species Act. Environ. Manag. 2016, 58, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Trzaska, S.; Schnarr, E. A Review of Downscaling Methods for Climate Change Projections; United States Agency for International Development by Tetra Tech ARD: Washington, DC, USA, 2014; pp. 1–42. [Google Scholar]
- McCright, A.M.; Dunlap, R.E. The politicization of climate change and polarization in the American public’s views of global warming, 2001–2010. Sociol. Q. 2011, 52, 155–194. [Google Scholar] [CrossRef]
- Van Pelt, S.C.; Haasnoot, M.; Arts, B.; Ludwig, F.; Swart, R.; Biesbroek, R. Communicating climate (change) uncertainties: Simulation games as boundary objects. Environ. Sci. Policy 2015, 45, 41–52. [Google Scholar] [CrossRef]
- Fuller, A.K.; Decker, D.J.; Schiavone, M.V.; Forstchen, A.B. Ratcheting up rigor in wildlife management decision making. Wildl. Soc. Bull. 2020, 44, 29–41. [Google Scholar] [CrossRef]
- Hodder, K.H.; Newton, A.C.; Cantarello, E.; Perrella, L. Does landscape-scale conservation management enhance the provision of ecosystem services? Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 71–83. [Google Scholar] [CrossRef]
- Campellone, R.M.; Chouinard, K.M.; Fisichelli, N.A.; Gallo, J.A.; Lujan, J.R.; McCormick, R.J.; Miewald, T.A.; Murry, B.A.; Pierce, D.J.; Shively, D.R. The iCASS Platform: Nine principles for landscape conservation design. Landsc. Urban Plan. 2018, 176, 64–74. [Google Scholar] [CrossRef]
- Baldwin, R.F.; Trombulak, S.C.; Leonard, P.B.; Noss, R.F.; Hilty, J.A.; Possingham, H.P.; Scarlett, L.; Anderson, M.G. The future of landscape conservation. Bioscience 2018, 68, 60–63. [Google Scholar] [CrossRef]
- Foden, W.B.; Young, B.E.; Akçakaya, H.R.; Garcia, R.A.; Hoffmann, A.A.; Stein, B.A.; Thomas, C.D.; Wheatley, C.J.; Bickford, D.; Carr, J.A.; et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Change 2019, 10, e551. [Google Scholar] [CrossRef] [Green Version]
- Stein, B.A.; Glick, P.; Edelson, N.; Staudt, A. Climate-Smart Conservation: Putting Adaption Principles into Practice, 1st ed.; National Wildlife Federation: Washington, DC, USA, 2014; pp. 1–262. [Google Scholar]
- Runting, R.; Wilson, K.; Rhodes, J.R. Does more mean less? The value of information for conservation planning under sea level rise. Glob. Change Biol. 2013, 19, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Rushing, C.S.; Royle, J.A.; Ziolkowski, D.J.; Pardieck, K.L. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Proc. Natl. Acad. Sci. USA 2020, 117, 12897–12903. [Google Scholar] [CrossRef]
- Brown, C.; Steinschneider, S.; Ray, P.; Wi, S.; Basdekas, L.; Yates, D. Decision scaling (DS): Decision support for climate change. In Decision Making under Deep Uncertainty, 1st ed.; Springer: Cham, Switzerland, 2019; pp. 255–287. [Google Scholar]
- Prudhomme, C.; Wilby, R.L.; Crooks, S.; Kay, A.L.; Reynard, N.S. Scenario-neutral approach to climate change impact studies: Application to flood risk. J. Hydrol. 2010, 390, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Dessai, S.; Hulme, M. Does climate adaptation policy need probabilities? Clim. Policy 2004, 4, 107–128. [Google Scholar] [CrossRef]
- Pielke, R.A.; Adegoke, J.; Hossain, F.; Niyogi, D. Environmental and social risks to biodiversity and ecosystem health—A bottom-up, resource-focused assessment framework. Earth 2021, 2, 440–456. [Google Scholar] [CrossRef]
- Lempert, R.J.; Groves, D.G.; Popper, S.W.; Bankes, S.C. A general, analytic method for generating robust strategies and narrative scenarios. Manag. Sci. 2006, 52, 514–528. [Google Scholar] [CrossRef]
- United States Congress. The Endangered Species Act as Amended by Public Law 97-304 (the Endangered Species Act Amendments of 1982); U.S. G.P.O.: Washington, DC, USA, 1983.
- Greenwald, N.; Suckling, K.F.; Hartl, B.; Mehrhoff, L.A. Extinction and the US endangered species act. PeerJ 2019, 7, e6803. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Allan, N.L.; McGowan, C.P.; Szymanski, J.A.; Oetker, S.R.; Bell, H.M. Development of a species status assessment process for decisions under the US Endangered Species Act. J. Fish Wildl. Manag. 2018, 9, 302–320. [Google Scholar] [CrossRef] [Green Version]
- U.S. Fish and Wildlife Service. USFWS Species Status Assessment Framework: An Integrated Analytical Framework for Conservation. Version 3.4 Dated August 2016. Available online: https://www.fws.gov/endangered/improving_ESA/pdf/SSA%20Framework%20v3.4-8_10_2016.pdf (accessed on 6 January 2022).
- Carter, O.; Mitchell, M.; Porfririo, L.L.; Hugh, S.; Lockwood, M.; Gilfedder, L.; Lefroy, E.C. Mapping scenario narratives: A technique to enhance landscape-scale biodiversity planning. Conserv. Soc. 2017, 15, 179–188. [Google Scholar]
- Arno, S.F. Fire in western forest ecosystems. In Wildland Fire in Ecosystems: Effects of Fire on Flora. General Technical Report RMRS–GRT–42–Volume 2; Brown, J.K., Smith, J.K., Eds.; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2000; pp. 97–120. [Google Scholar]
- Innes, J.C.; North, M.P.; Williamson, N. Effect of thinning and prescribed fire restoration treatments on woody debris and snag dynamics in a Sierran old–growth, mixed–conifer forest. Can. J. For. Res. 2006, 36, 3183–3193. [Google Scholar] [CrossRef]
- Moriarty, K.M.; Epps, C.W.; Betts, M.G.; Hance, D.J.; Bailey, J.D.; Zielinski, W.J. Experimental evidence that simplified forest structure interacts with snow cover to influence functional connectivity for Pacific martens. Landsc. Ecol. 2015, 30, 1865–1877. [Google Scholar] [CrossRef]
- Hayhoe, K.; Cayan, D.; Field, C.B.; Frumhoff, P.C.; Maurer, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; et al. Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA 2004, 101, 12422–12427. [Google Scholar] [CrossRef] [Green Version]
- Dalton, M.M.; Dello, K.D.; Hawkins, L.; Mote, P.W.; Rupp, D.E. The Third Oregon Climate Assessment Report; Oregon Climate Change Research Institute, College of Earth, Ocean and Atmospheric Sciences, Oregon State University: Corvallis, OR, USA, 2017. [Google Scholar]
- U.S. Fish and Wildlife Service. Species Status Assessment Report for the Coastal Marten (Martes caurina), Version 2.0. July 2018; U.S. Fish and Wildlife Service: Arcata, CA, USA, 2018.
- Tsang, L. The Endangered Species Act and Climate Change: Selected Legal Issues. (CRS Report R45926; 20 September 2019). 2019. Available online: https://sgp.fas.org/crs/misc/R45926.pdf (accessed on 15 September 2021).
- Hoffman, J.R. Creating Climate Smart HCPs. Climate Informed HCPs. 2016. Available online: https://sites.google.com/view/climateinformedhcps/home (accessed on 15 September 2021).
- Bernazzani, P.; Bradley, B.A.; Opperman, J.J. Integrating climate change into habitat conservation plans under the U.S. Endangered Species Act. Environ. Manag. 2012, 49, 1103–1114. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef] [Green Version]
- Bridges, T.S.; King, J.K.; Simm, J.D.; Beck, M.W.; Collins, G.; Lodder, Q.; Mohan, R.K. International Guidelines on Natural and NatureBased Features for Flood Risk Management; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2021. [Google Scholar]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef]
- Purcell, A.D.; Khanal, P.N.; Straka, T.J.; Willis, D.B. Valuing Ecosystem Services of Coastal Marshes and Wetlands; LGP 1032; Clemson Cooperative Extension, Land-Grant Press by Clemson Extension: Clemson, SC, USA, 2020. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service. The National Wildlife Refuge System. 2021. Available online: https://www.fws.gov/refuges/ (accessed on 15 October 2021).
- Faustini, J.; Thom, T.A.; Hunt, K.J.; Nilius, R.; Burns, R.E. Water Resource Inventory and Assessment: Cape Romain National Wildlife Refuge, Charleston County, South Carolina; U.S. Fish and Wildlife Service, Southeast Region: Atlanta, GA, USA, November 2013; pp. 1–84.
- Thorne, K.; MacDonald, G.; Guntenspergen, G.; Ambrose, R.; Buffington, K.; Dugger, B.; Freeman, C.; Janousek, C.; Brown, L.; Rosencranz, J.; et al. US Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 2018, 4, eaao3270. [Google Scholar] [CrossRef] [Green Version]
- U.S. Fish and Wildlife Service. Seal Beach National Wildlife Refuge. 2019. Available online: https://www.fws.gov/refuge/seal_beach/what_we_do/resource_management/Sediment_Pilot_Project.html (accessed on 1 September 2021).
- U.S. Fish and Wildlife Service. Federal Register. 2020. Available online: https://www.federalregister.gov/documents/2020/10/08/2020-19661/endangered-and-threatened-wildlife-and-plants-threatened-species-status-for-eastern-black-rail-with (accessed on 30 August 2021).
- Hansen, V.D.; Reiss, K.C. Threats to marsh resources and mitigation. In Coastal and Marine Hazards, Risks, and Disasters, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 467–494. [Google Scholar]
- Peteet, D.M.; Nichols, J.; Kenna, T.; Chang, C.; Browne, J.; Reza, M.; Kovari, S.; Liberman, L.; Stern-Protz, S. Sediment starvation destroys New York City marshes’ resistance to sea level rise. Proc. Natl. Acad. Sci. USA 2018, 115, 10281–10286. [Google Scholar] [CrossRef] [Green Version]
- Adam, P. Saltmarshes in a time of change. Environ. Conserv. 2002, 29, 39–61. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.N.; Calil, J.; Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef] [Green Version]
- Bush, J.; Doyon, A. Building urban resilience with nature-based solutions: How can urban planning contribute? Cities 2019, 95, 102483. [Google Scholar] [CrossRef]
- Santoro, H. Wildlife Refuges Suffer under Budget Cuts and Staff Shortages. High Country News, 20 November 2019. Available online: https://www.hcn.org/issues/51.21-22/us-fish-and-wildlife-wildlife-refuges-suffer-under-budget-cuts-and-staff-shortages (accessed on 6 January 2022).
- Thompson, L.M.; Lynch, A.J.; Beever, E.A.; Engman, A.C.; Falke, J.A.; Jackson, S.T.; Krabbenhoft, T.J.; Lawrence, D.J.; Limpinsel, D.; Magill, R.T.; et al. Responding to ecosystem transformation: Resist, accept, or direct? Fisheries 2021, 46, 8–21. [Google Scholar] [CrossRef]
- Lynch, A.J.; Thompson, L.M.; Beever, E.A.; Cole, D.N.; Engman, A.C.; Hawkins Hoffman, C.; Jackson, S.T.; Krabbenhoft, T.J.; Lawrence, D.J.; Limpinsel, D.; et al. Managing for RADical ecosystem change: Applying the Resist-Accept-Direct (RAD) framework. Front. Ecol. Environ. 2021, 19, 461–469. [Google Scholar] [CrossRef]
- Magness, D.R.; Mollnow, R.; Wagener, E.; Yurcich, E.; Granfors, D.; Wilkening, J.L. A New Approach for Building the Decision Space to Implement Climate Change Adaptation on National Wildlife Refuges. Earth 2022, under review.
- Bachelet, D.; Ferschweiler, K.; Sheehan, T.; Strittholt, J. Climate change effects on southern California deserts. J. Arid Environ. 2016, 127, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, T.; Bachelet, D.; Ferschweiler, K. Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures. Ecol. Model. 2015, 317, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.P.; Conklin, D.R.; Bolte, J.P. Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA. Clim. Chang. 2015, 133, 335–348. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service. Climate Change Adaptation. Service Manual Chapter 056 FW 1. 2013. Available online: https://www.fws.gov/policy/056fw1.html (accessed on 22 September 2021).
- McLachlan, J.S.; Hellmann, J.J.; Schwartz, M.W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 2007, 21, 297–302. [Google Scholar] [CrossRef]
- Karasov-Olson, A.M.; Schwartz, M.W.; Olden, J.D.; Skikne, S.; Hellmann, J.J.; Allen, S.; Brigham, C.; Buttke, D.; Lawrence, D.; Miller-Rushing, A.; et al. Ecological Risk Assessment of Managed Relocation as a Climate Change Adaptation Strategy. Natural Resource Report NPS/NRSS/CCRP/NRR—2021/2241; National Park Service: Fort Collins, CO, USA, 2021. [CrossRef]
- U.S. Fish and Wildlife Service. Biological Integrity, Diversity, and Environmental Health. Service Manual Chapter 601 FW 3. 2001. Available online: https://www.fws.gov/policy/601fw3.html (accessed on 22 September 2021).
- U.S. Fish and Wildlife Service. Comprehensive Conservation Planning Process. Service Manual Chapter 602 FW 3. 2000. Available online: https://www.fws.gov/policy/602fw3.html (accessed on 22 September 2021).
Uncertainty about How the System Works (Epistemic) | |
---|---|
Structural uncertainty | How well we understand the basic structure of the system, i.e., links between environmental conditions and reproduction, habitat quality, etc., or the effects of particular actions. We may know what the basic elements are but remain uncertain about the details or nature of relationships among elements. Structural uncertainty can be reduced by research and monitoring, including testing model predictions, but is never completely eliminated. |
Parametric uncertainty | How well we understand the strength of the relationships in our system models. Even if we know which factors are linked to which outcomes, we may be less certain about the strength of those relationships or how they will change under novel conditions. Parametric uncertainty can be reduced through research and monitoring, but is more prone to variation over time and space. |
Uncertainty about what the system state is or will be (Ontological) | |
Environmental variability | There’s an element of randomness in many natural phenomena. No matter how good our models get, there is an unavoidable level of uncertainty in predicting weather, climate, natural disasters, thresholds, tipping points, etc. |
Observation uncertainty | Surveys of current conditions are rarely completely accurate. The amount of error and direction of bias depends on factors such as effort, conditions on the ground, and species characteristics. Monitoring design and effort can reduce observational error and in some cases can provide estimates of error, which allows for more accuracy in the resulting information. |
Human behavior | Uncertainty around human behavior has tremendous implications for ecological systems at local and global levels. This may include decisions at individual, corporate, and governmental levels affecting everything from land use and invasive species introduction to greenhouse gas emissions and population growth. |
Linguistic uncertainty | |
A number of terms such as “foreseeable future”, ”likely”, and “reasonable certainty”, have been interpreted different ways by different people or been the subject of legal disputes. Recognizing this uncertainty does not resolve it, but it can focus discussion on the true source of uncertainty and lead to efforts such as the IPCC’s formal definitions of verbal uncertainty terms [22]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkening, J.L.; Magness, D.R.; Harrington, A.; Johnson, K.; Covington, S.; Hoffman, J.R. Incorporating Climate Uncertainty into Conservation Planning for Wildlife Managers. Earth 2022, 3, 93-114. https://doi.org/10.3390/earth3010007
Wilkening JL, Magness DR, Harrington A, Johnson K, Covington S, Hoffman JR. Incorporating Climate Uncertainty into Conservation Planning for Wildlife Managers. Earth. 2022; 3(1):93-114. https://doi.org/10.3390/earth3010007
Chicago/Turabian StyleWilkening, Jennifer L., Dawn Robin Magness, Anita Harrington, Kurt Johnson, Scott Covington, and Jennie Ruth Hoffman. 2022. "Incorporating Climate Uncertainty into Conservation Planning for Wildlife Managers" Earth 3, no. 1: 93-114. https://doi.org/10.3390/earth3010007
APA StyleWilkening, J. L., Magness, D. R., Harrington, A., Johnson, K., Covington, S., & Hoffman, J. R. (2022). Incorporating Climate Uncertainty into Conservation Planning for Wildlife Managers. Earth, 3(1), 93-114. https://doi.org/10.3390/earth3010007