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Abstract: Spatio-temporal analysis of rainfall trends in a watershed is an effective tool for sustainable
water resources management, as it allows for an understanding of the impacts of these changes at the
watershed scale. The objective of the present study is to analyze the impacts of climate change on
the availability of surface water resources in the Nakanbe-Wayen watershed over the period from
1981 to 2020. The analysis was conducted on in situ rainfall data collected from 14 meteorological
stations distributed throughout the watershed and completed with CHIRPS data. Ten precipitation
indices, recommended by the ETCCDI (Expert Team on Climate Change Detection and Indices), were
calculated using the RClimDex package. The results show changes in the distribution of annual
precipitation and an increasing trend in annual precipitation. At the same time, a trend towards an
increase in the occurrence and intensity of extreme events was also observed over the last 4 decades.
In light of these analyses, it should be emphasized that the increase in precipitation observed in the
Nakanbe-Wayen watershed is induced by the increase in the occurrence and intensity of events, as
a trend towards an increase in persistent drought periods (CDD) is observed. This indicates that
the watershed is suffering from water scarcity. Water stress and water-related hazards have a major
impact on communities and ecosystems. In these conditions of vulnerability, the development of
risk-management strategies related to water resources is necessary, especially at the local scale. This
should be formulated in light of observed and projected climate extremes in order to propose an
appropriate and anticipated management strategy for climate risks related to water resources at the
watershed scale.
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1. Introduction

Climate change is a widely known global phenomenon whose impacts vary from
region to region. The IPCC’s Sixth Assessment Report clearly indicates that the increase in
greenhouse gas (GHG) concentrations observed since 1850 is largely due to anthropogenic
causes [1,2]. These effects are reflected in rising temperatures, more spatio-temporal
variability in precipitation, and more severe and frequent extreme weather events (droughts,
floods, etc.) [2].

It is also widely accepted that recent climate change, particularly in the Sahelian
countries of West Africa, has altered annual and seasonal rainfall patterns and their spatial
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distribution [3]. Characterized by an arid to semi-arid climate in the Képpen—-Geiger
classification, the West African Sahel is considered by IPCC experts to be one of the world’s
most vulnerable regions to climate change and is expected to be the most affected in the
world in the 21st century [4-12]. It has already experienced a temperature rise of 1 °C since
1950. Indeed, in 2021, temperatures in West Africa were 1.39 °C higher than in the period
1961-1990 [10-12].

Rainfall in the Sahel is characterized by high spatio-temporal variability, marked by
strong seasonality: the rainy season begins in mid-spring (mid-April), followed by a gradual
increase, reaching its peak around mid-August. Recurrent meteorological anomalies,
such as droughts and floods, induce a wide range of effects on the environment and
society [13-15] and have important implications for water resources [10-12], especially in
Sahelian countries such as Burkina Faso, where water resources are already scarce.

This constant is even more acute in the Nakanbe-Wayen watershed, which is char-
acterized by an arid environment and where climate variability already poses a major
challenge for water supplies and agriculture, which is virtually dependent on rainfall and a
source of income for over 80% of the country’s working population [16].

Precipitation is therefore one of the most important meteorological variables for as-
sessing the availability of water resources and must be analyzed on the basis of reliable
information focusing on the spatial and temporal distribution of precipitation at the water-
shed scale [17-20].

Several studies have been conducted on climate variability and change [21-26] at the
watershed scale. However, knowledge of the impacts of climate change on the availability
of surface water resources in the Nakanbe-Wayen watershed remains limited.

As a matter of fact, this study aims to analyze the spatio-temporal dynamics of rainfall
and determine its impact on the availability of water resources in the watershed, using
climatic indices and geographic information systems. The results will provide scientific
information for decision support to determine appropriate measures for strengthening
adaptive capacity in the Nakanbe-Wayen watershed.

2. Materials and Methods
2.1. Study Area

The Nakanbe-Wayen watershed (Figure 1a) is located in the Sahelian zone between
parallels 12°22’ and 14°06’ N and 0°47’ and 2°43’ W, and it occupies an area of 21,178 km? [27].
The relief of the watershed is relatively flat, with elevations ranging from 259 to 526 m, and
an average of 324 m. The climate of the watershed is dry tropical, with a unimodal annual
rainfall cycle (Figure 1b), characterized by a short wet season from June to September
dominated by moist winds from the Gulf of Guinea, and a long dry season from November
to May characterized by dust-laden harmattan winds from the northeast [27]. It covers
two climatic zones: the Sahelian zone, with a total annual rainfall of between 300 and
600 mm, an average annual temperature of 29 °C, and average annual potential evapotran-
spiration (PTE) ranging from 3200 to 3500 mm; and the Sudano-Sahelian zone, with an
average rainfall of between 600 and 900 mm, an average temperature of 28 °C, and average
evapotranspiration of between 2600 mm and 2900 mm.

The basin’s main river, the Nakanbe, rises in the northern part of the basin (Figure 1a),
flows southwards, and only discharges during heavy rainfall in the rainy season. Annual
maximum daily flows range from 43.1 to 230.0 m>/s [27]. The Nakanbe-Wayen watershed,
which is a sub-catchment of the Nakanbe river, contains a complex surface water system,
including multiple river channels, lakes, and dams, and thus it plays a key role in economic
and social development [28-30].
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Figure 1. (a) Geographic location of the Nakanbe-Wayen watershed. (b) Annual rainfall cycle of the
Nakanbe-Wayen watershed.

2.2. Data Sources
2.2.1. In Situ Data

Rainfall data were obtained from the National Meteorological Agency (ANAM) of
Burkina Faso and cover the period 1981-2020. The rainfall data collected cover 14 stations,
13 of which are inside the basin and 1 of which is near the watershed. The geographical
distribution of the stations is shown in Figure 2.

Unfortunately, many of the stations have numerous deficiencies (Table 1). However,
the size criterion of the time series is important for the analysis of the changes [31]. In order
to have a long time series of data, at daily time intervals, satellite precipitation datasets
can be used as a complement or substitute for gauge station observations [32]. In this
study, CHIRPS v2 spatialized products were used to fill gaps and missing data from in
situ stations.
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Figure 2. Location map of the meteorological stations studied in the Nakanbe-Wayen watershed.

Table 1. Selected climate stations in the Nakanbe-Wayen watershed.

Station Longitude (°)  Latitude (°)  Altitude (m) gzif:;fslgz)

1 Bam —1.50199 13.32601 264 61.3
2 Boken —1.80365 13.00205 314 75

3 Bourzanga —1.55029 13.67331 329 72.3
4 Boussouma —1.07879 12.90471 323 69.4
5 Gourcy —2.35498 13.19673 332 72.7
6 Guilongou —1.30797 12.61320 315 69

7 Kaya —1.09970 13.10015 313 60

8 Mane —1.34636 12.98489 283 72.7
9 Ouahigouya * —2.41651 13.56530 329 100
10 Seguenega —1.96679 13.43784 307 72.7
11 Tikare —1.72670 13.28709 400 59

12 Titao —2.07208 13.76730 319 69.8
13 Yako —2.26418 12.95827 294 66.4
14 Ouagadougou * —1.51239 12.35641 303 100

* Synoptic station.

2.2.2. Gridded Climate Data

Due to a lack of ground-based observational data, satellite datasets can be used
as an alternative to in situ observational data [26]. Precipitation data from the Climate
Hazards Group Infrared Precipitation with Stations (CHIRPS) version 2, available since
1981, were selected from a set of commonly used satellite precipitation products. For
this study, CHIRPS data were collected over the period 1981-2020. These satellite data,
developed by the US Geological Survey (USGS) and the Climate Hazards Group at the
University of California, Santa Barbara (UCSB), were chosen because of the availability of a
longer series of data in near-real-time, reasonably high spatial (0.05° x 0.05°) and temporal
(1 day) resolution, open access to the data, and their high frequency of use in Burkina Faso.
Furthermore, these datasets, widely used in previous studies in Burkina Faso and in West
Africa, have shown good correlations with in situ observational datasets [33-38]. They
integrate satellite data with in situ station data to create gridded time series datasets of
near-global precipitation at daily time steps and a 5.3 km (0.05°) resolution [34,36,38].
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2.3. Methods
2.3.1. Data Extraction and Dataset Validation

The extraction of meteorological data covering the study area was made according
to the geographical coordinates of the 14 in situ stations in the watershed (Figure 2).
Each measuring point contains a time series of precipitation data from 1 January 1981 to
31 December 2020. The performance of the CHIRPS datasets was assessed by comparing
these data to those of in situ stations with missing data of less than 10% over the period
considered, and a long series of at least 30 years. Only the synoptic stations of Ouahigouya
and Ouagadougou met the criteria mentioned above. The performance evaluation method
used included the statistical indicators summarized in Table 2.

Table 2. Statistical indicators for validation of climatic data.

Statistical Indicator Formula Values Range Perfect Score Equation
Lt (Gi—G)(Si—S)
Pearson correlation coefficient \/Z G-G) \/Z 5-5)° —1to1l 1 (1)
n
Mean error (ME) =1y (-G) —o0 to o0 0 )
i=1
Bias Bias = % Otooco 1 3)
n
Root mean square error (RMSE) RMSE = % (Si — Gi)2 0toco 0 4)
i=1
. . . _ T (Si-Gi)?
Nash-Sutcliffe efficiency coefficient E=1-ZF7—1= —ootol 1 )
Y (Gi—G)
Probability of detection POA =H/(H+M) Oto1l 1 (6)
False alarm ratio FAR=F/(H+F) Oto1l 0 (7)

G; gauge rainfall measurement; G: average gauge rainfall measurement; S;: satellite rainfall estimate; S: average
satellite rainfall estimate; n: number of data pairs; H: number of hits; F: number of false alarms; and M: number
of misses.

In this study, the performance of CHIRPS satellite rainfall product estimates was
examined at monthly scales for the period 1981 to 2020. Due to the poor performance
reported in previous studies, no daily comparisons were made [34,39].

2.3.2. Quality Control and Homogenization

Due to consistency issues that may have existed in the collection, recording, and
storage of data, thorough quality control and assessment of the homogeneity of the data
prior to data analysis were required in order to eliminate erroneous daily precipitation data
as well as to identify artificial jumps in the time series. For this purpose, the quality control
and data homogenization tools RHTest of RClimDex (version 5.0) were used.

e  Quality control

Quality control (QC) examines the data for negative precipitation values [33]. No
such situations were observed. QC also detects precipitation outliers. Outliers are daily
values outside a user-defined threshold [40]. Outliers identified as artifacts were replaced
by missing values in the observed data time series.

e Homogenization

The homogeneity of the dataset was assessed in RclimDex using RHTest to detect
points of change in the dataset. No significant changes were found.

After ensuring these checks, the station data were assumed to be 100% consistent for
further processing [41].
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2.3.3. Analysis of Climate Extremes Indices Using RClimDex

The ETCCDI (Expert Team on Climate Change Detection and Indices) of the World Mete-
orological Organization (WMO) has recommended 27 climate indices to assess changes in pre-
cipitation and temperature patterns in terms of duration, intensity, and occurrence [31,42,43].
For this study, RclimDex software facilitated the calculation of 10 indices (Table 3) consid-
ered relevant to assess the impact of climate change on the availability of water resources,
such as intensity, frequency, and duration of precipitation indices.

Table 3. List of precipitation indices used.

Indices Descriptive Name Definition Units
PRCPTOT Annual t'ot'al Wet—day Annual total rainfall from mm
precipitation days > 1 mm
Max 1-day Annual maximum
Rx1day o N mm
precipitation amount 1-day precipitation
Max-5-day Annual maximum consecutive
Rx5day . . mm
precipitation amount 5-day rainfall
. Maximum number of consecutive
CDD Consecutive dry days days with rainfall <1 mm days
. Maximum number of consecutive
CWD Consecutive wet days days with ralnfall > 1'mim days
Number of heavy Annual counts of days when
R20mm precipitation days rainfall > 20 mm days
Number of very
R50mm heavy Annual counts of days when days

precipitation days rainfall > 50 mm

Annual total precipitation from the
R95p Very wet days days with daily mm
rainfall > 95th percentile
Annual total precipitation on the
R99p Extremely wet days days when daily mm
rainfall > 99th percentile
Annual total rainfall when
(PRCP > 1 mm) divided by the mm/day
number of wet days

Simple daily

Sbil intensity index

2.3.4. Trend Analysis

Linear trends in precipitation (P) were analyzed using Mann-Kendall tests [44] cou-
pled with the Sen slope estimator [45]. The Mann—Kendall test is a non-parametric test
recommended by the World Meteorological Organization to test for the presence of trends
in time series [46]. It is considered a robust linear trend regression method [45,47-50].
The Mann-Kendal test (Z Kendall coefficient) provides information on the significance of
the trend [46]. This method is widely used in climate and hydrological studies [4,51-56].
Thus, there is a trend if the p-value is less than 5%. Sen’s slope estimator [6] was used to
estimate both the magnitude of the linear trend and its direction. It is a non-parametric
method of calculating the slope of the median. It allows for a more reliable assessment of
the trend [56].

2.3.5. Spatial Interpolation

The kriging linear interpolation method was used to analyze the spatial distribution of
average precipitation at the watershed scale. This interpolation method is recognized as the
most distinct interpolation method for interpolating meteorological datasets [57,58]. This
geospatial interpolation method is based on statistical models including autocorrelation,
i.e., the statistical relationships between measured points. This method is also an advanced
and sophisticated geostatistical procedure that generates and estimates a statistical surface
from a set of scattered points [59]. In general, kriging forms weights around measured
values to predict values at unmeasured locations [60].
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3. Results
3.1. Data Validation

In this study, the performance of CHIRPS satellite rainfall product estimates was
examined at monthly scales for the period 1981 to 2020 on the basis of various statistical
performance evaluation criteria, as listed in Table 2.

The performance evaluation statistics of these products gave good agreement with the
in situ data (Table 4). Better correlation coefficients (r > 90%), bias (between 1.004 and 1.05),
NSE (>83%), and RMSE (between 27 and 32 mm/month) were found. This implies that
CHIRPS satellite rainfall data performed well over the Nakanbe-Wayen watershed.

Table 4. Results of statistical tests.

Name Ouagadougou Ouahigouya
Pearson correlation coefficient (r) 0.95 0.92
BIAS 1.05 1.03
ME * 3.37 1.53
RMSE * 271 32.66
Nash—Sutcliffe efficiency NSE 0.89 0.83
POD 0.97 0.96
FAR 0.13 0.12

* ME and RMSE are in mm/month. The other indicators are unitless.

3.2. Average Annual Precipitation

The rainfall regime of the Nakanbe-Wayen watershed was marked by strong spatio-
temporal variability. Cumulative rainfall in the basin varied between 268.20 mm and
1170.10 mm, with an average of 640.03 mm, from 1981 to 2020. The rates of variation ranged
from 25% to 16%, with an average of 20% (Table 5).

Table 5. Descriptive statistics of cumulative rainfall from 1981 to 2020 in the Nakanbe-Wayen basin.

Stati Minimum Maximum Average Stal}da.rd Coefficient of
tation Deviation . ..
(mm) (mm) (mm) Variation (%)
(mm)

Bam 425.3 1033.14 636.58 130.06 20.43
Bourzanga 355.7 742.8 564.75 92.54 16.38
Seguenega 362.41 1000 621.41 140.72 22.64

Titao 268.2 762 517.99 127.55 24.62
Boussouma 370.9 1170.1 675.63 154.59 22.88

Gourcy 446.91 1016 688.2 149.44 21.71
Guilongou 517.98 972.7 707.15 117.72 16.66
Kaya 466.2 959.8 655.57 133.84 20.41
Mane 458.6 1110.1 674.87 136.98 20.29
Ouahigouya 358.2 983.4 679.95 172.1 25.31
Tikare 400.9 1000 638.79 129.91 20.33
Yako 459.34 1090.6 695.02 136.61 19.65
Boken 398.1 931.5 619.42 124.01 20.02
Average 640.03 20.02

At the same time, a significant upward trend in mean annual precipitation was
detected at almost all stations for the period 1981-2020 (Figure 3a). Only one station
showed a non-significant (p-value = 0.35) upward trend. The rate of increase ranged from
1.68 mm/year to 9.08 mm/year. The trend in average annual rainfall in the Nakanbe-Wayen
watershed is shown in Figure 3b.
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Figure 3. (a) Rainfall trend station-by-station in the Nakanbe-Wayen watershed (t = time). (b) Average

annual rainfall trend in the Nakanbe-Wayen watershed.
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3.3. Analysis Spatio-Temporal Evolution of Extreme Precipitation Trends
3.3.1. Temporal Trends

Total Annual Precipitation per Rainy Day (PRCPTOT) and Simple Rainfall Inten-
sity (SDII)

Trend analysis of total annual precipitation per rainy day (PRCPTOT) showed a signif-
icant (5% significance level) upward trend at all meteorological stations in the watershed
over the 1981-2020 period (Figure 4 and Table 6). Only one station (Bam) showed a non-
significant (p-value = 0.35) increasing trend. The rate of increase ranged from 1.68 mm/year
(or 16.8 mm/decade) to 9.08 mm/year (or 90.8 mm/decade), with an average rate of
5.29 mm/year (or 52.9 mm per decade). Additionally, the PRCPTOT index showed a
similar trend to the average annual precipitation.
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Figure 4. Trends in total annual rainfall per day (PRCPTOT) in the Nakanbe-Wayen watershed.
S = Slope (mm/year).

Moreover, trend analysis of simple rainfall intensity (SDII) showed a significant up-
ward trend at all climate stations in the watershed over the 1981-2020 period (Figure 5 and
Table 6). The rate of increase in simple rainfall intensity ranged from 0.09 to 0.36 mm/day
per year, with an average increase of 0.23 mm/day per year. Only the Bourzanga sta-
tion showed a significant (p-value = 0.00) downward trend, with a rate of decrease of
—0.12 mm/day per year.
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Table 6. Statistical significance of the linear regression model assessed using the Mann—Kendall
test and Sen’s slope values of extreme precipitation indices from 1981 to 2020 for stations in the
Nakanbe-Wayen watershed.

Index PRCP TOT (mlsn?ll)la / CDD CWD R20 mm R50 mm Rxlday Rx5day R95p R99p
Station (mm/Year) Year) Y (Days/Year) (Days/Year) (Days/Year) (Days/Year) (mm/Year) (mm/Year) (mm/Year) (mm/Year)
Bam 1.68 0.10 * 0.27 —0.02 0.02 0.22 0.25 1.79 1.25
Bourzanga 2.77* —0.12 ** —0.61* 0.07 ** —0.14 ** —0.03 —0.43 —0.53 —3.04* -1.02
Boussouma 6.77 ** 0.25 ** 0.24 —0.04* 0.26 ** 0.05* 0.98 * 1.45** 5.86 ** 2.30*
Gourcy 7.96 ** 0.27 ** 0.34 —0.04 0.29 ** 0.07 ** 1.3** 1.45** 6.71 ** 3.23**
Guilongou 3.77*% 0.19 ** 0.43 —0.06 ** 0.22 ** 0.06 ** 0.37 0.46 4.48 ** 1.31
Kaya 3.55% 0.15 ** 0.3 —0.04* 0.17 ** 0.02 0.46 0.46 3.75*% 0.42
Mane 3.95 ** 0.24 ** 0.68 * —0.03 * 0.22 ** 0.04 * 0.58 1.04* 3.43* 0.35
Ouahigouya 9.08 ** 0.13 ** -0.19 —0.01 0.20 ** 0.05 ** 0.63* 0.73 3.97 ** 0.75
Seguenega 8.33 ** 0.37 ** 0.26 —0.03 0.31 ** 0.05 ** 1.08 ** 1.73 ** 5.77 ** 2.15*%
Tikare 6.46 ** 0.34 ** 0.82* —0.04* 0.29 ** 0.04 ** 0.82 ** 1.44 ** 5.46 ** 1.93*
Titao 4.76 ** 0.27 ** 0.85 ** —0.04 0.21 ** 0.04 ** 1.10 ** 1.19 ** 4.65 ** 0.99
Yako 4.60 * 0.12 ** 0.19 —0.01* 0.19 ** 0.02 0.85* 1.22% 241 1.03
Boken 5.1** 0.32 ** 0.60 * —0.06 ** 0.04 0.05 ** 1.08 ** 1.07 * 5.36 ** 2.19 **
The character * indicates a significance < 5%; ** indicates a significance < 1%, and the absence of a character
indicates a significance > 5%.
Bam: S=0.098; Boken: S=3.22; Bourzenga: S=-0.121; Boussouma: S=0.25;
p-value = 0.032 p-value = 0.002 p-value = 0.001 p-value =0
Station: Bam Station Station
224 1 30 14
2 = = = 21
- = ]
§. 18 5 ﬁ g 0:
2 16 ] E g “]
g 13 E E s
= 12 — = = = 1
E 1048 .~ @ ® @ 1
8 - - - , v - : : 54,
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020 1980 1990 2000 2010 2020
Year Year Year
Gourcy: S=0.27; Guilongou: $=0.19; Kaya: S=0.15; Mane: S =0.24;
p-value =0 p-value =0 p-value = 0.001 p-value =0
Station: Gourcy Station: Guilongoy ” . Station; Kay; S . Station. Mane
25 20 1 30
5" ‘ =" 25
=2 _§ E’ 16 B
3 €S € 11 o 0
t "] £ E 121 E 15
E = = 101 = -
= 10 oo o 1 =
E » ] » g ! - 10
5 J (REREEER L23E1E22 1S ki2icihailiaitintii] ] 64 5
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020 1980 1990 2000 2010 2020 1980 1990 2000 2010 2020
Year Year Year Year
Ouahigouya: S=0.13; Seguenega: S = 0.365; Tikare: S =0.34; Titao: S=0.27;
p-value = p-value =0 p-value =0
Station: O Station: Tikare
25
£ = =
E 2 20
= 3
7] : r T T 51, r T T v T
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020 19'80 1990 2000 2010 2020
Your Year Year Year
Yako: S=0.12;
p-value = 0.012
T Station: Yako
— SDll



Earth 2023, 4 616

e  Consecutive dry days (CDD) and consecutive wet days (CWD)

The analysis of consecutive dry days (CDD) indicated an increasing trend in 85% of
the stations, of which 40% were statistically significant, with a magnitude of 0.19 days/year
(i.e., 1.9 days/decade) to 0.85 days/year (i.e., 8.5 days/decade). The average rate of increase
was 0.45 days/year (or 4.5 days/decade). Only 15% of the stations showed a decreasing
trend of —0.19 days/year (or —1.9 days/decade) and —0.6 days/year (or —6 days/decade),
respectively (Figure 6 and Table 6).

Bam: S=0.27; Boken: S=0.6; Bourzenga: S =-0.6; Boussouma: S=0.23;
p-value = 0.32 p-value = 0.03 p-value = 0.027 p-value = 0.36
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Figure 6. Trend of consecutive dry days (CDD). S = Slope (days/year).

At the same time, the number of consecutive wet days CWD was found to be de-
creasing at 92% of the meteorological stations in the watershed, of which 42% of the
stations were statistically significant, with a magnitude ranging from 0.02 days/year (i.e.,
0.2 days/decade) to 0.06 days/year (i.e., 0.6 days/decade), and an average of 0.030 days/year
(i.e., 0.3 days/decade) for all stations. Only one station (Bourzanga) showed a significant
upward trend of 0.07 days/year, or 0.7 days/decade (Figure 7 and Table 6).
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Figure 7. Trends in consecutive wet days (CWD). S = Slope (days/year).

e  Number of heavy (R20mm) to very heavy (R50mm) rainfall days.

The annual number of heavy precipitation days with precipitation > 20 mm (R20 mm)
increased at 92% of the weather stations in the watershed, with 85% of the stations being sta-
tistically significant (Figure 8 and Table 6). The average rate of increase was 0.20 days/year
(or 2 days/decade). Only one station (Bourzanga) showed a significant downward trend of
—0.135 days/year (or —1.35 days/decade).

At the same time, almost all stations, or 92%, showed a significant upward trend
in the number of days with very heavy rainfall of >50 mm (Table 6), with 75% of sta-
tions being statistically significant. The average rate of increase was 0.04 days/year (or
0.4 days/decade). Only one station (Bourzanga) showed a non-significant decreasing trend.

e  Maximum 1-day (Rxlday) and 5-day (Rx5day) precipitation

The maximum 1-day precipitation (Rxlday) and the maximum consecutive 5-day
precipitation (Rx5day) showed an increasing trend in 92% of the meteorological stations
in the watershed, of which 62% were statistically significant (Figure 9 and Table 6). The
rate of increase was between 0.22 mm/year and 1.3 mm/year, with an average increase of
0.79 mm/year (i.e., 7.9 mm/decade) for the Rxl1day index, while that of the Rx5day index
was between 0.25 mm/year and 1.45 mm/year, with an average of 1.04 mm/year (i.e.,
10.4 mm/decade). Only one station (Bourzanga) showed a non-significant (p-value > 0.05)
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decreasing trend, with a magnitude of —4 mm/decade and —5 mm/decade for Rx1day
and Rx5day, respectively.
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Figure 8. Trends of number of heavy precipitation days (R20 mm). S = Slope (days/year).

Very wet days (R95p) and extremely wet days (R99p)

Very wet (R95p) to extremely wet (R99p) days showed increasing trends at 92% of
weather stations in the watershed, with 83% and 42% of stations statistically significant for
R95p and R99p, respectively (Table 6). The rate of increase in R95p ranged from 1.79 to
6.71 mm/year (i.e., 17.9 to 67.1 mm/decade), with an average increase of 4.47 mm/year
(i.e., 44.7 mm/decade) (Figure 10), while that of R99p ranged from 1.25 mm/year to
2.30 mm/year, with an average of 1.45 mm/year (i.e., 14.5 mm/decade). Only one station
(Bourzanga) showed a non-significant downward trend (Table 6).

3.3.2. Spatial Distribution Trends

The spatial distribution of total precipitation per day (PRCPTOT) was heterogeneous
and increased along the north-south gradient (Figure 11a), with lower precipitation in
the north and higher in the southern part of the watershed. Additionally, the north of the
basin had the lowest values of simple precipitation intensity (SDII), and the northeast and
southeast had high values (Figure 11b). Unlike the spatial distribution of total precipitation
per day (PRCPTOT), that of consecutive dry days (CDD) followed a south-north cross
gradient (Figure 11c). Where rainfall was low, the number of consecutive dry days was high
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and vice versa. As for the spatial distribution of consecutive wet days (CWD) (Figure 11d),
it grew inversely parallel to that of the simple precipitation intensity (SDII). This means
that where the simple precipitation intensity was high, the number of consecutive wet days
was low. Additionally, the spatial distribution of the number of days with heavy rainfall
(R20mm) and very heavy rainfall (R50mm) (Figure 11e,f), as well as that of very wet (R95p)
to extremely wet (R99p) days (Figure 11g,h), were also nearly similar, growing along a
north-south gradient, as was the distribution of total rainfall per wet day. As for the spatial
distributions of maximum 1-day (Rx1lday) and 5-day (Rx5day) precipitation (Figure 11i,j),
they were similar, with the highest values located in the southeast and the average values
in the northeast.
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Figure 11. Spatial distribution of extreme precipitation indices in the Nakanbe-Wayen watershed.
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4. Discussion

Precipitation indices have been widely used to analyze changes in the spatio-temporal
distribution of precipitation and their impact on the availability of water resources, as
well as for socio-economic and environmental issues [9]. This study, conducted in the
Nakanbe-Wayen watershed, provided insight into the effects of climate change on the
availability of surface water resources in the watershed.

The cumulative annual precipitation and the PRCPTOT index show a significant upward
trend in almost all the meteorological stations of the watershed over the 1981-2020 period.
These results are in agreement with the study by Gbohou [23], which notes an increase
in rainfall in the same watershed. These results are also in line with national trends [61].
Several authors believe that this recent increase in precipitation is probably due to the
warming of the northern Atlantic Ocean, which may have attracted summer rains further
north, thus increasing precipitation in the Sahel [62-64].

At the same time, the simple rainfall intensity index (SDII), the annual number of
days with heavy to very heavy rainfall (R20 mm, R50 mm), the maximum one-day rainfall
(Rx1day), the maximum consecutive 5-day rainfall (Rx5day), and the occurrence of very
rainy days (R95) and extremely rainy days (R99) increased at almost all weather stations
in the watershed. The increase in the frequency and intensity of extreme precipitation
events noted in the watershed corroborates the results of previous studies, which show
that these extreme events have become more frequent and more intense in the West African
Sahel [65,66].

These new precipitation conditions will most likely be maintained by global warm-
ing [65,67]. This upward trend in extreme precipitation also increases the risk of flood-
ing [68], damaging water storage infrastructure and essential services, and impacting water
availability.

Concomitant with the increase in extreme rainfall, the upward trend in drought
occurrence, illustrated by the CDD index (number of consecutive dry days), increased at
all stations, while the CWD index (number of consecutive rainy days) also decreased at
all stations in the catchment. This reflects a shortening of wet periods and a lengthening
of dry periods. This trend towards more frequent dry spells has also been demonstrated
by [65], inducing a rainfall deficit, reducing water availability [69], and leading to increased
water stress.

Because water is the primary means by which climate change affects populations,
the environment, and economies, water and climate change crises are regularly cited as
among the most serious crises facing humanity in the coming decades. They are among
the major issues of the 21st century, and the social repercussions and impacts of water
scarcity are likely to be severe. This calls for a new, intelligent approach to water resource
management in the face of climate change. To achieve this, it will be essential to set up a
water observatory for the Nakanbe-Wayen watershed to ensure the rational management
of this fragile and limited resource in order to meet the demand for water in a context of
changing climatic conditions.

5. Conclusions

The present study analyzed changes in rainfall distribution and identified extreme
rainfall events based on climatic indices in the Nakanbe-Wayen watershed. The spatial
analysis of rainfall indices showed heterogeneity in the distribution of the rainfall. The
rainfall indices showed an upward trend in precipitation. On the other hand, a positive
trend prevalence, i.e., an increase in the intensity and occurrence of extreme rainfall events
(SDII, Rx1day, Rx5day, R95p, R99p, R20 mm, R50 mm) in the basin was also recorded. At
the same time, a trend towards increasing periods of drought was observed.

In light of these analyses, it should also be noted that the increase in rainfall observed
in the Nakanbe-Wayen watershed was consecutive to the increase in the intensity and
frequency of extreme rainfall events. This is because the trend towards higher rainfall in
the watershed occurred despite shorter wet periods and longer dry periods. Water stress
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and water-related hazards, such as devastating droughts and floods, have major impacts
on communities and ecosystems.

In these conditions of vulnerability, the development of an appropriate and anticipa-
tory management strategy for climate risks related to water resources at the watershed scale
is essential. This should be formulated in a participatory scheme involving all stakeholders;
integrating science, governance, and society; and focusing on rainfall distribution and
water resource availability.
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