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Abstract: Being located in the middle of Southern Europe, and thus likely representing a particularly
dynamic member of Mediterranean Europe, Italy has experienced a sudden increase in early deser-
tification risk because of multiple factors of change. Long-term research initiatives have provided
relatively well-known examples of the continuous assessment of the desertification risk carried out
via multiple exercises from different academic and practitioner stakeholders, frequently using the
Environmentally Sensitive Area Index (ESAI). This composite index based on a large number of
elementary variables and individual indicators—spanning from the climate to soil quality and from
vegetation cover to land-use intensity—facilitated the comprehensive, long-term monitoring of the
early desertification risk at disaggregated spatial scales, being of some relevance for policy imple-
mentation. The present study summarizes the main evidence of environmental monitoring in Italy
by analyzing a relatively long time series of ESAI scores using administrative boundaries for a better
representation of the biophysical and socioeconomic trends of interest for early desertification moni-
toring. The descriptive analysis of the ESAI scores offers a refined representation of economic spaces
in the country during past (1960–2010 on a decadal basis), present (2020), and future (2030, exploring
four different scenarios, S1–S4) times. Taken as a proxy of the early desertification risk in advanced
economies, the ESAI scores increased over time as a result of worse climate regimes (namely, drier and
warmer conditions), landscape change, and rising human pressure that exacerbated related processes,
such as soil erosion, salinization, compaction, sealing, water scarcity, wildfires, and overgrazing.

Keywords: sustainable land management; zero net land degradation; sustainability metrics;
environmental management; indicator dashboard; composite index; spatio-temporal analysis;
regional disparities; spatial heterogeneity; Mediterranean

1. Introduction

Advanced economic systems are increasingly threatened by land degradation (LD),
e.g., in America and Europe, although they are frequently considered as socioeconomic
regions less prone to desertification risk because of their geographical location and/or the
considerable infrastructure that brings water and improves soil via technical means [1–3].
In Europe, and especially in Southern countries—a broadly recognized and relatively
well-studied hotspot of global desertification—intense LD processes have generally been as-
sociated with a complex interplay of ecological conditions and rising human pressure [4–6].
The former includes climate aridity, recurrent droughts, soil instability, and limited vegeta-
tion cover; the latter considers rising human pressure (e.g., higher population densities in
ecologically fragile districts, and industrialization and tourism development, leading to
overgrazing and wildfires, among others) in conditions of poorly sustainable (or largely
unsustainable) land management [7–9].
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To counteract the negative effects of LD, which have been proved to increase at alarm-
ing rates, the United Nations have recently introduced a strategy called ‘zero net land
degradation’ in line with the Sustainable Development Goals (SDGs) of Agenda 2030. Such
a strategy encourages specific actions first limiting, and then reversing the long-term trend
toward LD in order to reach the objective of stopping LD by 2050 [10]. This also means not
generating more negative economic impacts from LD, both directly and indirectly [11]. The
permanent monitoring of LD is crucial in any policy strategy, and especially from a zero
net LD perspective [12]. Implementing specific actions that counteract the economic effects
of LD necessitates scientific support based on long-term assessment programs and land
inventories covering a sufficiently long time interval (in order to be historically informed)
and appropriate geographical coverage [13]. Considering the evident spatial heterogene-
ity of LD processes—documented in several empirical studies in the recently published
literature—an effective permanent monitoring for policy implementation requires the ex-
ploration of relevant patterns and processes at a particularly detailed spatial scale [14]. On
the one side, (qualitative and quantitative) methodologies allowing the identification of
degraded areas and the estimation of spatial trends in LD are rather common and consoli-
dated in both advanced economies and emerging countries [15]. On the other side, efforts
toward permanent monitoring for policy implementation are less continuously employed,
not only in emerging countries, but also in advanced economies [16].

Permanent monitoring is the base of a complete Decision Support System (DSS) used
to inform land management and policy and promote the best practices to achieve reliable
estimates of LD drivers (both biophysical and economic) over time and space [17]. In other
words, an effective DSS for policy implementation should provide detailed information on
the patterns and processes of LD that may be comparable over time and across multiple
geographical and economic locations [18]. Despite the explicit and documented level
of soil vulnerability and ecological sensitivity to global (and local) warming, permanent
monitoring schemes in Mediterranean Europe have become relatively rare, especially
in recent times [19]. A well-known and broadly applied composite index based on a
composition of elementary variables and partial indicators, like the ESA (Environmentally
Sensitive Area) approach, is a possible input to any DSS, assuring comparability over time
and spatial reliability of the LD estimates for both biophysical assessment and economic
(monetary) accounting [20].

Being developed in the context of the EU-MEDALUS research project, the Environmen-
tally Sensitive Area Index (ESAI) scheme—to our knowledge—is likely the most applied in
Southern Europe due to its simplicity in model building and to its flexibility in the use of
available (and scientifically relevant) indicators [21]. Several variables and thematic indica-
tors have been considered in the ESAI, involving the assessment of the climate, soil quality,
vegetation cover, and land use and management, together with a rough quantification of
human pressure based on population density and demographic dynamics [22,23]. The
results of this procedure have been routinely tested (directly) and validated (indirectly)
at various spatial scales—both local and regional—in Southern Europe. Multiple experi-
mental field and case studies documented the ability of the ESAI to monitor LD conditions
under vastly different ecological and socioeconomic contexts, reflecting both dynamic and
peripheral locations [24].

The empirical results of any validation procedure indicate that local-scale ESAI scores
can be correlated—irrespective of the background conditions—with several independent
predictors of soil and landscape degradation [25]. These outcomes may document how
the ESAI is a monitoring tool that is able (i) to correctly identify the areas (potentially or
effectively) affected by LD and (ii) to quantify the possible impact on local systems based on
an appropriate classification system ordering land on the base of a gradient of degradation
from unaffected to broadly affected places [26]. This procedure has been applied in several
areas with Mediterranean conditions in order to provide a detailed inspection of multiple
forces assumed to trigger (or consolidate) LD processes [27].
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In spite of its flexibility and applicability to vastly different socioeconomic contexts [28],
the ESAI approach has been widely applied under non-Mediterranean conditions in various
countries of Northern Africa and the Middle East [29], and more recently it was used for the
global monitoring of LD [30]. Unfortunately, most of these applications are cross-sectional,
i.e., lacking a longitudinal approach [31]. Diachronic assessments require a broad ensemble
of comparable data that are not always available over sufficiently long time windows,
even in advanced economies [32]. Because of the intrinsic characteristics of the ESAI, it is
assumed to be a particularly appropriate component of any DSS quantifying LD intensity
in advanced economies, especially in Mediterranean ecological conditions, assuring the
coherent quantification of past, present, and future trends [33]. As a matter of fact, when
comparable data are available, the ESAI can be estimated for distant periods in the past
with the same confidence that can be realized in more recent times [34]. Additionally, the
ESAI score values can be easily forecasted using simplified assumptions and methodologies
and may give a coherent rationale linking the past, present, and future trends in a unique
representation of LD processes in a given socio-economic context [35].

The originality and novelty of the present study thus lie in exploiting the informational
potential of the ESAI in a DSS, informing zero net LD policies for European countries, espe-
cially under Mediterranean ecological conditions [36], providing an operational example of
the permanent monitoring for administrative domains (both regions and smaller districts,
such as provinces) in Italy. The monitoring scheme fully based on the ESAI approach covers
60 years from 1960 to 2020, with regular observations carried out every decade in order to
delineate the past and present conditions in a fully compatible manner [37]. Additionally,
the monitoring scheme implements a simplified module, providing short-term scenarios of
LD until 2030 and considering four assumptions (from S1 to S4) based on different climate
and demographic conditions [38].

2. Materials and Methods
2.1. Study Area

The degree of LD based on a composite index summarizing the information of
14 elementary variables organized in four distinct themes (climate, soil, vegetation, and
land use) and generating four partial indicators (climate quality, soil quality, vegetation
quality, and land-use quality) was investigated over the whole territory of Italy [30]. The
country is administratively partitioned into three geographical areas (the north, the center,
and the south), 20 NUTS-2 administrative regions, and more than 100 NUTS-3 provinces
covering a total surface area of nearly 301,330 km2 [21]. The provinces in Italy range from
slightly more than 90 to 110 over the study period [19]. In this work, we considered the
provincial boundaries referring to the 2007 administrative setting, having 110 governing
units [35]. Having the original raster file to elaborate, we extracted the needed information
referring to the stable administrative boundaries in order to facilitate calculations and make
statistical analysis fully comparable over time [17]. Italy displays important territorial dis-
parities in economic growth, social development, and natural resource availability and is a
relevant case study to address the interaction of biophysical and socioeconomic dimensions
predisposing land to degradation processes [4].

2.2. Data Sources, Elementary Variables, and Partial Indicators

GIS-based DSSs have traditionally facilitated the accurate assessment of multiple
processes leading to LD [39]. The indicators selected in the present study match a number of
requirements which influence the reliability of the outcome [40], including (i) the availability
and regularity of time series, (ii) the quality and reliability of data sources, and (iii) the
easy computing of integrated alphanumeric and cartographic data. According to the ESA
framework, the variables selected refer to four knowledge dimensions: climate, soil, land
cover, and human pressure (see Table 1). Climate and soil characteristics represent the
most important factors affecting LD [41]. The climate characteristics were described in the
ESA framework considering together (average) the annual rainfall rates, the aridity index
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(operationally defined as the ratio between the annual average rainfall rate and reference
annual evapotranspiration), and aspect [35]. These indicators were calculated using basic
information available in the National Agro-meteorological Database of the Italian Ministry
of Agriculture [42]. The database relates to meteorological data collected from about 3.000
weather stations since 1951 [43]. To ensure homogeneous and complete land coverage,
the database mentioned above provided spatially interpolated meteorological data via
kriging (e.g., for precipitation) and co-kriging with elevation, latitude, and distance to the
sea as ancillary variables (e.g., for air temperature). These geostatistical procedures were
originally implemented with the aim at creating a regular grid of 544 points with daily data
on temperature, precipitation, humidity, solar radiation, and wind [44]. The average annual
reference evapotranspiration was calculated using a Penman–Monteith formula [45].

Table 1. The individual variables and the partial indicators (themes) composing the ESAI, together
with the measurement unit and the related statistical source adopted in the present study.

Theme Variable Scale Unit of Measure Source

Soil quality

Soil texture 1:500,000 Sensitivity class Ministry of Agriculture,
European soil database

Soil Depth 1:500,000 mm Ministry of Agriculture,
European soil database

Available Water Capacity 1:500,000 mm Ministry of Agriculture,
European soil database

Slope 1:25,000 % Ministry of Environment

Climate quality
Annual mean rainfall rate 1:500,000 mm Meteorological statistics
Aridity index 1:500,000 mm/mm Meteorological statistics
Aspect 1:25,000 Angle Ministry of Environment

Vegetation quality

Wildfire risk 1:100,000 Sensitivity class Corine Land Cover
Soil erosion protection 1:100,000 Sensitivity class Corine Land Cover
Drought resistance 1:100,000 Sensitivity class Corine Land Cover
Plant cover 1:100,000 Sensitivity class Corine Land Cover

Land management quality
Population density 1:500,000 Population km−2 Census of Household
Population growth rate 1:500,000 % Census of Household
Land-use intensity 1:100,000 Sensitivity class Corine Land Cover

In addition to the climate data, the soil data were obtained from (i) a soil quality
map produced in the framework of the international DISMED (‘mapping sensitivity to
desertification’) research project funded by the European Commission [46] and derived
from the European soil database at a 1 km2 pixel resolution, (ii) an Italian database of
soil characteristics (‘Carta nazionale della capacità idrica dei suoli agrari’), generated
from geological and soilscape maps and over 18,000 soil samples [40], and (iii) ancillary
information taken from thematic cartography (ecopedological and geological maps of Italy)
and additional data sources, such as Digital Elevation Models and specific land-use maps
with sparse soil information [47]. Variables, including soil texture, depth, slope, and the
available water capacity (regarded as a proxy for additional soil structure influencing
factors such as organic matter and compaction), were selected for the application of the
ESA approach [48]. The soil variables were recorded as static as they change slowly or
rarely over time, and due to their nature, are infrequently measured or mapped [49]. This
is the case for soil quality, which was regarded as constant in the following analysis [50].

The impact of land cover changes on LD was assessed through four standard ESA
variables, including wildfire risk, the capacity of vegetation to protect soils from erosion
and from the negative effects of droughts, and plant cover [51]. Such indicators were
obtained from the elaboration of Corine Land Cover maps referring to 1960, 1990, and 2018.
A weighting score was attributed to each land-use class in order to obtain a classification of
the territory based on its different levels of sensitivity related to vegetation and landscape
characteristics [52].
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Finally, the impact of human pressure on LD was evaluated as a result of processes
such as the relocation of people along coastal areas, settlement densification around major
cities, and the intensification of agricultural systems [53]. A simple proxy representing
human factors is given by the population density measured at the municipal level every
ten years by the National Census of Households [54]. Moreover, the demographic variation
index calculated for time horizons of ten years was defined at the same geographical
scale [55]. An index of agricultural intensification was obtained from the elaboration of
Corine Land Cover maps (see above); a weighting score was attributed to each land-use
class in order to obtain a classification of the territory based on crop intensity [56].

2.3. Deriving Scenarios for 2030

Four scenarios were prepared for the 2010–2030 horizon through a recalculation of the
ESA index using two basic climate hypotheses and two basic demographic hypotheses [35].
Soil and vegetation layers were considered constant over time because of the relatively short
interval considered in the forecast (ten years). All the scenarios were derived with national
coverage and at the same spatial scale as that of the ESAI historical series (1960–2020). De-
scriptive statistics for each scenario are provided at the regional and provincial scales [57].
Provincial figures should be regarded as preliminary and representative of more general
trends and should be compared with the more stable spatial trends observed (and sum-
marized) at the regional scale [58]. The approach used for deriving scenarios follows the
‘what . . . if. . .’ perspective, which is well recognized in the analysis of short-term socioe-
conomic scenarios and particularly suited to exploit the peculiarity of the ESAI [59]. In
practice, it is a matter of fixing some contextual conditions considered more probable in the
projection horizon, recalculating the ESAI accordingly at the end of the projection period,
and evaluating the expected deviations compared with the reference period (1960–2010) or
with a most recent observation period (2020). The climate scenarios were deduced through
multivariate analysis following Salvati et al. (2011) [35].

This approach, compared with other computational alternatives, has produced ref-
erence scenarios specifically aimed at calculating the ESAI, whose inputs include for the
climatic dimension both rainfall and the average annual aridity index. The exploratory
methodology proposed and realized by Salvati et al. (2011) [35] was therefore preferred in
this study since it was proved to be consistent with the ‘what . . . if’ approach and capable
of providing relevant inputs to the calculation of the ESAI in the near future. In summary,
a representative period of the available historical series of cumulative annual precipitation
and aridity index was chosen, appropriately regionalized using the regular grid mentioned
above in Section 2.2. Each year of this period, represented with descriptive variables, such
as cumulative month precipitation, month temperature, and the aridity index, was regarded
as a statistical analysis unit on which a multivariate procedure (principal component anal-
ysis) was applied to reduce the intrinsic complexity in the data matrix [60] and obtain a
cluster of statistical units (non-hierarchical clustering). In this way, all the observation years
were classified into three groups with maximum homogeneity called S0, S1, and S2. Based
on the analysis of the meteorological–climatic variables associated with each year, the three
groups were classified accordingly.

The S0 group represents the reference period, in accordance with the long-term climatic
averages (annual precipitation: 844 mm; aridity index: 1.68 on average). The S1 period
represents the years with limited deviation from the climatic average, which together
formed 28% of the analyzed sample (annual precipitation: 777 mm; aridity index: 1.49
on average). The S2 period represents the years with a more evident deviation from the
climatic average, both in terms of precipitation and aridity regimes, and includes another
28% of the sample (annual precipitation: 716 mm; aridity index: 1.35 on average). As can
be seen from the table above, the S1 scenario indicates a moderate trend toward more
arid conditions with a decrease from 1.68 to 1.49 in the aridity index at the national scale,
while the S2 scenario highlights more critical conditions, with an evident reduction in the
aridity index and a marked decline in average annual precipitation at the national scale.
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The S1 scenario, in particular, delineates the climatic averages close to what was observed
for precipitation and the aridity index in the 20 years between 1991 and 2010, while the
S2 scenario represents the process of further, moderate drying. Therefore, the S1 and S2
scenarios were used—together with the demographic scenarios—in the composition of the
final ESAI projection according to the ‘what . . . if’ logic [61].

In regard to the demographic aspects, population projections take on particularly
problematic aspects on the basis of recent demographic dynamics, linked not only to the
intrinsic aspects of (natural) growth, but also to the increasingly significant contribution
of the migratory component that is intrinsically volatile over long time horizons [62]. In
this regard, the selected variables were population density, also understood as a proxy
for the spatial distribution of the population and the average annual growth rate of the
resident population [57]. When having to project demographic information at a spatial
scale consistent with the ESAI, which is subject to strong estimation errors, it was preferred
to adopt two operational scenarios in accordance with what has been achieved for the
climate, analyzing the past trends from the available database and building using a digital
collection (or digitalization from paper archives) of previous demographic data [58].

As for the climate, the two scenarios considered for demography represent a range
of possible trends between two extremes. This rationale is, in our opinion, fully coherent
with the ‘what . . . if’ scheme, which represents a set of possible extreme states of the
system under observation. In this sense, rather than providing a point estimate (neces-
sarily affected by a large error, given the uncertainties mentioned above), a confidence
interval is provided, using two values, a base (minimum) value and a theory (extreme)
value, which represent a set of possible situations within the projection time horizon [57].
For demography, the first scenario, S1, is represented by the so-called ‘stable’ scenario,
i.e., conditions of homogeneity in time and space with respect to the last observation period
(represented in this case by the observation period 2011–2020). In other words, local-scale
demographic dynamics that differ from the reference average of the observation period
are not excluded, but this scenario assumes that the spatial distribution of the population
remains constant with respect to the reference period, for instance the demographic balance
between urban and rural areas [58]. The result of these ‘stable’ dynamics is reflected in the
(local-scale) population density consistent with the average of the observations between
2011 and 2020 and zero population growth. The second scenario, S2, instead represents a
dynamic hypothesis of moderate population growth based on a longer observation period,
represented by the last 20 years of observation (2001–2020). This period, particularly homo-
geneous with respect to the previous ones, delineates a modest population growth rate,
mainly associated with changes in the migratory component, and the stabilization of the
population density at high values, especially in peri-urban areas and in the most accessible
rural areas, where a considerable proportion of the population resident in Italy is actually
settled [3,10,42]. In this scenario, the population growth rates were assumed as equal to
the ones observed at the local scale between 2001 and 2020, and the population density is
derived from the sum of the population stock in 2021 and the population flow resulting
from the growth processes of the period on the basis of the growth rate determined as
above [62]. This scenario will lead to population density values that are possibly more
impactful on the ESAI, and therefore delineates the most intense human pressure [63].
The four scenarios were determined from the recalculation of the ESAI on the basis of the
inputs deriving from the intersection between the S1 (or S2) climate and S1 (or S2) demog-
raphy scenarios. The possible intersections are listed as follows: Scenario S1 (S1: climate;
S1: demography); Scenario S2 (S2: climate; S1: demography); Scenario S3 (S1: climate;
S2: demography); and Scenario S4 (S2: climate; S2: demography). From the table above it is
clear that the four proposed scenarios S1–S4 represent a range of possible projections with
environmental conditions that are progressively more impactful on the ESAI. The ensemble
of possible solutions between the last observation (2020) and the worst scenario represents
the oscillation area of the possible variations in the ESAI in the near future.
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2.4. Data Analysis

Severe LD conditions could result from a combination of inadequate land manage-
ment together with a particular set of environmental factors, especially soil, climate, and
vegetation [64]. The quantification of land sensitivity was carried out by evaluating the
influence that each individual variable has on LD [65]. A score system was applied based on
the estimated degree of correlation between the individual variables and LD. The weighting
system reported in Table 2 was adopted with additional information taken from earlier
studies [35,42,43,57,58].

Table 2. Indicator’s weighting system by quality theme.

Soil Quality (SQI) Vegetation Quality (VQI)

Texture Score Fire Risk Vegetation Type Corine Class Score

S 2.00 Barren; Permanent agriculture; Crops 2.1.2., 2.2.1., 2.2.2., 2.2.3, 3.3.3,
3.3.4, 4.2.3 1.00

Si, C, SiC 1.67 Cereals; Grasslands; Deciduous forests 2.1.1., 2.4.1., 2.4.2., 2.4.3, 2.4.4.,
3.1.1., 3.1.3., 3.2.1, 3.2.4 1.33

SC, SiL, SiCL 1.33 Mediterranean maquis 3.2.3 1.67
L, SCL, SL, LS, CL 1.00 Conifer 3.1.2 2.00
Soil depth Soil erosion protection
<15 2.00 Mixed Mediterranean maquis-evergreen wood 2.4.4., 3.1.3., 3.2.4. 1.0

15–30 1.67 Mediterranean maquis; Conifer wood; Evergreen
permanent agriculture (olive trees); Permanent grassland 3.2.3., 3.1.2., 3.2.1., 3.2.3. 1.3

30–75 1.33 Deciduous wood 3.1.1. 1.6
>75 1.00 Permanent agriculture (orchard) 2.2.2. 1.8

Crops; Grasslands; Barren 2.1.1., 2.1.2., 2.2.1., 2.4.1.,
2.4.2., 2.4.3., 3.3.3., 3.3.4., 4.2.3. 2.0

Available water capacity Drought resistance
<80 2.00 Mixed Mediterranean maquis-evergreen wood 3.2.3., 3.2.4., 3.3.3., 3.3.4. 1.0
80–120 1.67 Conifer; Deciduous; olives 2.2.3., 3.1.1., 3.1.2., 3.1.3. 1.2
120–180 1.33 Permanent agriculture 2.2.1., 2.2.2., 2.4.4. 1.4
>180 1.00 Permanent grasslands 2.4.1., 3.2.1., 4.2.3. 1.7
Slope Crops; Barren 2.1.1., 2.1.2., 2.4.2., 2.4.3. 2.0
>35% 2.00 Vegetation cover
18–35% 1.67 >40% 1.0

6–18% 1.33 10–40% 2.1.1., 2.2.1., 2.2.2., 2.2.3., 2.4.1.,
2.4.2., 2.4.3., 2.4.4., 3.2.1., 4.2.3. 1.8

<6% 1.00 <10% 3.3.3., 3.3.4. 2.0

Climate quality (CQI) Land Management quality (MQI)

Aridity index Land-use intensity Corine class Score

<0.5 2.0 Olive; Deciduous and conifer wood; Mediterranean
maquis 2.1.2., 2.2.1., 2.2.2., 2.4.2. 1.00

0.5–0.65 1.8 Mixed woodland-farmland areas 3.2.4., 3.3.4. 1.33
0.65–0.8 1.6 Annual crops (not irrigated); Permanent grassland 2.1.1., 2.3.1., 2.4.1., 2.4.3. 1.67
0.8–1.0 1.4 Permanent (and irrigated) agriculture 2.1.2., 2.2.1., 2.2.2., 2.4.2. 2.00
1.0–1.5 1.2 Population density

>1.5 1.0 <100 1.0
Annual rainfall rate 100–200 1.2

<280 2.0 200–400 1.4
280–650 1.5 400–700 1.6
>650 1.0 700–1000 1.8
Aspect >1000 2.0

−1◦ 1.00 Population growth rate

225–359◦ 1.00 <20% 1.0
0–135◦ 1.00 20–40% 1.5
136–224◦ 2.00 >40% 2.0

Elaborating on the elementary variables mentioned above, the ESAI scheme produced
four (partial) indicators—the Climate Quality Index (CQI), the Soil Quality Index (SQI), the
Vegetation Quality Index (VQI), and the land Management Quality Index (MQI). These were
estimated as the geometric mean of the different scores assigned to each input variable [57].
The final ESAI value was then estimated at each spatial unit (1 km2 grid) as the geometric
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mean of the four partial indicators described above appropriately transformed into a score
ranging from 1 (the lowest level of degradation) to 2 (the highest level of degradation) based
on the system introduced by Recanatesi et al. [58]. The scoring system was extensively
verified in the field, both directly and remotely [52,54]. Four partial indicators depicting
environmental quality in terms of climate (Climate Quality Index, CQI), soil (Soil Quality
Index, SQI), vegetation (Vegetation Quality Index, VQI), and land management (land
Management Quality Index, MQI) were estimated as the geometric mean of the different
scores for each variable. The ESAI was subsequently estimated in each i-th spatial unit and
j-th year as the geometric mean of the four partial indicators [30] as follows:

ESAIi,j = (SQIi,j * CQIi,j * VQIi,j * MQIi,j)1/4

The ESAI scores range from 1 (the lowest land sensitivity to desertification) to 2
(the highest sensitivity to desertification). Four classes of land sensitivity were identified
based on the ESAI figures (Table 3), which reflect the most used classification thresh-
olds [66]: (i) the areas unaffected by LD (ESAI < 1.17), (ii) the areas potentially affected
(1.17 < ESAI < 1.225), (iii) the ‘fragile’ areas (1.225 < ESAI < 1.375), and (iv) the ‘critical’
areas (ESAI > 1.375). Intermediate and final maps were produced after the various elemen-
tary layers were registered and referenced to an elementary pixel of 1 km2 [67]. Average
ESAI figures were estimated for each decade, together with the percent difference over time
within three geographical partitions of the Italian territory, i.e., the three main geographical
sectors (the north, the center, and the south).

Table 3. The land classification system implemented with the ESAI.

ESAI Score Class Land Description (Examples)

<1.175 Unaffected Areas unexposed to early desertification risk

1.175–1.225 Potentially affected
Areas potentially exposed to early desertification risk, under climate warming,
depending on a particular combination of land-use or where off-site impacts
will produce severe issues in surrounding territories

1.225–1.375 Fragile

Areas in which any changes in the delicate balance of natural and human
activities is likely to bring about LD. For instance, the impact of predicted
climate change could affect vegetation cover, intensify soil erosion, and finally
shift the level of sensitivity of the area to the ‘critical’ class. A land-use change
(e.g., a shift towards cereal cultivation on sensitive soils) might produce
immediate increase in runoff and soil erosion, and perhaps pesticide and
fertilizer pollution down-stream

>1.375 Critical
Areas already degraded because past land misuse, showing a threat to the
environment of the surrounding land (e.g., badly eroded areas experiencing
severe runoff and sediment loss).

In agreement with the National Action Plan to Combat Desertification, this partition
allows for the classification of the investigated territory using different geographical and
political levels that are easily interpretable for stakeholders and practitioners and support
the identification of active strategies to combat early desertification and mitigate the deple-
tion of land resources [68]. Descriptive statistics of the ESAI score were calculated for each
spatial territorial unit using the ‘zonal statistics’ tool provided by ArcGIS software (ESRI,
Inc., Redwoods, CA, USA: release 10.8.2), and we computed a weighted mean area of the
score recorded on each elementary pixel and belonging to a given spatial unit [69].

3. Results

The empirical findings of this study are presented in three separate sections. Section 1
illustrates the basic, descriptive analysis of the average distribution of the ESAI scores
across the three geographical regions of Italy, delineating the past, present, and future
trends. Section 2 provides specific evidence on the statistical characteristics of the trends,
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considering the evolution of the average ESAI score and its variability over time separately
for the three geographical regions and for the country as a whole. Section 3 finally delineates
the results of a more specific analysis informing zero net LD strategies, which quantifies
the frequency of Italian NUTS-3 provinces accomplishing the policy target (i.e., zero net
increase in LD exposure over time), exploiting the ESAI statistics along four-time intervals
(1960–1990, 1990–2020, 2020-S2, and 2020-S3). Scenarios S2 and S3, respectively, indicate
the most and the least negative predictors of the ESAI scores for 2030.

3.1. The Latent Increase in Land Degradation Exposure of Italian Regions

An evident increase in the average ESAI scores was observed in Italy, shifting rapidly
from 1.345 (1960) to 1.37 (2020), and possibly increasing even to 1.38 in the worst scenarios
(S2 and S4) for 2030 (Table 4). Based on the simplified ESAI classification system (see
Table 3 above), this trend underlies a shift from ‘fragile’ land to mostly ‘critical’ land, the
most exposed class to LD, for Italy. Considering the three macro-regions separately (the
north, the center, and the south), it can be seen how the specific level of exposure changes
over time across Italy, although common trends can be envisaged similarly in all three
macro-regions. The northern and central regions seem to be experiencing very similar
dynamics and display average ESAI scores that are coupled over time and follow the same
increase (from 1.33 to 1.36), maintaining a bit below the ‘critical’ threshold. The southern
regions were structurally exposed to LD in 1960 (1.38). The exposure levels increased in
intensity in 2020 (1.39). The scenarios were particularly critical in all the cases (between
1.40, S1 and S3, and 1.41, S2 and S4).

Table 4. Average ESAI score by geographical macro-region in Italy, 1960–2030 (scenarios S1–S4).

Region 1960 1970 1980 1990 2000 2010 2020 S1 S2 S3 S4

North 1.326 1.343 1.338 1.337 1.340 1.353 1.358 1.357 1.366 1.355 1.364
Centre 1.332 1.350 1.358 1.349 1.350 1.357 1.354 1.362 1.376 1.359 1.373
South 1.383 1.417 1.410 1.396 1.408 1.409 1.394 1.399 1.410 1.399 1.410
Italy 1.345 1.367 1.365 1.358 1.363 1.371 1.368 1.371 1.382 1.369 1.380

Figure 1 illustrates the spatial distribution of the ESAI at the beginning (1960) and the
end (2020) of the study period, depicting the main spatial trends toward an increasing (or
decreasing) level of land exposure to degradation over time. The maps indicate a substantial
level of vulnerability to LD in specific districts of Southern Italy, with persistent and worse
conditions for Sicilian and Sardinian land and extensive areas of Apulia, Basilicata, and
Calabria in both 1960 and 2020. At the same time, the environmental and socioeconomic
conditions at the base of the ESAI worsen during the investigated time interval in some
specific areas of Northern Italy, especially the Po Valley, and along the Adriatic coastal rim,
from Emilia Romagna to the north to Molise and the south. The coherent and comparative
scrutiny of both maps separates the spatially persistent conditions of LD—mainly concen-
trated in Southern Italy—from the spatially evolving conditions predisposed to LD most
frequently observed in the central and northern regions.

3.2. Profiling the Evolution over Time of the ESAI Scores in Italy

The pour plots illustrating the relationship between central tendency and dispersion
over time give insights in the evolution of the LD exposure of Italian lands using descriptive
statistics (Figure 2). The central tendency (mean) and dispersion (coefficient of variation) of
the ESAI scores calculated as statistical aggregates of the Italian provinces by geographical
region (the north, the center, and the south) delineate slightly different dynamics across
the regions. In Northern Italy, the plot highlights a linear and direct relationship between
the average ESAI and its standardized variability over time. When the average exposure
level increases at the provincial level, the corresponding variability in the ESAI scores
increases as well. This process delineates a less-predictable context at higher levels of
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exposure to LD because of the consequent higher volatility of the ESAI estimates at the
same spatial domains. Such a relationship clearly describes the time lapse from 1960 to
2030 (considering the mean of the four scenarios, S1–S4). The central regions displayed
less-linear and more-articulated dynamics, indicating a positive relationship between the
average ESAI and its coefficient of variation. Conversely, the level of spatial variability in
the ESAI scores decreased systematically and almost linearly over time, while maintaining
high and rather stable values of the mean scores. This means that the slight increase in
the level of exposure in Southern Italy is particularly homogeneous across local territories.
Aggregating all the data in a unique plot for Italy as a whole, we outline a mixed trend
that integrates the different conditions observed at the regional scale, and thus document
the importance of regionalized approaches to LD exposure in advanced economies. The
national trends were often assumed as heterogeneous phenomena reflecting mixed and
largely differentiated patterns at the local scale.
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3.3. Reaching Zero Net Land Degradation Targets: The Condition of Italian Provinces

Table 5 reports the percent share of the provinces reaching the target of zero net LD
over the four time intervals (1960–1990, 1990–2020, 2020–2030, following the less-negative
S3 scenario, and 2020–2030, following the worst S2 scenario). Thirty years were considered
an appropriate time interval to empirically test such an approach. Reaching the target does
not mean that specific policies were applied in the area; instead, the approach provides
an expedited estimation of the percent growth rates of the ESAI score as a proxy of LD
increase. The provinces with negative (or null) growth over time in the ESAI (i.e., average
score decline or stability) were considered automatically compliant with the final target
of this strategy. It seems clear how the first time interval indicates the northern areas
as more ‘compliant’ with the structural target of zero net LD, i.e., four provinces out of
ten experienced a negative growth rate in the ESAI score (only three and two out of ten
for Southern and Central Italy). Interestingly, this trend was completely reversed in the
following time interval (1990–2020), since nearly 45 provinces out of 100 were ‘compliant’
with a zero net target in both Central and Southern Italy, and there were only 6 in Northern
Italy. While being initially associated with structurally dry and remote districts in Southern
Italy (1960), it is clear how LD exposure progressively became a problem of the traditionally
unaffected districts of Northern Italy (2020). The future scenarios provided less comforting
news. In the case of the less-negative scenario (S3), the northern areas become mostly
compliant (65 out of 100), and the reverse pattern was observed for the central and southern
regions. However, in the worst scenario (S2) for 2030, only 15–20 provinces resulted in
compliance with the structural target of a zero net LD strategy.
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Table 5. The per cent share of provinces reaching the target of zero net LD over four time intervals
(1960–1990, 1990–2020, 2020–2030, following the less negative S3 scenario, and 2020–2030, following
the worst S2 scenario).

Region 60–90% 90–20% 20-S3% 20-S2%

North 41.7 6.3 64.6 14.6
Centre 17.9 46.4 28.6 14.3
South 32.4 44.1 38.2 20.6

4. Discussion

Taken as one of the most characteristic and threatening geo-hazards, LD is a global
process leading to a generalized loss in soil fertility, biodiversity, ecosystem services, and
landscape quality, including aesthetics. In semi-arid and dry areas, including those in
advanced economies, LD—when associated with biophysical dynamics and socioeconomic
factors moving toward worse predisposing conditions—has often been used to leverage
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the irreversible processes of soil and habitat deterioration [70]. This may lead to early
desertification signs, possibly determining the reduced economic viability of soils because
of sealing, compaction, contamination, salinization, and erosion, among others [71]. The
inherent complexity of LD is a challenge for both science and policy [72].

Originally related to arid climates and economically disadvantaged (or peripheral) dis-
tricts, a scientific consensus—based on both theoretical approaches and practical exercises—
has been reached on the fact that the desertification risk has systematically grown in
advanced economies all over the world [73]. The main causes of such a trend may be
attributed to global (and local) warming and rising human pressure in terms of popu-
lation density, industrialization, tourism growth, the expansion of services, and other
high-value-added activities [5]. At the same time, within the more general strategy de-
lineating 16 SDGs [74], the United Nations have introduced the target of zero net LD by
2050 [75]. The complex interplay of environmental and economic issues at the base of
early desertification risk identification clearly encompasses political boundaries and ad-
ministrative assets. Permanent monitoring is thus recommended to reach a good balance
between scientific advancements and policy instruments also in light of the establishment
of a continuous monitoring system of the formal (and informal) advancements toward the
zero net LD targets [76].

The required (fine) tuning of science and policy will contribute to containing, miti-
gating, and adapting local communities and ecological systems to the future challenges
of climate change, landscape transformations, and demographic modifications ultimately
leading to desertification risk [77]. In this perspective, Southern Europe is a relevant ex-
ample of dynamic countries exposed to early desertification risk needing the permanent
monitoring of the policy targets of zero net LD [57]. Being located in the middle of Southern
Europe, and thus likely representing the most dynamic economy of Mediterranean Europe,
Italy has experienced a sudden increase in early desertification risk in recent decades [58].
This happened because of the joint action of multiple factors of change [30]. At the same
time, Italy represents a relatively well-known example of continuous LD assessment carried
out via multiple research exercises from different academic and practitioner stakeholders
using the ESAI in most of these studies [52,54].

A large number of elementary variables and individual indicators, spanning from
climate to soil quality and from vegetation cover to land-use intensity, facilitate the com-
prehensive, long-term monitoring of the early desertification risk at disaggregated spatial
scales, being of some relevance for policy implementation [78]. With these considerations
in mind, the present study summarizes the main evidence of environmental monitoring
in Italy, analyzing a relatively long time series of ESAI scores. We adopted administrative
boundaries for the better identification and comprehension of the biophysical and socioeco-
nomic trends of interest in early desertification monitoring and policy implementation [79].
We provided a refined representation of economic spaces in the country during the past
(1960–2010, with regular and homogeneous observations carried out on a decadal basis),
present (2020), and future (2030, exploring four different scenarios: S1–S4) times.

Up to now, relatively few studies have been devoted to summarizing the changes in
the level of early desertification risk in Mediterranean areas over sufficiently broad time
intervals [80]. In this perspective, our work provides an ‘early warning’ assessment of the
desertification risk in Italy using a mix of own data, experiments, and practical exercises,
being supported by a considerable literature review. Considering together, likely for the
first time in recent monitoring history, the past, present, and future dynamics of LD by
adopting pixel-based scores of the standard ESAI is a particularly meaningful approach
to informing any zero net LD strategy. The LD trends were estimated for each decade
from 1960 to 2020 and projected for 2030. We elaborated four scenarios with different
hypotheses concerning the climate, demography, and land use at the national, regional,
and local observational scales jointly. A marked expansion in LD intensity was observed
on average in Southern Italy (1960–1990) and more slightly in Northern Italy (1990–2020),
documenting—over a sufficiently long time scale—the spatially asymmetric socioeconomic
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and ecological processes leading to worse conditions that may predispose land to intense
degradation [81].

Based on the broad scrutiny of the recent literature for Italy, the main reasons at
the base of such variegated trends are different and include (i) a reduction in rainfall in
the flat districts of Northern Italy, which is, in turn, associated with enhanced pressures
from high population density and farming intensification (1990–2020); as well as (ii) the
consolidation of the local conditions leading to soil aridity, wildfires reducing vegetation
cover, and the land abandonment of marginal districts triggering depopulation in remote,
rural communities of Southern Italy (1960–1990). The joint assessment of the biophysical
and socioeconomic conditions leading to LD proved to be meaningful when designing
(i) more detailed studies that delineate specific LD processes at the local scale and (ii) novel
measures aimed at mitigating LD with the final goal of obtaining a comprehensive policy
framework against early the desertification risk in advanced economies [82–84].

5. Conclusions

Originally related to arid climates and economically disadvantaged districts, a scien-
tific consensus has been reached on the fact that the desertification risk has systematically
increased in advanced economies all over the world because of global (and local) warming
and rising human pressure, both in terms of population density and in terms of indus-
trialization, tourism growth, and the expansion of services and other high-value-added
activities. At the same time, within the more general strategy delineating 16 SDGs, the
United Nations have introduced a policy targeting a zero net LD objective by 2050. Because
of the complex interplay of environmental and economic issues at the base of early desertifi-
cation, encompassing political boundaries and administrative assets, permanent monitoring
is recommended to fine-tune the scientific advancements and policy instruments related to
mitigating and adapting to the future challenges of climate change, landscape transforma-
tions, and demographic modifications ultimately leading to desertification risk. From this
perspective, Southern Europe is a relevant example of dynamic countries exposed to early
desertification risk needing the permanent monitoring of the policy targets of zero net LD
by 2050.

By incorporating the ESAI framework in a broader monitoring scheme assuring the
permanent evaluation of LD, the results provided in this study document how appropriate
DSSs can be considered as a sort of ‘early warning’ approach, signaling unsustainable
levels of LD, which are possibly incompatible with the explicit targets of a zero net LD
strategy. Taken as a proxy of early desertification risk in advanced economies, a diachronic
DSS based on local-scale ESAI scores may precisely quantify the continuous increase in
LD intensity over time as a result of worsening climate regimes (namely, drier and warmer
conditions), landscape changes, rising human pressure, and related processes (soil erosion,
salinization, compaction, sealing, water scarcity, wildfires, and overgrazing). While not
focusing on specific soil processes, the ESAI appropriately quantifies the synergic effect
of different forces potentially leading to LD. In other words, the ESAI assumes LD is a
non-static and non-stationary process; this assumption justifies the permanent monitoring
of the predisposing conditions to LD. In this perspective, the availability of longer time
series of relevant variables, indicators, and composite indexes, as well as refined scenario
analysis, including both short-term and medium-term horizons, are increasingly needed
for any advancement of LD research in dynamic and affluent economics.
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