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Abstract: Agricultural production or rural activities can involve the emission of unpleasant gases,
malodors, or most commonly, greenhouse gases. In any case, the control and monitoring of such
emissions in rural, unattended, and remote locations represent an issue in need of addressing. In
this article, the monitoring of gases produced by a poultry manure depot and performed by devices
based on low-cost gas sensors in the context of the POREM (poultry-manure-based bio-activator for
better soil management through bioremediation) project is reported. This experience has shown that
the continuous and real-time monitoring of gas emissions in an unattended, remote, and rural area,
where it is unfeasible to employ expensive, professional instruments, can be successfully performed
by low-cost technologies. Two portable monitoring units developed in the laboratory and based
on low-cost gas sensors were used to provide indications about the concentrations of NH3, CH4,
H2S, and CO2. During this experiment, two monitors were deployed: the first one was placed in
the manure storage depot, while the second one was deployed out of the storage site to compare
the gas concentrations related to the outdoor environment with the gas emissions coming from
the manure. Both devices were wirelessly linked to the Internet, even though the radio signal was
weak and unstable in that area. This situation provided us with the opportunity to test a particular
protocol based on sending and receiving e-mails containing commands for the remote machines. This
experiment proved the effectiveness of the use of low-cost devices for gas emission monitoring in
such particular environments.

Keywords: chemosensors; portable monitoring unit; low-cost gas sensors; air quality evaluation;
gas sensors in agriculture; Internet of Things; wireless sensors

1. Introduction

In recent decades, gas sensor technology has made great advances and the prices
of low-cost gas sensors (LCSs) have registered limited increases. Low-cost air quality
monitors (LCAQMs) based on LCSs are used in many fields and applications, such as
air pollution monitoring in urban areas [1–8], malodor control or detection [9,10], and air
quality monitoring in outdoor and indoor environments [11–21].

The promising features of such devices have led to the feasibility of their use also
being explored for monitoring the emissions of unpleasant or greenhouse gases in rural or
agricultural activities. On one side, the employment of LCAQMs instead of professional
high-quality chemical analyzers can offer remarkable advantages in terms of cost, but on
the other side, the limitations of LCS technologies still pose several questions concerning
the effectiveness of their use.
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1.1. The Limits and the Potentialities of LCSs

LCS working principles are characterized by various technologies offering different
levels of performance. Some have achieved a significant level of maturity and are already
available on the worldwide market, among which resistive sensors, electrochemical cells,
non-dispersive infrared radiation absorption (NDIR) sensors, optical particle counters, and
photo-ionization sensors are the most used and widespread [3,22,23]. In other cases, the
development of the implementation technology concerning particular sensor types can
be considered still in its preliminary study phase. This is the case, for example, for SAW
(surface acoustic wave) sensors [24,25] or carbon nanotube sensors [26,27].

Despite the fact that LCAQMs and LCSs cannot offer the same levels of accuracy, if we
compare them with traditional, professional, regulatory-grade instruments, such as chemi-
cal analyzers, they can still be considered an appealing solution for air quality monitoring
in various environments due to their affordability, high portability grade, low-power con-
sumption, and limited maintenance requirements [3,5,28,29]. In some circumstances, they
appear to be the only feasible means of monitoring air quality. For example, households
cannot afford expensive, bulky, and noisy chemical analyzers to measure air pollutants in
their homes, apartments, or flats. Another context where the use of LCAQMs and LCSs is
beginning to be explored is the monitoring of pollutant gas emissions and greenhouse gas
emissions in rural or agricultural activities [30–33].

The main limitations affecting both the LCSs already available on the market and the
ones still in development or in a study phase can be summarized as the “zero level” stability
and the “cross-sensitivity” issues. The “zero level” of a gas sensor is the voltage level of its
output signal when the concentration of the gas to measure is equal to zero. The stability
of this parameter is fundamental to avoid errors in measurements, but unfortunately, in
some cases, LCSs cannot ensure an adequate performance in this respect. With respect to
the phenomenon of the cross-sensitivity, it can be described as the capability of an LCS
model to detect gas types that are different from the specific one for which it has been
designed and implemented, herein referred to as the “target gas”. This property constitutes
a disturbing factor for the quality of the measurements performed by such sensors when
they are exposed to a mix of gases, as is the case in many real situations.

Both cross-sensitivity and zero-level stability represent a source of errors in LCS mea-
surements that decrease their performance when compared with the traditional chemical
analyzers for gases.

1.2. The Aim and the Focus of This Work

The work presented in this article aims to verify the feasibility of using LCS and
LCAQM in inconvenient locations like unattended fields and depots for agricultural ac-
tivities for the control and monitoring of gas emissions. In particular, this experiment
was planned in the context of the POREM (LIFE17 ENV/IT/000333) project [34], which
aimed to demonstrate the applicability of treated poultry manure for soil restoration or
bioremediation. More specifically, the project aimed to prove that poultry manure, when
properly bio-activated, can restore the organic matter content of soils in semi-arid and
over-exploited lands. For this purpose, several sites across Europe were selected for the
experiment. In each of these sites, a suitable amount of treated poultry manure was stored
in depots and subsequently applied to the soils for restoration. The use and storage of
this material can generate gas and odor emissions which are potentially annoying for local
communities [35,36]. Moreover, they can represent a threat to the health of operators or
workers who have to access the poultry manure depot. Therefore, in these circumstances,
the monitoring of these emissions is highly advisable. As mentioned earlier, gas emission
assessments are usually performed by professional instruments such as chemical analyzers
that offer high accuracy and precision, but these are very expensive, have high mainte-
nance demands, and also require significant infrastructure for their deployment. Due to
all these reasons, it appeared that the monitoring of NH3, CH4, H2S, and CO2 potentially
originating from poultry manure could not be accomplished by such instruments in the
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remote and unattended locations where the depot and the lands of the experiment were
located. In addition to these difficulties, the site of the experiment was characterized by
a weak and unstable Internet radio signal, which made the remote control of the instru-
ments involved in gas emission monitoring difficult. This situation led to the decision
to use a low-cost laboratory-made monitoring unit based on LCSs to carry out the gas
concentration measurements.

The aim of the present article is focused on demonstrating the feasibility of using
low-cost technologies for the monitoring of gas emissions in the context of agricultural
activities performed in inconvenient and remote locations. The LCAQM devices developed
in our laboratories are called SentinAir, and the use of devices completely designed and
developed in the laboratory allowed us to test a particular protocol to remotely control in a
quasi-real-time way the concentrations of the aforementioned gases in the manure depot
and in its immediate surroundings.

For this purpose, two monitoring units (named “SentinAir”) were developed in our
laboratory for monitoring the gas concentrations inside the manure depot and in the close
vicinity. Before deploying the two SentinAir devices at the site of the experiment, it was
necessary to calibrate part of the selected LCSs in our laboratory. Here, the preliminary
tests of the communication protocol were also performed.

2. Materials and Methods

As previously mentioned, the main task to complete through the use of the LCAQMs
developed in our laboratory was the monitoring of the gas emissions of the treated poultry
manure stored in the depot. The main gases expected to be emitted by the manure heaps
present in the depot were NH3, CH4, H2S, and CO2. Other measurements performed
by laboratory-made devices were the environmental temperature, relative humidity, and
the temperature inside the manure heaps. During the experiment, roughly 1000 Kg of
treated manure was stored for the use and placed in that closed space. Since the site of the
experiment was a remote and unattended location, the equipment to be used for the gas
monitoring had to be adequately cheap, due to the possibility of its loss. Consequently, a set
of LCSs was selected for both the monitoring unit deployed inside the depot and the one
placed in its close vicinity. Part of the selected LCSs were calibrated in the laboratory and
also installed in the SentinAir devices designed for remote control in areas characterized by
a weak and unstable Internet radio signal. A detailed description of the hardware and the
software developed for the SentinAir units, along with the necessary information to repli-
cate them, can be found in a website repository and in previously published articles [37–39].
Detailed information about the preparation of the manure can be found on the POREM
webpage [34].

2.1. The Site of the Experiment

One of the experimental trials for the project was held in a rural area of the south of
Italy, more specifically, in a location called Biccari (see Figure 1). The treated poultry manure
was stored in a depot, the dimensions of which were 20 m × 15 m × 5 m (see Figure 2).
The room was accessible by operators and workers and had no forced ventilation systems.
Some windows located close to the depot ceiling were left partially opened to ensure a
certain amount of natural ventilation. The total area left open was 2.7 m2. Moreover, the
location was characterized by an unstable and weak Internet signal radio, which allowed
us to test a protocol to remotely control the monitoring units. As seen in Figures 2 and 3,
the first monitoring unit was placed very close to the manure heaps inside the depot, while
the second one was placed outside the depot in its close vicinity.
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2.2. The LCSs Selected for Gas Monitoring and Their Calibration

As explained earlier, the main gases expected to be emitted by the treated manure
were NH3, CH4, H2S, and CO2; therefore, the LCSs selected for their monitoring were,
respectively, the TGS826, the TGS2611, the TGS825, and the IRC-A1. The first three sen-
sors are resistive sensor types by Figaro [40], while the last one is an NDIR sensor by
Alphasense [41]. Three main reasons led us to the selection of these types of sensors: the
most important one was their affordability; the second one was their small size; and the
third one was the absence of cross-sensitivity issues in the use of such sensors. To better
clarify this last aspect, let us consider, for example, the TGS826 model: it is sensitive to
ammonia, which is the gas target or the gas type for which the sensor has been designed
and built, but it is also sensitive to ethanol and iso-butane, which are considered as inter-
fering gases for the sensor. In our case, we did not expect relevant concentrations of these
interfering gases; for this reason, we decided to use the TGS826 for ammonia concentration
measurements. Similar considerations could be made for the rest of the gas sensors used
for this experiment.

The selected set of sensors was installed on both the first monitoring unit inside the
depot, and on the second one outside it (see Figures 2 and 3). The CO2 sensor (called
IRC-A1) was purchased with the electronic board to support its operation provided by
Alphasense. This board is capable of providing the concentrations of the CO2 expressed in
“ppm” through the USB interface, which we used to connect it with the SentinAir system
(see [37–39]). The sensor and its support board are sold by the manufacturer as already
calibrated; therefore, no further calibration in the laboratory was necessary. On the contrary,
the resistive sensors were not available with a support board capable of providing data
expressing the measurements of the gas concentrations; thus, it was necessary to design
and implement a suitable board to operate them. The working principle of the resistive
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sensors for gas concentration measurements can be summarized as an electric resistor that
can vary its electric conductance depending on the number of gas molecules affecting its
sensing surface. The sensing layer of such sensors needs to operate at high temperatures;
then, it is necessary to provide electric power to the on-purpose pins of the sensor to
activate their heaters. The electronic board implemented to operate them is capable of
performing this task and providing an output signal consisting of a DC voltage that can
vary by following the variations in the sensor’s electric conductance and the downrange of
the gas concentrations (see Figure 4). Both the boards designed for the resistive sensors
and the support board for the IRC-A1 sensor are characterized by sizes small enough to be
easily integrated and installed in the SentinAir monitoring units.
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Figure 4. (a) The resistive sensors (TGS825, TGS826, TGS2611) and the board installed in the
monitoring unit outside the depot; (b) The resistive sensors and the board installed in the monitoring
unit inside the depot; (c) The IRC-A1 sensor and its board.

The analogic signals coming out from the resistive sensors formed the inputs of the
interfacing board connected to the SentinAir system [37], which is in charge of converting
them into digital data expressing the gas concentrations through its analog-to-digital (A/D)
converter. Thus, the resistive sensors TGS825, TGS826, and TGS2611 provided voltage
levels as outputs that reflected the gas concentrations experienced by their sensing layer;
therefore, they needed to be calibrated in the laboratory for their effective use.

To perform this task, we used gas cylinders with a certified concentration of gas, a
mass flow controller (MFC) system to obtain different gas flows, a mixing device to mix
the dry air flow with the test gas flow, and a test chamber where the sensors to calibrate
were placed. The system composed of these elements was set up by following the scheme
depicted in Figure 5.
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Figure 5. The schematic of the setup used for the resistive sensor calibrations in the laboratory. The
gas coming out from the cylinders was regulated by each MFC to obtain a convenient gas flow. By
mixing the two different flows, we obtained a total flow with the wanted gas concentration to inject
in the test chamber.
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The calibration of the sensors was performed by exposing them to different known
gas concentrations obtained by mixing the flow provided by the MFC regulating the test
gas (Fgas), which was NH3, CH4, or H2S depending on the sensors under test, and the flow
coming out from the dry air MFC (Fair). To make the different gas concentrations, the MFCs
were regulated to provide flows according to the following formulas:

C =
Fgas

Fair + Fgas
(1)

Ftot = Fair + Fgas, (2)

where Ftot was fixed to 1000 mL/min, and C is the gas concentration expressed in “ppm”.
The output signals coming out from the sensor boards were logged by the SentinAir

device and stored in files to use for the subsequent calibration process.
For calibrating the resistive sensors, we injected into the test chamber ten known

concentrations of gas alternated with dry air, which is useful for tracking the fluctuation of
the sensor “zero levels”, which are the voltages present at the sensor board outputs when
there is a gas concentration equal to zero. The “zero levels” and the voltages obtained in
correspondence with the various gas concentrations were used to compose a set of data
on which it was possible to determine the mathematical law linking the sensor voltages to
the gas concentrations. As our purpose was to indicatively assess the gas concentrations
emitted by the poultry manure heaps, we reckoned that a linear law could be sufficient for
this aim; therefore, given that the linear law can be written as:

C = aV + b, (3)

where C is the gas concentration expressed in “ppm”, and V is the sensor board voltage
expressed in volts. The set of data built as described earlier was useful to calculate the “a”
and “b” coefficients present in Formula (3) through the method of linear regression. The
software tool used to calculate them was Origin 7.0 by OriginLab.

2.3. The Monitoring of the Temperature inside the Manure Heaps and Other Environmental Variables

The monitoring units developed in our laboratory were equipped with sensors to
measure the ambient temperature, the ambient relative humidity, and the temperature
inside the manure heaps. The monitoring of these variables was useful to understand the
drying level of the treated manure and the bio-activity levels inside it.

The sensors used for measuring temperature and relative humidity were the TC1047A
by Microchip [42] and the HIH5031 by Honeywell [43], respectively. These sensors are
available in a miniaturized case, and they can be directly soldered onto an electronic
board to allow a remarkable level of compactness, such as when used with the SentinAir
monitoring units (see Figure 6).
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For measuring the temperature inside the manure heaps, a temperature probe was
deliberately designed and implemented in our laboratory (see Figure 7a,b). The probe was
implemented by cutting a steel pipe used for gas pipelines in our laboratory, to which a gas
fitting closed by a steel cap was to the tip. The internal diameter of the pipe and the gas
fitting where we placed the TC1047A sensor was 4 mm, which is large enough to host the
temperature sensor and the wirings necessary to connect it with the SentinAir system.
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We selected the material for making the probe to prevent potentially corrosive phe-
nomena that could damage the temperature sensor. Moreover, we thought that the steel
forming the probe would ensure a good thermal conductivity that would have favorable
results for an accurate temperature measurement.

The calibration of these sensors was not necessary because their manufacturers provide
the complete mathematical law linking the sensor signal outputs with the physical quantity
to measure.

2.4. The Monitoring Unit and the Communication Protocol

The system designed and implemented in our laboratory to carry out the monitoring
of the gas emitted by the treated poultry manure and the other variables meaningful
for our purposes is a multi-purpose device acting as an LCAQM and as a data logger
called SentinAir [37–39] (see Figure 8). Some features differentiate SentinAir from other
similar devices available on the market or designed by other research groups: the most
important are the capability to use a varied range of sensor models, and the capability to
be remotely controlled even when deployed in locations where the Internet radio signal is
weak and unstable.

The first characteristic is possible due to the hardware featuring the main board of the
system and also to the software developed for its operation. The SentinAir main board
is a low-cost mini-computer available on the market and called Raspberry 3b+ [44]. It is
provided with four USB ports, a serial-TTL port, and an I2C bus through which it is possible
to connect different sensors, or other modules developed or adapted for the SentinAir
system (see [37,39]). This hardware can operate a heterogeneous variety of sensors and
devices because it is managed by the particular software framework developed for the
purpose that makes their plug-and-play use possible through the installation of software
modules or “device drivers” specific for each sensor or device to use with SentinAir. More
details about the SentinAir software can be found in an earlier publication as well as on the
GitHub web repository [38,39].
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unit and its components.

The communication protocol developed in the case of an unstable Internet signal is
based on the exchange of e-mail messages containing commands, if directed toward the
monitoring unit, or output data, if coming from the monitoring unit. The SentinAir device
periodically connects to the given Imap/Smtp servers to search for e-mails sent by the user
containing commands. If some such e-mails are found (the system can recognize them by
scanning the e-mail subjects), it automatically reads the e-mail, extracts the commands,
and then returns the answer by connecting with the given Smtp server. If the connection,
the transmission, or the reception of the e-mail messages fails due to an unstable Internet
signal, the system performs continuous attempts to rectify the interrupted operation until
it succeeds. More details about this communication system can be found on the GitHub
web repository and in an earlier article [38,39].

3. Results
3.1. The Results of the Calibration of the Resistive Gas Sensors in the Laboratory

The resistive sensors used for this experience were calibrated by alternating steps in
which a known gas concentration was injected in the test chamber at a flow rate equal
to 1000 mL/s for 900 s with steps in which dry air was injected at the same flow rate for
the same time (see Figures 9–11). Two sets of sensors composed of TGS825, TGS826, and
TGS2611 were calibrated under the same conditions. The first set identified by the suffix
“in” was later installed in the monitoring unit deployed inside the depot and near the
manure heaps, and the second set identified by the suffix “out” was later installed in the
monitoring unit deployed outside the depot.
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exposed to the CH4 gas at the concentrations indicated in the figure.
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Starting from the data collected through the earlier shown expositions to the target
gases, it was possible to make the calibration tables (see Tables 1–3) whereby the “a”
and “b” coefficients of Equation (3) could be calculated for each sensor. The particular
trend of the gas in the test chamber during the calibration consisting of more steps of
zero gas concentrations allowed us to carry out a preliminary and indicative check on the
stability of the sensor “zero level”. Moreover, the repetition of a step with an identical
gas concentration gave us rough indications about the repeatability of the measurements
performed by such sensors.

Table 1. The calibration table elaborated for the TGS825 sensor.

H2S Concentrations (ppm) TGS825in (V) TGS825out (V)

10 3.78 3.81
9 3.82 3.84
8 3.87 3.89
7 3.96 3.97
5 4.11 4.12
3 4.27 4.24
2 4.37 4.35
2 4.38 4.36

1.5 4.41 4.4
1 4.45 4.44
0 4.48 4.47

Table 2. The calibration table elaborated for the TGS826 sensor.

NH3 Concentrations (ppm) TGS826in (V) TGS826out (V)

50 3.78 3.82
40 3.84 3.85
30 3.89 3.9
20 3.97 3.99
10 4.13 4.14
5 4.31 4.29
2 4.41 4.4
2 4.41 4.42

1.5 4.44 4.45
1 4.46 4.47
0 4.49 4.49

Table 3. The calibration table elaborated for the TGS2611 sensor.

CH4 Concentrations (ppm) TGS2611in (V) TGS2611out (V)

100 2.78 2.82
90 3.01 3.04
80 3.29 3.32
70 3.61 3.62
60 3.88 3.89
30 4.06 4.03
15 4.16 4.14
15 4.15 4.15
10 4.21 4.17
8 4.24 4.22
0 4.27 4.26

The calculation of the coefficients related to Equation (3) for each sensor was performed
by using the linear regression algorithm, which provided the results summarized in Table 4.
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Table 4. The results of the resistive sensor calibrations. R2 is the coefficient of determination, while
the RMSE is the root mean squared error.

Sensor a (ppm/V) b (ppm) R2 RMSE (ppm)

TGS825in −12.99 58.61 0.993 0.299
TGS825out −13.85 62.19 0.992 0.331
TGS826in −61.06 270.77 0.906 5.748

TGS826out −62.67 278.02 0.894 6.101
TGS2611in −66.34 294.71 0.918 11.161

TGS2611out −69.23 305.67 0.915 11.400

The coefficients reported in Table 4 were used to modify the software of the monitoring
units in order to automatically convert the voltage output signals of the sensors into gas
concentrations. This operation allowed us to create a unique database reporting the
concentrations of the resistive sensors along with the rest of the sensor set.

3.2. The Results of the On-Field Monitoring

The monitoring of the gas concentrations and the other variables on the site of the
experiment lasted 4 months and 2 days. The sampling rate of the measurements was
set to 5 min; the sensor readings were used to calculate in real-time the hourly means of
such variables and store them in a CSV (comma-separated values) file acting as a local
database in the monitoring units. It was possible to gradually download these files from our
laboratory thanks to the particular communication protocol earlier described and assemble
the pieces composing the database in a unique file available in the Supplementary Materials
attached to this document.

The trends of the gas concentrations are shown in Figures 12–15, while the trends of
the other monitored variables are exposed in Figures 16 and 17. In Figures 14–16, some
spikes can be observed. We suppose that those values, which are clearly out of the range
measured in that period, are just electromagnetic interferences affecting the electronic
circuitry of the monitoring units. In particular, we noted that the spikes in the measures
only concerned the sensors installed in the monitoring unit inside the depot. The most
likely explanation for these data can be ascribed to the presence of electrical switches in the
depot and interrupters that could cause electromagnetic spikes when operated.
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Figure 16. The trends of the temperature measured inside the depot and in proximity to the manure
heaps (indoor temperature) compared with the temperature measured outside the depot (outdoor
temperature) and the temperature measured inside the manure heaps (manure temperature) using
the probe described in Section 2.3.
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Figure 17. The trends of the relative humidity measured inside the depot and in proximity to the manure
heaps (indoor rh) compared with the relative humidity measured outside the depot (outdoor rh).

The trends exposed in Figures 12–17 are summarized in Table 5, where a more accurate
examination of the data concerning the measures can be carried out.

Table 5. The statistics concerning the measurements performed during the experiment.

Measurement Min Max Mean Median

indoor temperature (◦C) 12.3 55 27.7 29
outdoor temperature (◦C) 8.7 41.8 26.3 26.3
manure temperature (◦C) 35 76.4 44.4 43.5

indoor rh (%) 27 86 53 51.3
outdoor rh (%) 19 112 60 57.8

indoor H2S (ppm) 0 34.48 0.72 0.29
outdoor H2S (ppm) 0 2.8 0.03 0.02
indoor CH4 (ppm) 0 0.64 0.03 0.03

outdoor CH4 (ppm) 0 0.02 0.01 0.01
indoor NH3 (ppm) 0.09 8.61 0.74 0.5

outdoor NH3 (ppm) 0 1.84 0.02 0.01
indoor CO2 (ppm) 510 1285 688 666

outdoor CO2 (ppm) 93 567 377 371

4. Discussion

As concerns the measurements of the gas concentrations, by inspecting Figures 12–15
and Table 5, it can be noted that the values measured indoors are always higher than those
detected outdoors. This element makes us conclude that the monitoring units actually
measured the gases emitted by the treated poultry manure in the depot rather than those
coming from possible nearby sources, and also that the instruments worked correctly. The
other important consideration is given by the fact that the main gases emitted were CO2,
NH3, and H2S, while no remarkable emission of CH4 could be measured. As a matter of
fact, the mean and median values of the CO2 concentrations were, respectively, 688 ppm
and 666 ppm, while the reported concentrations of ammonia and hydrogen sulfide were,
respectively, 0.74 ppm, 0.5 ppm, and 0.72 ppm, 0.29 ppm. As expected, the highest values
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of the main emitted gases were measured in the first 10 days of the experiment, while their
concentrations gradually decreased during the rest of the experimentation period.

The temperature measured inside the manure heaps also followed a trend similar to
the main gas emitted: in the first 10 days, it ranged from 76 ◦C to 48 ◦C, and thereafter, it
started to decrease very slowly to values almost always higher than the ones measured in
the indoor and outdoor spaces. On the contrary, indoor and outdoor temperatures followed
a trend reflecting the seasonal variations of that location: generally increasing from May
to August and slowly decreasing from August to September. Temperature trends along
with their ranges, means, and median values indicated that the measurements provided by
the machines designed in the laboratory were reliable and reflected the actual values. As
concerns the relative humidity values, the main relevant elements are given by the mean
and median outdoor values higher than the indoor ones, which was expected; meanwhile,
we confirmed that the indoor values were adequate for allowing the drying process of the
manure heaps.

To the best of our knowledge, very few studies reporting data on the monitoring
of gas concentrations emitted during rural activities and performed through LCAQMs
can be found. However, even though relevant differences exist, some comparisons can
be made with the work of D’Urso et al. [30]. In this study, the potential use of low-cost
portable devices for the measurement of ammonia and carbon dioxide concentrations in
an open dairy barn was investigated. Three units of the same LCAQM model were used
for evaluating their performance against reference instruments in an open barn where
some fans were present to ensure forced ventilation. Fifty-seven cows were hosted in a
barn which was 55 m long, 20 m wide, and had variable height ranging from 4 m to 7 m.
Another significant difference was in the duration of the studies: the experiment performed
by D’Urso et al. lasted 5 days, while this one lasted more than 4 months.

The comparison with this study is summarized in Table 6. In making the comparison,
the measures performed outside the depot are not considered because they express the gas
concentrations of the background environment, which is not the focus of this experiment.
The main similarity emerging from the data exposed in this table is given by the mean
values of measures performed by this study and the LCAQMs used in [30]. It can be noted
that the mean values of CO2 and NH3 concentrations found in this work fall in the range of
values found in [30]. Another element of similarity is given by the range of concentrations
measured for both CO2 and NH3 through the LCAQMs used in both studies, while a slight
difference can be noted between the maximum value of the CO2 concentration detected
by the reference instruments used in the work by D’Urso et al., and the maximum value
found by this study.

Table 6. Comparison between the measures of CO2 and NH3 concentrations found by this study and
those found in the work carried out by D’Urso et al. [30]. The data referring to the mean in the study
by D’Urso et al. are expressed as a range because three devices were used for the measurements.

Measure Mean (ppm) Min (ppm) Max (ppm)

CO2 (indoor study) 688 510 1285
CO2 ([30] LCAQM) 445–780 450 1400
CO2 ([30] reference) 559–599 480 750
NH3 (indoor study) 0.74 0.09 8.61
NH3 ([30] LCAQM) 0.68–3.63 0 7.1
NH3 ([30] reference) 1.69–3.51 1.4 7.5

5. Conclusions

The results of this experiment highlight the feasibility of monitoring the gases emitted
during rural activities through low-cost technologies and instruments. Laboratory-made
devices were designed and implemented for this purpose, while the calibration of low-cost
gas sensors was performed using gas cylinders generating known gas concentrations.
The calibration results indicated a good global performance in terms of the coefficient
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of determination, which ranged from 0.894 to 0.993. The RMSE values found by the
calibration process also indicated that the best performance was achieved by the TGS825
sensor (ranging from 0.299 ppm to 0.331 ppm).

The open hardware machine [37] featuring open source software [38] developed in
our laboratory proved the effectiveness of the communication protocol based on e-mail
exchange for the remote control of the device deployed in areas characterized by a weak
and unstable Internet radio signal.

It was also found that the main gases emitted by the treated poultry manure developed
in the context of the POREM project were CO2, NH3, and H2S. Their highest concentration
values were measured in the first ten days of the experiment, while a long decreasing trend
was observed after that period. The temperature inside the treated manure heaps was also
monitored using a laboratory-made probe. It showed that the temperature had a peak equal
to 76.4 ◦C, and also that, even for this measurement, the highest values could be observed
in the first ten days. These elements indicated that the bio-activation [34] processes were
mainly active in the first ten days of the experiment.

A comparison with a previous study [30] concerning the measurement of the concen-
trations of CO2 and NH3 showed interesting similarities, even though some differences in
the conditions of the two experiments were present. In particular, we found that the mean
of the concentrations related to NH3 and CO2 measured inside the depot by this research
(respectively, 0.74 ppm and 688 ppm) is in the range of the values found by D’Urso et al.
(respectively, 0.68–3.63 ppm and 445–780 ppm) with regard to the LCAQMs measurements.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/earth5040029/s1, zip file containing the data concerning the
calibrations of the sensors and the measures of the two monitoring units.
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