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Abstract: Amid global concerns regarding climate change and urbanization, understanding the
interplay between land use/land cover (LULC) changes, the urban heat island (UHI) effect, and
land surface temperatures (LST) is paramount. This study provides an in-depth exploration of these
relationships in the context of the Kamrup Metropolitan District, Northeast India, over a period of
22 years (2000–2022) and forecasts the potential implications up to 2032. Employing a high-accuracy
supervised machine learning algorithm for LULC analysis, significant transformations are revealed,
including the considerable growth in urban built-up areas and the corresponding decline in cultivated
land. Concurrently, a progressive rise in LST is observed, underlining the escalating UHI effect. This
association is further substantiated through correlation studies involving the normalized difference
built-up index (NDBI) and the normalized difference vegetation index (NDVI). The study further
leverages the cellular automata–artificial neural network (CA-ANN) model to project the potential
scenario in 2032, indicating a predicted intensification in LST, especially in regions undergoing rapid
urban expansion. The findings underscore the environmental implications of unchecked urban
growth, such as rising temperatures and the intensification of UHI effects. Consequently, this research
stresses the critical need for sustainable land management and urban planning strategies, as well as
proactive measures to mitigate adverse environmental changes. The results serve as a vital resource
for policymakers, urban planners, and environmental scientists working towards harmonizing urban
growth with environmental sustainability in the face of escalating global climate change.

Keywords: cellular automata–artificial neural network; LST; LULC; NDVI; NDBI; maximum
likelihood algorithm

1. Introduction

Climate change, influenced significantly by human activities, is a complex phe-
nomenon under extensive scientific scrutiny [1]. Anthropogenic activities, primarily fossil
fuel combustion and deforestation, have amplified greenhouse gas emissions—namely
nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2)—which are primary con-
tributors to global warming [2,3]. These climate change impacts pose severe threats to
environmental sustainability, biome services, and overall human well-being [4].

Among the critical outcomes of climate change are changes in land use and land cover
(LULC) and increases in land surface temperature (LST), which exacerbate biodiversity loss
and induce urban heat islands (UHI) [5]. Consequently, these have become focal points in
remote sensing research [6].
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The past few decades have seen remarkable demographic, socioeconomic, and envi-
ronmental transformations, mainly attributable to global urbanization [7]. This dynamic
phenomenon has sweeping implications, leading to significant LULC alterations, as re-
vealed by [8]. The transition from natural and pastoral areas to built-up environments
significantly contributes to biodiversity loss and ecosystem service depletion.

Urbanization further leads to the creation of UHIs, impacting the energy balance and
microclimate of cities [9]. Studies, including the work of [10], emphasize how urban mor-
phology, such as building density and placement, intensifies the UHI effect. These changes
underscore the need for a comprehensive understanding of urbanization’s repercussions
for effective urban planning and sustainable development strategies [11].

Unchecked LULC changes and rapid urbanization significantly influence Earth’s ther-
modynamic, hydrological, and radioactive phenomena, potentially exacerbating climate
change impacts and intensifying heat waves [12,13]. In the absence of sufficient monitoring,
the growth of built-up areas often occurs at the expense of green cover, worsening the UHI
effect through a substantial rise in LST [14,15]. This unrestrained urban growth, resulting
in significant LST increases, bears wide-ranging impacts on the UHI effect, ecosystems, and
local and regional climates [16].

The UHI phenomenon, significantly influenced by urbanization-induced LST increases,
has considerable implications for local temperature, regional weather patterns, and bio-
diversity [17]. UHI effects are prevalent in built-up regions due to the presence of heat-
absorbing and radiating impermeable surfaces, bringing numerous adverse impacts on
urban populations [18]. To understand and quantify UHI impacts, researchers often employ
LST estimates from remote sensors with high spatiotemporal resolutions [19].

Achieving sustainable environmental improvement in cities necessitates an in-depth
understanding of changing LULC trends [20]. Given the transient nature of LULC, under-
standing these changes requires comprehensive knowledge at appropriate scales, bolstered
by reliable time-series data [21]. Establishing a clear relationship between LULC alterations
and changing urban climates is crucial for understanding the environmental effects induced
by these changes [22].

Researchers worldwide have employed a variety of mathematical indices to under-
stand changing LULC patterns [23]. The normalized difference vegetation index (NDVI)
and normalized differential water index (NDWI) are such measures that utilize the red
and NIR bands and NIR and MIR bands of satellite imagery, respectively. They provide
valuable information about vegetation status and water scarcity, aiding in LULC change
evaluations and water availability studies [24–26].

Despite the wealth of research in this area, knowledge gaps persist, highlighting the
need for further investigations. This study intends to bridge this gap by examining the
LULC and LST changes in the Kamrup Metropolitan District region of Northeast India from
2000 to 2022 and projecting future scenarios for the year 2032. In doing so, the aim is to gain
insights into the LULC dynamics and temperature trends in the study area, and how these
changes relate to the increasing phenomenon of UHIs. This study also seeks to evaluate the
effectiveness of the supervised machine learning algorithm in classifying LULC over the
years and to assess the reliability of the CA-ANN model’s predictions for LULC and LST
in 2032. The findings of this research are anticipated to contribute valuable knowledge to
urban planning, environmental management, and climate change mitigation strategies.

2. Study Area

Situated in the northeastern region of India, the state of Assam encompasses the
Kamrup Metropolitan District, defined by the geographical coordinates of 26.05◦ N latitude
and 91.60◦ E longitude (Figure 1). Spanning a substantial expanse in the southwest of
Assam, the district is characterized by its diverse topography, comprising plains, mountains,
and river valleys. The district shares its boundaries with other Assam districts, such as
Kamrup Rural, Nalbari, and Darrang.
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Recent years have witnessed accelerated urbanization within Kamrup Metropolitan,
evidenced by an 18.34% increase in its urban population since the 2001 Census, according
to the Census of India (2011). This rapid urban expansion has driven an increase in urban
communities, growth in built-up areas, and a surge in population density, now averaging
2010 individuals per square kilometer. Such urbanization can be attributed to rural–urban
migration, economic opportunities, and infrastructure development, all of which underline
the district’s significant urban transformation.

A significant part of the Kamrup Metropolitan district corresponds to the jurisdiction
of the Guwahati Metropolitan Development Authority, with the city of Guwahati acting
as the district’s administrative center. As a major urban hub and the capital of Assam,
Guwahati’s geographical coordinates span from 91◦33′ E to 91◦52′ E longitude and 26◦2′ N
to 26◦16′ N latitude. The study area encompasses the Guwahati Municipal Corporation
(GMC) zone, which covers 176.2 km2. Here, escalating urbanization has prompted an
expansion of built-up areas, often at the cost of plant cover and water bodies, such as
wetlands [27].

Despite their importance in moderating surface temperatures, these ecological at-
tributes have considerably declined due to urbanization. Guwahati’s distinct physical
features, including mountains, rivers, lakes, and wetlands, contribute to the regional vari-
ances in its prevailing mild, humid subtropical climate. The region experiences significant
annual rainfall averaging 1082 mm, predominantly during the southwest monsoon period
from May to September.

Given the study’s context, the city’s demographics are of prime importance. Guwa-
hati has experienced the most rapid urbanization compared to other northeastern Indian
municipalities. The city is nestled between the southern bank of the Brahmaputra River
and the lower reaches of the Shillong Plateau. Since becoming the capital of Assam in
1972, Guwahati’s population growth has surged. The GMC’s population has exponentially
grown from 43,615 in 1951 to 962,334 in 2011, as per the Census of India 2011. This sharp
population increase has led to substantial unplanned urbanization, impacting land use and
land cover (LULC) patterns, local climate, and urban health [28,29].
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3. Materials and Methods

As presented in Table 1, this study utilized Landsat imagery possessing a moderate
resolution of 30 m. Both land use and land cover (LULC) mapping, as well as land surface
temperature (LST) layers, were derived from these satellite images. Furthermore, high-
resolution imagery from Google Earth was incorporated to evaluate the accuracy of the
LULC classification.

Table 1. Landsat 5 and 8 data (sensors and resolution).

Date Sensors Path/Row Resolution

2 November 2000 Landsat 5 TM 137/42 30
9 November 2014 Landsat 8 OLI 137/42 30

15 November 2022 Landsat 8 OLI 137/42 30

3.1. LULC Classification

In the region of interest, five land use and land cover classes were identified: built-
up areas, agricultural land, uncultivated land, vegetation, and water bodies. To conduct
various modeling tasks, such as image processing, producing categorized land cover and
land use maps, and executing spatial analysis, we used ARC Geographic Information
Systems (GIS) package, version 10. We classified Landsat 5 and 8 satellite imagery using
the supervised method of maximum likelihood classification. To resample the classified
images, we maintained a consistent spatial resolution of 30 m × 30 m [30,31]. This specific
pixel size was selected to preserve spatial features in the images and ensure no information
was lost. Thematic raster maps for each variable were created and analyzed using the
Arc Info GIS program, utilizing cells sized 30 m × 30 m. In this supervised classification,
each image pixel was assigned to the category most similar to its spectral signature, which
corresponded to recognized land cover types, such as urban and forest. We chose several
training sites for each class to represent it, based on consistency with Landsat images,
Google Earth, and Google Maps.

3.2. LST Retrieval

The split-window algorithm was employed for extracting the land surface temperature
and was chosen for its high accuracy [32]. Thermal infrared bands used by Landsat 8 to
image the Earth’s surface were used for LST computation. These bands measure the thermal
radiation emitted by the Earth’s surface. However, atmospheric constituents, such as water
vapor and aerosols, influence Landsat 8′s thermal bands. Therefore, an atmospheric
correction is performed to remove these effects from the LST calculation. This correction
utilizes supplementary meteorological data, such as relative humidity and temperature
profiles, to model and exclude atmospheric input from the thermal bands [33,34].

Top-of-atmosphere (TOA) reflectance calculation: For LST estimation, understanding
surface reflectance across various spectral bands is essential. TOA reflectance is calculated
using data from Landsat 8 in both the visible and near-IR bands. The raw digital data
from the visible and near-infrared bands are converted into TOA reflectance values using
atmospheric correction techniques, which use the Landsat surface reflectance code (LaSRC).
The conversion uses the following equation:

Lλ = (ML × Qcal) + AL

where L is the spectral radiation (W/m2/sr/m). ML is the multiplicative rescaling factor
for a given band. Quantized and calibrated standard product pixel values are known as
Qcal. AL is the additive rescaling factor for a certain band. The information of the Landsat
8 satellite image includes the ML and AL values.

Radiance to brightness temperature conversion: Landsat 8′s thermal bands provide radi-
ance measurements that must be converted into brightness temperature. This conversion
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takes into account the sensor-specific calibration factors and the radiative transfer equation.
The conversion is performed using the following equation:

Tb = K2/ln(1 + (K1/L))

where Tb = brightness temperature in Kelvin; K1, K2 = calibration constants specific to the
thermal band; L = measured radiance value. The calibration constants (K1 and K2) can be
obtained from the metadata associated with the Landsat 8 image.

NDVI calculation: The NDVI method employs the relationship between vegetation
cover and surface emissivity. Areas with high vegetation cover are assumed to have low
emissivity, whereas regions with little vegetation cover, such as urban or bare earth areas,
have high emissivity. NDVI is calculated using Landsat 8 OLI’s red and near-infrared
bands. The NDVI formula is as follows:

NDVI = (NIR − Red)/(NIR + Red)

NIR denotes the spectrum’s reflectance in the near-IR spectrum (spectrum 5). The
colour red denotes the spectral reflectance in the red band (Band 4).

Calculation of proportion of vegetation (Pv): The calculation of vegetation proportion (Pv)
is critical in LST estimations, particularly in the split-window method. Pv accounts for
the cooling effect of vegetation and increases LST retrieval accuracy by considering the
fractional coverage of greenery within a pixel or region. Pv is calculated as follows:

Pv = Square ((NDVI − NDVImin)/(NDVImax − NDVImin))

Squaring the normalized difference term improves the distinction amongst vegetation
and non-vegetation zones. Through squaring the value, the existence of vegetation is
highlighted, making the reaction more sensitive to fluctuations in plant cover.

Surface emissivity: Emissivity is crucial in estimating land surface temperature (LST),
as it helps convert recorded thermal radiation into temperature readings. It is represented
by the following equation:

ε = 0.004 * Pv + 0.986

where Pv denotes the ratio of vegetation on the ground surface. The constant value 0.004 is
employed for scaling the influence of vegetation to total emissivity. The degree of emissivity
of non-vegetated backdrops is represented by the constant number 0.986.

LST calculation: LST estimation is a procedure that uses remote sensing data from the
Landsat 8 satellite to compute the average temperature of the Earth’s outermost layer. The
estimation uses the following formula:

LST = (BT/(1 + (0.00115 * BT/1.4388) * Ln(ε)))

This is a simplified version of the Planck’s law-based technique for estimating land
surface temperature (LST) using brightness temperature (BT) and emissivity (ε). BT denotes
the computed brightness temperature in the thermal infrared bands. Ln(ε) indicates the
natural logarithmic of the land surface’s emissivity (ε). The constant employed in the
equation is the coefficient 0.00115. It is the conversion factor used to scale the BT value. The
constant 1.4388 indicates the link between wavelengths and temperature and originates
from Planck’s law.

3.3. Correlation Analysis

The Pearson correlation coefficient (r) is a statistical measure used to quantify the
strength and direction of the linear correlation between two continuous variables. It
evaluates how closely the data points for the two variables cluster around a straight
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line. Pearson correlation coefficients range between −1 and +1. The Pearson correlation
coefficient is calculated using the following formula:

r = (Σ((X_i − X_mean) × (Y_i − Y_mean)))/(n × X_std × Y_std),

where Σ is the summation operator. Individual data points for the two variables are
represented by X_i and Y_i. The mean value (averages) of the two variables X and Y are
represented by X_mean and Y_mean, respectively. The standard deviations of the two
variables X and Y are represented by X_std and Y_std, respectively. The total quantity of
data points is represented by n.

3.4. Calculation of Indices

The land use/land cover (LULC) indices, including the NDBI (normalized difference
built-up index) and NDVI (normalized difference vegetation index), are calculated using
remote sensing data from the red, near-infrared (NIR), and short-wave infrared (SWIR) bands.
These indices, frequently used to examine land cover properties, whereas the calculation of
NDVI is shown above, the NDBI is calculated using the following formula: [35,36].

NDBI = (SWIR − NIR)/(SWIR + NIR)

3.5. Urban Heat Island Index

Assessing the overall UHI effect across a region using land surface temperature (LST)
data over an extended period is challenging, as the severity of the urban heat island (UHI)
anomaly can significantly vary over time within a particular location. To address this issue,
the UHI index was proposed as a technique for making more accurate predictions [37]. It
can be calculated using the following equation:

UHI index = LSTi − LSTmin/LSTmax − LSTmin

where LSTi denotes the spatial spread of land surface temperature (LST) given a certain
picture in this equation, whereas LSTmax and LSTmin reflect the maximum and lowest
LST values inside that image. The UHI index is used to normalize LST values ranging from
0 to 1. A higher index value corresponds to a greater LST. The index value for built-up
regions and bare soil, in particular, surpasses 0.6. Vegetation has an index value of 0.3 to
0.6, whereas water bodies have an index value of 0.3 or below. In a nutshell, the UHI index
allows for the comparison and categorization of LST figures, enabling the identification
of distinct thermal features across various kinds of land cover, such as built-up regions,
plants, and water bodies.

3.6. CA-ANN Modelling

The prediction of LST for the year 2032 was made using the QGIS MOLUSCE plugin
module and the cellular automata–artificial neural network (CA-ANN) [38]. This model,
adept at documenting the complex relationships and dynamics between land cover pa-
rameters, environmental conditions, and human activities, simulates and predicts spatial
patterns and changes over time by combining the capabilities of cellular automata and arti-
ficial neural networks. The CA-ANN model’s ability to integrate GIS and remote sensing
data offers significant insights into understanding and predicting the temporal and spatial
trends of land cover transitions [39,40].

4. Results
4.1. LULC Change Analysis

We employed a supervised machine learning algorithm for the extraction of four
distinct land use and land cover (LULC) classes spanning the years 2000, 2014, and 2022 [41].
To ascertain the accuracy of the LULC maps’ classification, we randomly selected 100 data
points for each year (as depicted in Table 2). The LULC maps’ classification proved to
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be highly accurate, with an overall accuracy exceeding 85% across all three years [42].
Additionally, the Kappa coefficient, which assesses the concordance between the classified
maps and reference data, yielded values surpassing 0.88 throughout the study period (refer
to Table 2). This attests to the reliability and consistency of the LULC classification for the
time frame under analysis [43].

Table 2. Accuracy assessment using kappa statistics for LULC (2000, 2014, and 2022).

User’s Accuracy (%) Producer’s Accuracy (%) Overall
Accuracy

(%)
Kappa

Years Built-Up Cultivated
Land

Uncultivated
Land Vegetation Water

Body Built-Up Cultivated
Land

Uncultivated
Land Vegetation Water

Body

2000 98.6 90.9 80 99.46 87 89 99.85 91.2 82.3 90 97 0.942
2014 92 99.34 99.26 95 99.44 99.2 99.67 94.11 70 99.76 96 0.935
2022 71.2 87.5 99.89 99.67 99.78 99.6 93.33 72.72 98.36 66.66 94 0.897

In 2000, cultivated land was the most extensive land cover class, spanning
208.11 km2. However, its area significantly diminished to 134 km2 in 2014 and further
dwindled to 121.01 km2 in 2022. Conversely, the area of uncultivated land increased over
this period, growing from 31.58 km2 in 2000 to 95 km2 in 2014, albeit slightly declining to
94.89 km2 in 2022 (Table 3).

Table 3. LULC Change Detection from 2000 to 2022 in Square Kilometer.

Class Name/Year Area in 2000 (km2) Area in 2014 (km2) Area in 2022 (km2)

Cultivated land 208.12 134 121
Uncultivated land 31.58 95 94.88

Vegetation 668.98 600 459.92
Built-up 48.63 130 166.42

Water body 33.36 32 31.67

Vegetation, encompassing forests, grasslands, and other natural vegetation types,
initially covered an expansive 668.99 km2 in 2000. This coverage, however, declined to 600
km2 in 2014 and further contracted to 459.92 km2 by 2022. Additionally, built-up areas,
which accounted for 48.63 km2 in 2000, witnessed significant growth to 130 km2 in 2014
and 166.43 km2 in 2022.

The extent of water bodies, comprising lakes, rivers, and reservoirs, was 33.36 km2 in
2000, and it remained relatively stable, with a slight decrease to 32 km2 in 2014 and 31.67
km2 in 2022.

Two key trends emerged from 2000 to 2022. Firstly, the built-up area experienced
significant expansion, while the vegetation cover and water bodies underwent contraction.
The built-up area surged by a noteworthy percentage over this period, with an average
annual growth rate of 9.81 km2 per year. Conversely, vegetation cover and water bodies
decreased by negative percentages (−35.25% and −5.06%, respectively) from 2000 to 2022,
with an average annual decline rate of −17.42 and −0.14 km2 per year, respectively. These
dynamic trends underscore the evolving nature of the land surface, characterized by the
proliferation of built-up areas at the cost of natural land covers and water bodies (as
illustrated in Figure 2). The implications of these changes warrant further investigation to
assess their potential impact on the ecosystem and local communities [44–46].
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4.2. Land Surface Temperature (LST) Analysis

The spatiotemporal distribution of land surface temperature (LST) was evaluated
utilizing a combination of equations and Landsat thermal bands throughout the study
duration. Figure 3 provides a visual interpretation of the annual LST distribution from
2000 to 2022, demonstrating an escalating trend. The maximum temperature recorded in
2000 was 23.65 ◦C, significantly increasing to 67.45 ◦C in 2022, with an annual average shift
of 1.990 ◦C. Correspondingly, the minimum temperature registered in 2000 was 11.85 ◦C,
exhibiting a remarkable rise to 59.26 ◦C in 2022, with an annual average shift of 2.166 ◦C.
These observations underscore the increasing trend in temperatures during the study
period, implicating the potential influence of various factors on LST dynamics [47].

In 2022, the mean LST was noted as 23.652 ◦C, representing the average land surface
temperature. The year’s peak temperature was recorded at 31.322 ◦C, whereas the lowest
temperature was at 18.569 ◦C. When compared to 2014, a minor decrease in the mean LST
was observed. The mean LST in 2014 was 22.606 ◦C, signifying a slightly higher average
temperature than in 2000. The highest and lowest temperatures in 2014 were 29.897 ◦C and
16.373 ◦C, respectively. In comparison to the year 2000, there was a substantial increment in
the mean LST. The mean LST in 2000 was 16.249 ◦C, significantly lower than the subsequent
years. The maximum and minimum temperatures in 2000 were recorded as 23.657 ◦C and
11.856 ◦C, respectively. Overall, these statistics depict a persistent rise in LST from 2000 to
2022, punctuated by a significant increase in mean temperatures. The maximum temperatures
also portray an escalating trend, suggesting possible alterations in temperature patterns [47].

4.3. Validation

To verify the accuracy of the prediction results, we initially utilized the cellular
automata–artificial neural network (CA-ANN) model to predict land use/land cover
(LULC) and land surface temperature (LST) for the 2020s. We subsequently compared
the forecasted and estimated maps using the QGIS-MOLUSCE Plugin and Terrset (v 2020)
Software programs, employing diverse kappa settings (Tables 4–7) [48,49]. The assessment
results were generally favorable, considering all kappa parameters, accuracy percentages,
and overall kappa values surpassing 0.75 and 0.80, respectively. Moreover, the mean error
value across all parameters was approximately 20%, further corroborating the reliability of
our findings. Additionally, a cross-tabulation was conducted to enhance our understanding
of the validation results, which is elaborated upon in Section 4.4.

Table 4. Validation statistics for the derived LST 2022.

Validation Parameters of QGIS MOLUSCE Plugin Using CA-ANN

Year % of correctness Kappa (Overall) Kappa (Histo) Kappa (loc)

LST 2022 75.59 0.85 0.77 0.83
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Table 5. Pixel Cross-tabulation.

Category 0 1 2 3 4 5 Total

0 1,042,551 4 18 11 2 4 1,042,590
1 (<21 ◦C) 0 145,028 35,115 643 269 490 181,545

2 (21–22 ◦C) 0 101,867 191,002 11,956 219 568 305,612
3 (22–23 ◦C) 0 3907 45,318 239,025 3549 7156 298,955
4 (23–24 ◦C) 0 120 7295 43,730 154,028 8687 213,860
5 (>24 ◦C) 0 0 231 5981 12,491 82,154 100,857

Total 1,042,551 250,926 278,979 301,346 170,558 99,059 2,143,419

Chi-square = 6,606,358.5000, degree of freedom (df) = 25, p-Level = 0.0000, Cramer’s V = 0.7851

Table 6. Proportional Cross-tabulation.

Category 0 1 2 3 4 5 Total

0 0.4864 0.0000 0.0000 0.0000 0.0000 0.0000 0.4864
1 (<21 ◦C) 0.0000 0.0677 0.0164 0.0003 0.0001 0.0002 0.0847

2 (21–22 ◦C) 0.0000 0.0475 0.0891 0.0056 0.0001 0.0003 0.1426
3 (22–23 ◦C) 0.0000 0.0018 0.0211 0.1115 0.0017 0.0033 0.1395
4 (23–24 ◦C) 0.0000 0.0001 0.0034 0.0204 0.0719 0.0041 0.0998
5 (>24 ◦C) 0.0000 0.0000 0.0001 0.0028 0.0058 0.0383 0.0471

Total 0.4864 0.1171 0.1302 0.1406 0.0796 0.0462 1.0000

Table 7. Kappa index of agreement (KIA).

Using Reference Image 2022

as the reference image

Category KIA
0 0.9999
1 0.7722
2 0.5689
3 0.7667
4 0.696
5 0.8056

Using Simulated Image_2022

as the reference image

Category KIA
0 0.9999
1 0.7722
2 0.5689
3 0.7667
4 0.696
5 0.8056

Overall kappa: 0.8084

4.4. Cross-Tabulation

Using SIMULATED_IMAGE_2022_ (columns) vs. REFERENCE_IMAGE_2022_ (rows),
we performed a cross-tabulation.

4.5. Forecasted Land Surface Temperature (LST)

A predictive model was developed based on the prior land surface temperature (LST)
dataset to forecast potential LST conditions for the year 2032 (Figure 4). As per the model’s
predictions, the creation of higher temperature zones is more probable in the northern and
northwestern regions, primarily in areas experiencing extensive urban expansion [47]. The
model projects maximum and minimum LST values exceeding 26 ◦C and below 19 ◦C,
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respectively (Table 8). This simulation aligns with the observed increase in LST from 2000
to 2022, largely attributed to the expansion of built-up areas, thereby considerably affecting
LST values.
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Table 8. Values showing the LST (mean, max, min) from 2000 to 2022 along with simulated 2032.

LST 2000 2014 2022 2032

MEAN 16.249 62.606 23.652 23.956
MAX 23.657 29.897 31.322 32.147
MIN 11.856 16.373 18.569 19.623

The intensified urban heat island (UHI) effect and the surge in LST are directly linked
to the broadening urban footprints and depletion of vegetative cover [47]. The contributing
factors for escalating temperatures and UHI impact are multifold, and include urbanization,
alterations to the greenhouse gas effect, global warming, and modifications in surface
features [50–52]. The projected LST scenarios underline the grave concerns associated with
this rising trend, such as the heightened UHI effect.

4.6. Interplay between Land Use/Land Cover (LULC) Indices

The presented correlation coefficients (R2) (refer to Figure 5) that detail the relationship
between the normalized difference built-up index (NDBI) and land surface temperature
(LST) for the years 2000, 2014, and 2022 exhibit compelling patterns. There is a subtle uptick
in the correlation coefficient from 2000 to 2022, denoting an intensifying relationship. The
linear regression models for each year suggest a consistent positive relationship between
LST and NDBI, albeit with variable slopes and intercepts.
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Figure 5. The above figure represents the correlation analysis between LST with NDVI and NDBI for
2000, 2014, and 2022.

In 2000, the positive slope of 10.675x signals a strong influence of LST on NDBI, with
an intercept of 24.674. The R2 value of 0.3632 implies that approximately 36.32% of the
NDBI variability can be accounted for by LST during this year. Similarly, in 2014 and
2022, the models project positive slopes of 12.218x and 6.4392x, respectively, indicating an
ongoing positive relationship between LST and NDBI, albeit with divergent magnitudes.
The intercepts for 2014 and 2022 stand at 25.615 and 16.246, respectively. The respective R2

values of 0.3638 and 0.3844 imply that roughly 36.38% and 38.44% of the NDBI variability
can be ascribed to LST during these years. This suggests that the influence of built-up areas
on temperature patterns has become more significant, with NDBI serving as a more potent
predictor of LST variations.

Conversely, an analysis of the relationship between LST and the normalized difference
vegetation index (NDVI) for the Kamrup Metro Region across 2000, 2014, and 2022 reveals
a different dynamic. The models demonstrate a negative relationship between LST and
NDVI, with fluctuating slopes and intercepts. In 2000, the equation projects a steeper
negative slope of −5.9821x, suggesting a considerable impact of LST on NDVI, with an
intercept of 26.19. Nevertheless, the R2 value of 0.1192 indicates that only around 11.92% of
the NDVI variability can be accounted for by LST during this year.

In 2014 and 2022, the models present negative slopes of −6.6917x and −2.5775x,
respectively, signifying a weakening relationship between LST and NDVI. The intercepts
for 2014 and 2022 stand at 25.37 and 17.184, respectively. The respective R2 values of
0.2286 and 0.2346 suggest that around 22.86% and 23.46% of the NDVI variability can
be ascribed to LST during these years. These findings indicate that although vegetation
coverage (measured by NDVI) might influence temperature patterns, other factors, such as
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urbanization, surface characteristics, and localized climatic conditions, likely play a more
decisive role in governing LST fluctuations [53,54].

4.7. Urban Heat Island Profile

The urban heat island (UHI) profile, as depicted in Figure 6, is based on a west–east
transect drawn across the city of Guwahati, an area characterized by high concentrations
of built-up regions. The temperature distribution along this line demonstrates that urban
centers typically exhibit higher temperatures compared to their surrounding suburban
counterparts. However, a detailed examination reveals a series of temperature peaks and
valleys, highlighting distinct thermal variations across the city.
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These fluctuations are directly linked to the city’s unique geographic features. The
valleys, which correspond to areas with relatively cooler temperatures, are often associated
with farmlands, bodies of water, and parks enriched with green spaces. Nearby vegetation-
covered areas also play a pivotal role in creating these cooler zones.
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In 2000, the highest UHI values appear at a distance of 0.7 on the transect, interspersed
with several valleys or dips in the graph at distances of 0.02, 0.06, and 0.18. These dips
record UHI values of less than 0.3, implying the presence of significant vegetation cover.

As we progress from 2000 to 2014, there is a noticeable increase in temperatures. The
peak at a distance of 0.14 escalates to a UHI value of 0.76, while the valleys at distances of
0.02, 0.06, and 0.18 simultaneously rise to values of 0.31, 0.34, and 0.38, respectively. This
uptrend continues into 2022, with the UHI value at a distance of 0.14 surging to 0.78.

The 2014 and 2022 profiles portray an increasing formation of heat islands. This trend
is marked by a growth in the number of temperature peaks (high temperatures) and a
decrease in the number of valleys (low temperatures), indicating an escalating UHI effect
as urban areas expand and vegetation cover reduces. This development is corroborated by
the land use/land cover (LULC) analysis conducted from 2000 to 2022.

5. Discussion

The projected future scenario of the Kamrup Metro Region can be extrapolated from
the various factors explored in this study. The land use/land cover (LULC) changes re-
vealed a notable transformation in the land surface composition over time, characterized by
an expansion of built-up areas at the expense of natural land cover and water bodies [55–58].
This trend not only demonstrates an ongoing process of urbanization but also suggests its
likely continuation in the future.

The land surface temperature (LST) analysis further underscored a persistent and
significant uptick in land surface temperatures, especially a remarkable rise in mean temper-
atures from 2000 to 2022. This escalation in temperature is intrinsically tied to the prolifera-
tion of built-up areas, thus, spotlighting the urban heat island (UHI) effect [59]. Predicted
LST scenarios for 2032 suggest the emergence of hotter zones, predominantly in the north-
ern and northwestern regions, which are undergoing significant urban development. These
predictions signal an impending amplification of the UHI effect, raising serious concerns
about its implications for the region’s socio-economic and environmental sustainability.

Moreover, the correlation analysis between the LULC indices exposed a critical insight.
While the built-up areas are gaining more influence on temperature patterns, vegetation
cover seems to have a diminishing effect on temperature modulation. This trend suggests a
systemic imbalance between urbanization and environmental preservation, reinforcing the
consequential rise in temperatures and UHI effect [60].

Collectively, these results indicate that the Kamrup Metro Region is on a trajectory
towards increased urbanization, heightened temperatures, and amplified UHI effect. The
potential impacts of this pathway are vast, encompassing changes in local climate, increased
energy consumption, public health risks, and threats to biodiversity, among others [61–63].

These findings underscore the urgency of implementing sustainable land management
and urban planning strategies [64]. Efforts must focus on preserving and restoring natural
land cover to counterbalance the adverse effects of urban sprawl and climate change [65].
Green infrastructure, such as urban green spaces, green roofs, and street trees, could play a
crucial role in mitigating the UHI effect. Moreover, sustainable urban planning can promote
compact development, reducing the need for land conversion and, thus, preserving natural
habitats. Policymakers and urban planners should also prioritize climate resilience in their
strategies, considering the vulnerability of urban areas to climate change.

This study serves as a clarion call for a balance between urban growth and environ-
mental preservation, illuminating the critical need for sustainable solutions to manage
urban heat islands and mitigate climate change impacts. It underscores the imperative to
bridge the divide between economic development and environmental conservation, as the
future of the Kamrup Metro Region hangs in the balance.

6. Conclusions

The interplay between land use and land cover (LULC) and land surface temperature
(LST) in the Kamrup Metropolitan District region of Northeast India has been deeply
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examined in this study. The research unfolded through the timescale from 2000 to 2022,
offering a well-founded look into the future with projections until 2032. While the conclu-
sions derived are multi-layered and extensive, they are also intricately tied to the limits
of the study, opening doors for future research directions. The methodology anchored on
a supervised machine learning approach demonstrated that robust and accurate results
are achievable. This approach presented reliable mappings of LULC transformations,
highlighting an evident shift from cultivated land to built-up areas, painting a picture
of growing urbanization. Similarly, the upward trend of LST underscored a warming
landscape influenced strongly by urban development and decreasing green cover. The
robustness of the CA-ANN model used for future LULC and LST predictions was validated,
despite the inherent uncertainties in predictive modeling. However, it is worth acknowl-
edging that the model’s accuracy depends heavily on the quality of input data and how
representative it is of future conditions, signaling a potential area for enhancement in future
studies. Future projections pointed towards heightened LST, particularly in areas projected
for urban growth. This correlation between urban expansion and increasing LST was
supported by the relationships between LST, NDBI, and NDVI. The study found that the
impact of built-up areas on temperature variations overpowered that of vegetation cover,
underscoring the significant role of urbanization in escalating temperatures. The analysis of
the urban heat island (UHI) effect extended the discussion further by revealing that urban
centers exhibited higher temperatures than their suburban counterparts. The fluctuating
peaks and valleys in the temperature profile aligned with the spread of built-up areas and
shrinking vegetation, providing evidence of the manifestation and intensification of the
UHI effect. While the study provides critical insights into the ongoing urbanization process,
increasing temperatures, and growing UHI effects, it also points out several limitations and
gaps. The reliance on remote sensing data, although powerful, also carries uncertainties
related to data quality and resolution. Furthermore, while the machine learning model
provides accurate predictions, it also introduces an inherent degree of uncertainty due to its
stochastic nature. These limitations not only indicate the need for caution while interpreting
the results but also point towards future research directions. In addition, the study leaves
some questions unanswered. While it highlights the importance of vegetation in mitigating
UHI effect, the detailed role of different types of vegetation and green infrastructure is
left unexplored. Additionally, how urban planning strategies can effectively utilize these
natural resources to combat the UHI effect warrants further research. Overall, the study
provides a comprehensive understanding of the changing LULC and LST dynamics in the
Kamrup Metro Region. It emphasizes the significance of sustainable land management and
urban planning strategies in mitigating the adverse effects of urban expansion. At the same
time, it throws light on areas needing further exploration, ultimately guiding the region
towards a sustainable and climate-resilient future.
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56. Meraj, G.; Kanga, S.; Kranjčić, N.; Ðurin, B.; Singh, S.K. Role of Natural Capital Economics for Sustainable Management of Earth
Resources. Earth 2021, 2, 622–634. [CrossRef]

57. Kanga, S.; Singh, S.K.; Meraj, G.; Kumar, A.; Parveen, R.; Kranjčić, N.; Ðurin, B. Assessment of the Impact of Urbanization on
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