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Abstract: Maintaining the operability of a hydroelectric power station at a scale originally designed
is being compromised by continuous reservoir sedimentation. The underlying factors include a
complex mix of landscape alterations owing to natural and anthropogenic activities around dam
areas, such as gully erosion, landslides, floods triggered by heavy rainfall, climate change, and
construction activities. The hydropower projects in the low-to-mid mountain regions of Nepal are wit-
nessing a combination of these phenomena, affecting their optimal performance in meeting long-term
sustainable power supply targets. This paper presents a combination of geo-spatial analysis and
field evaluations to identify the trends from Kulekhani-I, one of the oldest storage-type hydropower
projects in Nepal, using long-term time series remote sensing satellite imagery from 1988 to 2020.
Our analysis shows an expansion of the surface water content area over time, attributed mainly to
high sedimentation deposition owing to multiple factors. This study has identified an urgent need
for addressing the following two key contributory factors through an effective control mechanism to
avoid rapid sedimentation in the reservoirs: natural—landslides and floods leading to mainly silt
deposition during heavy rainfalls; and anthropogenic—road construction materials dumped directly
in the reservoir. Effective implementation of a remote sensing monitoring scheme can safeguard
future damages to dam environments of more recently built storage-type hydropower projects.

Keywords: dam environment; land use land cover changes; NDWI; remote sensing; sedimentation

1. Introduction

Over the last decade, high hill and mountain hydrological processes have increasingly
been influenced by the dynamics in human population growth, climate change, land use
change, erosion, landslides, and sedimentation [1]. Typical land use/land cover (LULC)
changes in dam environments include changes to water surface sediment deposition, sur-
face run-off, stream flow, and water logging and recharge, each having a potentially adverse
impact on the hydrological process. Multiple geomorphic activities in the Himalayan re-
gion of Nepal have been driven by landslides and monsoonal precipitation [2]. Land use
change activities and sediment deposition, largely attributed to infrastructure development
and landslide events, have been found to directly and/or indirectly impact the long-term
performance of hydropower projects in Nepal [3,4]. To date, Nepal’s open and liberal for-
eign investment policy has attracted multiple international players involved in short-term
hydropower projects and associated infrastructure development activities [5–7]. However,
the developers seldom attend to the long-term maintenance failures and subsequent envi-
ronmental challenges, which are currently impacting the majority of the power plants in the
high hills of Nepal by excessive sediment deposition in the dam areas. Indeed, gully erosion
and land use change activities pose significant challenges to the lifespan and production
capacity of hydroelectric plants in Nepal. The accumulation of sediments in reservoirs due
to erosion can reduce their storage capacity, affecting the efficiency and functionality of
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hydropower projects. In addition, changes in land use, such as deforestation or improper
agricultural practices, can further exacerbate erosion and sedimentation issues [8,9]. It is
noteworthy that such hydro-geomorphic attributes and their drivers are too complex to
measure at spatial and temporal scales in such topography. Adverse land use and manage-
ment practices can contribute to gully erosion, which in turn can have a direct impact on
reservoirs. Improper land management, including deforestation, unsustainable agricultural
practices, or inadequate soil conservation measures, can lead to increased erosion and
sedimentation. The sediments that are carried by erosion can then accumulate in reservoirs,
reducing their storage capacity and ultimately affecting their overall functionality. Road
construction work, weak fill materials, animal grazing, and residential and commercial
activities have been identified as the main drivers of gully erosion [10].

Dams are constructed lakes/reservoirs, built across rivers for the storage of large
volumes of water, with typical safety measures ensuring their long lifespan. Unexpected ex-
treme events, such as floods, landslides, and earthquakes, have been attributed to sedimen-
tation deposition or damage to their structure [11]. The increasing level of anthropogenic
factors has also been identified to further affect the lifespan of dams, post-construction [12].
Both small and large dams have been impacted due to gully erosion and landslides, causing
environmental degradation in the upstream part of the basin and sedimentation deposi-
tion in the downstream part [13]. Increasing pore water pressure from changes in water
levels in higher elevations often leads to more intense run-off and soil erosion [14], thereby
compromising soil stability [15]. Topography, including factors such as elevation, slope,
aspects, and curvature, significantly influences gully erosion by affecting water flow, soil
stability, and erosion rate [14]. The trend of rainfall, landslides, geological conditions, and
human activities have an influence on reservoir water levels.

Advanced remote sensing technology has already been utilized for the monitoring and
management of river barriers, changing water bodies of reservoirs [16], and the extraction
of specific spectral features in the spatial analysis of dam environments globally [17]. For
example, the displacement landslide area was observed in the Punatsangchhu-1 dam
using InSAR remote sensing data, and found that the unstable area was larger, which
impacted the dam area [18]. Anthropogenic activities around the dam area of the Mureau
reservoir in Kenya were found to affect its storage capacity [19]. In most cases, this is largely
attributed to sediment deposition and the consequential reduction in reservoir capacity [20].
Streambank erosion, stream segments, and sediment load have been observed in many
reservoirs, mainly due to the climate change impact [21]. Some studies have evaluated
the climate change impact on the performance of hydropower projects in high mountain
regions of Asia [22,23]. Intense precipitation clusters, associated with climate change, have
been attributed to increasing dam failure risk in the USA [24]. A spatial analysis of the
climate change impact on hydropower plants of varying capacities in Nepal has shown such
impacts being potentially higher for larger-sized plants [22], with continuing sedimentation
in the reservoirs being the prime concern [25]. The majority of dam failures and their
associated fatalities have resulted from either flooding following heavy precipitation [26]
or glacial lake outburst flood (GLOF) events [27], often leading to the overwhelming, and
destruction, of downstream hydropower plants.

Recent approaches implementing artificial intelligence (AI) tools supporting advanced
computational algorithms for the detection of environmental consequences, such as LULC
changes, gully erosion, and waterlogging susceptibility have also emerged [28]. A number
of studies have already utilized multiple attributes and algorithms to monitor the sedi-
mentation deposition in dam areas [19], climate change impact [22,23,29], landslide impact
using remote sensing technology [18,30], and land use/land cover change around the dam
area due to anthropogenic factors [11]. It is widely acknowledged that the impacts of
landslides in countries like Nepal are indeed increasing over time. This consensus is based
on various factors, such as changing climate patterns, deforestation, improper land use
practices, and population growth, which contribute to the vulnerability of areas prone to
landslides. Various previous studies have accepted the strong spatial correlation between
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road construction and landslides in the hill area [31,32]. Remote sensing technology enables
the monitoring and analysis of the dynamics of natural activities through the temporal
mapping of water levels, landslides, new water bodies, and the land use land cover change
events area observed using remote sensing tools in the water basin.

Satellite imagery can help extract and estimate the surface water content accurately [33].
Numerous methods have already been applied for the water body extraction of sur-
face water, such as applying the Automated Glacier Extraction Index (AGEI) [34,35];
Normalized Difference Water Index (NDWI) [36–38], Modified Difference Water Index
(MNDWI) [39], Normalized Difference Pond Index (NDPI) [40]; Normalized Difference
Snow Index (NDSI) [41], Water-resistant Snow Index (WSI) [42], and All Band Water Index
(ABWI) [43]. The majority of researchers have used Landsat images for the extraction of
the water body. Multispectral satellite images with high resolution (QuickBird, GeoEye,
World View) to moderate spectral resolution (Sentinel, Landsat) satellite imagery have been
extensively applied for feature extraction and change analysis [44–47]. High-resolution
satellites, such as QuickBird, GeoEye, and SPOT6/7, have been used to extract detailed
information on water bodies [48].

However, there is a research gap in the long-term hazard monitoring of dam envi-
ronments from rapid sedimentation in reservoirs combining natural and anthropogenic
impacts through spatial analysis of remote sensing data. This paper presents a framework
to assess the spatio-temporal dynamics in the hazard monitoring of dam environments
for storage-type hydropower projects, combining geo-spatial data analysis and field-level
verification. This study focuses on analyzing water level extraction patterns with land use
land cover change (LULC), attributed mainly to infrastructure development and landslide
events, using long-term high-resolution satellite imagery, augmented by field validation
using local-level experiences of sedimentation deposition. The framework is implemented
to identify the trends from Kulekhani-I, one of the oldest storage-type hydropower projects
in Nepal, utilizing long-term time series remote sensing satellite imagery from 1988 to 2020
(i.e., Landsat images, Quick Bird, GeoEye, SPOT6/7). The reservoir at this site is facing
several challenges, including sedimentation due to landslides, water scarcity, land use
and land cover change, and a loss in its production capacity. Sedimentation refers to the
accumulation of sediments in the reservoir, which can reduce its storage capacity and affect
its efficiency. Water scarcity is another challenge, indicating a shortage of water supply
for various purposes. Additionally, changes in land use and land cover can impact the
reservoir’s ecosystem and water availability. These challenges collectively contribute to a
loss in the production capacity of the Kulekhani-I hydropower project’s reservoir. Through
long-term spatial data analysis using satellite imagery, this study has elucidated some
of the underlying factors for rapid reservoir sedimentation involving a complex mix of
landscape alterations and climate change owing to natural and anthropogenic activities
around dam areas. The study scope includes events such as gully erosion, landslides,
floods triggered by heavy rainfall, climate change, and construction activities. The analysis
approach can be further developed to explore its implementation for safeguarding future
damages to dam environments of more recently built storage-type hydropower projects,
e.g., the Budhagandaki hydroelectricity project (BGHP) in Nepal and elsewhere globally.

2. Methodology
2.1. Study Area

The major study site is located within 85◦6′7′′ E to 85◦11′8′′ E and 27◦34′20′′ N to
27◦39′9′′ N latitude of the Kulekhani basin (Figure 1). The Kulekhani-I plant, with an
installed capacity of 60 MW, was commissioned in May 1982. The dimensions of the
Kulekhani dam are 7 km long and 114 m high, allowing a total “designed storage capacity”
of 85.3 million cubic meters (MCMs). Of this capacity, 12 MCMs are allocated to dead
storage and the remaining 73.3 MCMs to live storage [8]. Reportedly, the capacity of the
Kulekhani reservoir has rapidly decreased and the surface of the reservoir has risen by
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about 13 m in the last three decades [49]. Previous studies have attributed this to climate
change impacts [23,50], sediment accumulation [51], etc.
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2.2. Data Collection and Analysis

In this study, the remote sensing technique has been combined with extensive ground
validation from field observation and verification using local information. Time series data
sets from the following four satellites were used in this study—Landsat, QuickBird, GeoEye,
and SPOT. Available post-monsoon season satellite images from 1988 to 2020, with maxi-
mum cloud-free 30 m resolution Landsat images (Landsat 5 Thematic Mapper, TM; Landsat
7 Enhanced Thematic Mapper Plus, ETM+; Landsat 8 Operational Land Imager, OLI),
were collected from the United States Geological Survey, https://earthexplorer.usgs.gov
(accessed on 27 July 2024), for the extraction of water levels of the dam area of the Kulekhani
hydropower project (Table 1). All the Landsat images were registered and their accuracy
was verified considering <0.5 pixel RMS errors. All images were projected in UTM Zone
45◦ N, Shuttle Rader Topography Mission (SRTM) Digital Elevation Model (DEM) data.
The digital number (DN) of Landsat Level 1 data values of all the images were converted
into radiance. The FLAASHs (Flash Line-of-sight Atmospheric Analysis of Spectral Hyper-
cubes) atmospheric correction model was applied for radiance-corrected satellite images.
Images were processed in ENVI version 5.3 and mapping was prepared in GIS.

https://earthexplorer.usgs.gov
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Similarly, QuickBird imagery for 2004, GeoEye imagery for 2010, and SPOT imagery
from 2012 to 2020 were acquired from https://www.l3harris.com (accessed on 27 July 2024).
These high-resolution satellite images were resampled at 1.5 m resolution for constant
analysis (Table 2). We used high-resolution satellite imagery for the extraction of major
land use land cover (LULC) classes of the basin area and explored nine major land cover
classes in the Kulekhani dam area from 2004 to 2020. Each image was further processed
and classified for the long-term land use/land cover data of the study area.

Table 1. Data categories and sources.

Data Category Source Outputs (Reference Output Figure Numbers
in Brackets)

High-resolution satellite images from
2004 to 2020

QuickBird image for the year 2004, GeoEye
images for the year 2010, and SPOT for 2012–2020.
https://www.l3harris.com
(accessed on 27 July 2024)

Land cover classification/extraction of
landslides and water body of Kulekhani 1 area
(Figures 2, 5, and 10–12).

Landsat images from
1988 to 2020

Source link: https://earthexplorer.usgs.gov
(accessed on 27 July 2024)

For the analysis of long-term water level
extraction using NDWI method in Kulekhani
reservoir and evaluation using NDVI
(Figures 6–8).

Station-based precipitation and
temperature data, 1985–2020

Environmental statistic, 2008, 2013, and 2019,
Nepal and Department of Hydrology and
Metrology, 2020.

For the analysis of long-term precipitation and
temperature data (Figure 9).

Shuttle Rader Topography Mission (SRTM)
Digital Elevation Model (DEM) data

Source link: https://earthexplorer.usgs.gov/
(accessed on 27 July 2024)

SRTM DEM data for the analysis of elevation,
slope, and aspect (Appendix B).

Soil and Terrain (SOTER) database
for Nepal

SRIC Report 2009/01: Soil and Terrain database
for Nepal
https://www.isric.org/documents/document-
type/isric-report-200901-soil-and-terrain-
database-nepal-11-million
(accessed on 27 July 2024)

Soil and Terrain (SOTER) attribute data for the
analysis of landslides (Appendix B).

Geology data
ICIMOD, https://rds.icimod.org/Home/
DataDetail?metadataId=2521
(accessed on 27 July 2024)

Geology attribute data for the analysis of
landslides (Appendix B).

Seismic hazard data level Pandey et al., 2002 [52], GoN, 1996, [53] Seismic hazard data for the analysis of
landslides (Appendix B).

Time series Landsat 5, 7, and 8 imagery applied (Path/Row 141/041).

Year 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2014 2016 2018 2020

Months 29-
Nov

4-
Feb

23-
Oct

13-
Oct

18-
Oct

8-
Oct

22-
Nov

27-
Oct

9-
Nov

30-
Oct

20-
Nov

25-
Oct

23-
Dec

25-
Oct

31-
Oct

22-
Jan

Sensor TM TM TM TM TM TM ETM+ ETM+ TM TM TM TM OLI OLI OLI OLI

Table 2. Source list of high-resolution time series satellite imagery applied in this study.

QuickBird (Resample 1.5 m) 01 and 03-Dec 2004
World View 2 (Resample 1.5 m) 26-Jan-2010

SPOT 1.5 m 29-Oct-2012
SPOT 1.5 m 13-Jan-2015
SPOT 1.5 m 06-Nov-2016
SPOT 1.5 m 17-Jan 2017
SPOT 1.5 m 04-Nov-2018
SPOT 1.5 m 20-Dec-2019
SPOT 1.5 m 01-Nov-2020

https://www.l3harris.com
https://www.l3harris.com
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov/
https://www.isric.org/documents/document-type/isric-report-200901-soil-and-terrain-database-nepal-11-million
https://www.isric.org/documents/document-type/isric-report-200901-soil-and-terrain-database-nepal-11-million
https://www.isric.org/documents/document-type/isric-report-200901-soil-and-terrain-database-nepal-11-million
https://rds.icimod.org/Home/DataDetail?metadataId=2521
https://rds.icimod.org/Home/DataDetail?metadataId=2521
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The applied image analysis methods were as follows: Artificial Neural Network (ANN) [54],
Convolutional Neural Networks (CNNs), K-Nearest Neighbor (K-NN) model [55], kernel-based
textural granulometry method [46], Logistic Model (LM) [56], Maximum Likelihood (ML)
classifier, and Random Forest (RF) classifier [57]. The Support Vector Machine (SVM)
machine learning technique was applied for the extraction of land cover classes of the study
area following the literature [58,59]. SVM algorithms are a flexible supervised classifier
option with higher accuracy [60–65].

Linear : K (xi, yi) = xT
i · xj,

Polynomial : K (xi, yi) = (g · x T
i · xj + r)d, g > 0,

Radial basis function : K (xi, yi) = e−g(xi−xj)
2
, g > 0,

Sigmoid : K (xi, yi) = tanh (g · x T
i · xj + r)

where, g, d, and r are user-controlled parameters of the kernel function.
The classified raster data were converted into vector format and very small silver

polygons were corrected in GIS. We identified nine major land cover types across a 29 sq.
km area of the Kulekhani basin of the study area (Table 3 and Figure 2), with 93% overall
accuracy. Among the barren lands, we noticed major landslides and other land use changes
in close vicinity of the reservoir using GPS and collected satellite images.

Table 3. Land use/cover classification schemes.

Land Cover Types Description

Cultivated land Orchards, wet and dry crop lands

Forest
Evergreen broad leaf forest, deciduous forest, temperate forest, low
density sparse forest, degraded forest, mix of trees, and other
natural covers

Grass Mainly grass fields (dense coverage grass, moderate coverage grass,
and low coverage grass)

Shrub Mix of short trees, other natural covers, and highly degraded forest

Water Reservoir, river, lake/pond, canal, and swamp areas

Other land Sandy areas, river banks, other areas

Barren land Cliffs/landslides, bare rocks, other unused land

Public use Road network, and other construction features

Residential Residential area (urban and rural settlements), commercial
areas, industrial
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Figure 2. (a–i) Surface water of reservoir; (j) road network in 2004 and 2020; (k–t) satellite images
and classification using SVM approach in 2004, 2010, 2012, and 2020.

2.3. Spatial Analysis Description

We evaluated surface water content reduction/expansion in the dam area between
1988 and 2020, applying the Normalized Difference Water Index (NDWI) from Landsat
satellite images [34,38,66,67]. The positive NDWI threshold value of 0 to 1 was accept-
able for the evaluation [24,68], and the extraction NDWI equations were applied [36]
(Equations (1) and (2)).

NDWIOLI =
Green (Band 3)− NIR (Band 5)
Green (Band 3) + NIR (Band 5)

(1)

NDWITM and NDWIETM+ =
Green (Band 2)− NIR (Band 4)
Green (Band 2) + NIR (Band 4)

(2)

Furthermore, the Normalized Difference Vegetation Index (NDVI) value has been
evaluated to understand the forest area change within the study boundary. The normalized
value has been evaluated between −1.0 and +1.0, with full vegetation coverage defined by
Equations (3) and (4):

NDVIOLI =
NIR(Band 5)− Red(Band 4)
NIR(Band 3) + Red(Band 5)

(3)
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NDVI and NDVIETM+
=

NIR(Band 4)− Red(Band 3)
NIR(Band 4) + Red(Band 3)

(4)

2.4. Evaluation of Major Landslide and Preparation of Landslide Risk Map

Landslides are among the most dangerous geological hazards in terms of damaging
infrastructure and environmental balances and are strongly influenced by geology, slope,
precipitation, land cover changes, and population activities [69–73]. Both triggering and
causing factors play major roles in landslide occurrences [74]. Despite the severe conse-
quences of landslides, there is a noticeable deficiency in their susceptibility assessments
and risk management strategies to date [71]. To acquire an overview of the pressure of
landslides in the reservoir area under study, landslide sample data were collected using
the global positioning system during fieldwork. Furthermore, the existing landslide trends
were collected from Google Earth imagery, QuickBird, GeoEye, and SPOT6/7. Historical
landslide events were redrawn by the manual identification of landslide features dur-
ing the land use/cover data preparation time using time series images (Table 2). Field
verification was conducted for the validation and preparation of the landslide risk map
(Figure 3). The inventory included shallow, soil landslides, and deep bedrock landslides.
We captured the landslide area where landslides generally occurred and excluded the
low land around/inside of the dam. For the analysis of landslide hazards, Shuttle Rader
Topography Mission (SRTM) Digital Elevation Model (DEM) data were used for terrain
analysis, including slope and aspect layers. The existing triggering factors, precipitation
levels, scenic hazard and susceptibility/causing factors (slope, aspect), geology/lithology,
drainage density, relative relief, land use/cover, Soil and Terrain (SOTER) database, as well
as knowledge-based analysis were used for the evaluation of the landslide hazard map
and risk zone of the study area (Appendices A and B). The landslide susceptibility/risk
mapping was classified into high, moderate, low risk, and no risk (i.e., stable zones) in
terms of landslide hazards in the study area. This approach followed the evaluation of
landslide risk in previous research [74].

The identification and assessment of the landslide factors were conducted using remote
sensing, hydrological, and statistical techniques, considering the highest landslide predic-
tion rate for the highest overall weighting [75]. Similarly, the station-based temperature
and rainfall data were collected for further analysis of climate change impacts in the study
area from the Department of Hydrology and Meteorology (DHM), Nepal. The framework
for mapping and modeling applied in this study is schematically presented in Figure 4.
Further, the applied landslide risk mapping framework is presented in Appendix A.
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mote sensing, hydrological, and statistical techniques, considering the highest landslide 
prediction rate for the highest overall weighting [75]. Similarly, the station-based temper-
ature and rainfall data were collected for further analysis of climate change impacts in the 
study area from the Department of Hydrology and Meteorology (DHM), Nepal. The 
framework for mapping and modeling applied in this study is schematically presented in 
Figure 4. Further, the applied landslide risk mapping framework is presented in Appen-
dix A. 

(a) (b) 

Figure 3. Collection of field level information: (a) reading of satellite images, and (b) field verifica-
tion. 

Figure 3. Collection of field level information: (a) reading of satellite images, and (b) field verification.
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basin in the vicinity of the dam area—the residential area increased from 25.19 ha (hec-
tares) to 55.49 ha between 2004 and 2020. Similarly, use of public land increased from 17.38 
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field observations indicate the following: infrastructure (road network) development ac-
tivities have shown an increasing trend, represented by the increase in public land. Urban 
development processes such as new building construction for residential/institutional/in-
dustrial purposes have rapidly replaced agricultural land. However, water resource man-
agement practice near the dam area is observed to be poor and largely overlooked. Spe-
cifically, there are no control mechanisms in place to avoid landslides and landslips, which 
are found in the close vicinity of the dam area. Further, a recent infrastructure develop-
ment push by the provincial and local governments has encouraged the development of 
road connectivity, with an increasing number of road buildings, contributing to rubble 
being left along the roadside, which often gets swept away during the monsoon season. A 
spatial analysis shows an increase in barren land in the Kulekhani area (Table 4), largely 
attributed to the increasing number of landslides around the dam area, subsequently lead-
ing to increased sedimentation deposition in the reservoir. 
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3. Results
3.1. Land Use Land Cover Change and Its Impact on the Dam Environment

According to the analysis, there is a remarkable change in LULC in the Kulekhani
basin in the vicinity of the dam area—the residential area increased from 25.19 ha (hectares)
to 55.49 ha between 2004 and 2020. Similarly, use of public land increased from 17.38 ha to
50.74 ha, grassland increased from 69.25 ha to 84.66 ha, forest land increased from 1264.89 ha
to 1412.75 ha, and barren land increased from 22.12 ha to 32.36 ha. However, there is an
indication that over the same period, the water body, shrubland, agricultural, and other land
categories decreased (Table 4, Figure 5). Both image analysis results and field observations
indicate the following: infrastructure (road network) development activities have shown an
increasing trend, represented by the increase in public land. Urban development processes
such as new building construction for residential/institutional/industrial purposes have
rapidly replaced agricultural land. However, water resource management practice near
the dam area is observed to be poor and largely overlooked. Specifically, there are no
control mechanisms in place to avoid landslides and landslips, which are found in the
close vicinity of the dam area. Further, a recent infrastructure development push by the
provincial and local governments has encouraged the development of road connectivity,
with an increasing number of road buildings, contributing to rubble being left along the
roadside, which often gets swept away during the monsoon season. A spatial analysis
shows an increase in barren land in the Kulekhani area (Table 4), largely attributed to the
increasing number of landslides around the dam area, subsequently leading to increased
sedimentation deposition in the reservoir.
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Water Body 194.57 140.40 195.04 196.48 180.34 177.21 188.67 172.03 181.43 
Others 59.10 75.01 53.95 52.49 58.89 58.85 55.21 53.34 53.96 
Barren 22.12 47.66 26.19 23.24 38.50 38.13 35.75 36.82 32.36 
Public Use 17.38 31.73 31.81 31.85 38.97 38.93 46.88 47.09 50.74 
Residential 25.19 34.27 36.22 38.06 40.93 42.49 45.83 46.65 55.49 

 
Figure 5. Land use land cover maps for the study site from 2004 to 2020: (a) 2004; (b) 2010; (c) 2012; 
(d) 2015; (e) 2016; (f) 2017; (g) 2018; (h) 2019; and (i) 2020. 

The evaluation of the surface water level of the dam area is estimated using NDWI 
mean values from 1988 to 2020. Our analysis shows that the surface water level of the 
Kulekhani dam has increased, represented by an increase in NDWI values from 0.182 in 
1988 to 0.405 in 2020 (Figures 6 and 7). In the early part (1990–1994), the NDWI value 
remained low; however, it increased rapidly beyond 1994, indicating a larger part of the 
submerged area due to the dam. This could be attributed to multiple factors, such as cli-
mate change impact, variance of precipitation, landslides, earthquakes, and sediment dep-
osition. It seems that the level of surface water is not constant in the reservoir area. The 
forest cover area is an increasing trend, and the NDVI value showed the green part of the 
watershed area is higher than in previous years (Figure 8). 

Figure 5. Land use land cover maps for the study site from 2004 to 2020: (a) 2004; (b) 2010; (c) 2012;
(d) 2015; (e) 2016; (f) 2017; (g) 2018; (h) 2019; and (i) 2020.

The evaluation of the surface water level of the dam area is estimated using NDWI
mean values from 1988 to 2020. Our analysis shows that the surface water level of the
Kulekhani dam has increased, represented by an increase in NDWI values from 0.182 in
1988 to 0.405 in 2020 (Figures 6 and 7). In the early part (1990–1994), the NDWI value
remained low; however, it increased rapidly beyond 1994, indicating a larger part of the
submerged area due to the dam. This could be attributed to multiple factors, such as
climate change impact, variance of precipitation, landslides, earthquakes, and sediment
deposition. It seems that the level of surface water is not constant in the reservoir area. The
forest cover area is an increasing trend, and the NDVI value showed the green part of the
watershed area is higher than in previous years (Figure 8).
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Figure 6. Time series graph for the NDWI mean pixel values from 1988 to 2020. 

 
Figure 7. NDWI scene maps (Landsat images) of the dam area between 1988 and 2020. 
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Figure 6. Time series graph for the NDWI mean pixel values from 1988 to 2020.
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Figure 7. NDWI scene maps (Landsat images) of the dam area between 1988 and 2020.
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Figure 8. NDVI of Kulekhani dam area. (a) NDVI, 1988; (b) NDVI, 1992; (c) NDVI, 2000; 
(d) NDVI, 2010; (e) NDVI, 2014; (f) NDVI, 2020. 

3.2. Climate Change Analysis 
Based on the result of the temperature and precipitation pattern analysis from the 

Kulekhani basin, an increasing trend of temperature and reduction in precipitation from 
1985 to 2020 is noted. The temperature analysis of the Daman meteorological station 
(station number 905 near the Kulekhani reservoir) from 1985 to 2020 showed that the 
maximum mean temperature was recorded in 2009 and the minimum mean temperature 
was recorded in 2019. Over the same period, the annual mean temperature was observed 
to be increasing (Figure 9). 

 
Figure 9. Annual mean temperature (left y-axis, deg C) and precipitation (right y-axis, mm) at the 
Daman meteorological station (close to the reservoir). 

The annual rainfall from 1985 to 2020 is also presented in Figure 9 (right y-axis, in 
mm). While the patterns show local peaks and troughs, no clear long-term trend could be 
found in the annual rainfall during the study period. However, previous studies have 
indicated a strong spatial correlation between landslides and climate change in Nepal. 
These studies have highlighted the influence of climate-related factors, such as increased 
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Figure 8. NDVI of Kulekhani dam area. (a) NDVI, 1988; (b) NDVI, 1992; (c) NDVI, 2000; (d) NDVI,
2010; (e) NDVI, 2014; (f) NDVI, 2020.

Table 4. Land cover change analysis results (area in hectares).

Land Cover 2004 2010 2012 2015 2016 2017 2018 2019 2020

Agriculture 1147.94 1102.23 1083.57 1058.37 1024.39 1002.26 981.10 948.95 934.55
Forest 1264.89 1320.86 1317.44 1320.46 1331.89 1343.09 1340.86 1377.08 1412.75
Grass Land 69.25 64.85 61.09 74.20 68.60 70.51 69.65 72.00 84.66
Shrub 110.97 94.44 106.15 116.31 128.91 139.93 147.47 157.45 105.51
Water Body 194.57 140.40 195.04 196.48 180.34 177.21 188.67 172.03 181.43
Others 59.10 75.01 53.95 52.49 58.89 58.85 55.21 53.34 53.96
Barren 22.12 47.66 26.19 23.24 38.50 38.13 35.75 36.82 32.36
Public Use 17.38 31.73 31.81 31.85 38.97 38.93 46.88 47.09 50.74
Residential 25.19 34.27 36.22 38.06 40.93 42.49 45.83 46.65 55.49

3.2. Climate Change Analysis

Based on the result of the temperature and precipitation pattern analysis from the
Kulekhani basin, an increasing trend of temperature and reduction in precipitation from
1985 to 2020 is noted. The temperature analysis of the Daman meteorological station
(station number 905 near the Kulekhani reservoir) from 1985 to 2020 showed that the
maximum mean temperature was recorded in 2009 and the minimum mean temperature
was recorded in 2019. Over the same period, the annual mean temperature was observed
to be increasing (Figure 9).

The annual rainfall from 1985 to 2020 is also presented in Figure 9 (right y-axis,
in mm). While the patterns show local peaks and troughs, no clear long-term trend could
be found in the annual rainfall during the study period. However, previous studies have
indicated a strong spatial correlation between landslides and climate change in Nepal.
These studies have highlighted the influence of climate-related factors, such as increased
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rainfall intensity, changing precipitation patterns, and temperature variations, on the
occurrence and frequency of landslides in various regions of western Nepal [76].
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Figure 9. Annual mean temperature (left y-axis, deg C) and precipitation (right y-axis, mm) at the
Daman meteorological station (close to the reservoir).

3.3. Landslide Risk Analysis

The road density in the study area is found to have increased from 0.85 to 3.13 km
between 2004 and 2020 (Figure 10). The increased focus on road construction in the hill
regions of rural Nepal after 2006, and the subsequent infrastructure expansion processes,
have led to a higher incidence of landslides in the lower part of the Kulekhani dam site,
compared to the upper part. The occurrence of these landslides is particularly observed
in areas where road construction activities are taking place. The local-level reconstruction
efforts in 2017 prioritized road construction, which has further contributed to the increase
in landslides. It is important to note that road construction activities, particularly in hilly
regions, can have a significant impact on the stability of the surrounding slopes, thereby
increasing the risk of landslides. Population growth and poor land use planning can further
contribute to the vulnerability level [72]. A similar trend has been reported in other parts
of the hill region of Nepal [31,32].

Based on the analysis of landslide events, around a 9 ha area covered by 21 small-to-large
scale dams was affected by landslides in 2004, with the majority occurring away from
roads in and around the forest and dam sites. The high precipitation also supports the
increase in landslides in the study area. However, in the later period, most of the landslide
events occurred in roadside areas. Figure 11 provides the severity rate associated with each
landslide occurrence (left y-axis) along with the number of landslide occurrences for that
year (right y-axis). The severity rate represents the severity or intensity of the landslides. It
was found that while 21 landslide events were observed in 2004, this increased to 38 events
in 2020. Major landslide areas were spotted to occur around the dam, which has been
identified to be further increasing due to a combination of natural and anthropogenic
factors. Our analysis also shows that in 2020, the frequency of new landslides is higher
within a 200 m range from an existing landslide area, typically where the elevation is not
constant. This is mainly attributable to factors such as an over-steep slope on the uphill side
of the road, the deposition of excavated debris on the downhill side, and/or the impact of
heavy rainfall events and run-off from the road on the mobilization of debris.
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Based on the available data, field observation, and further knowledge-based analysis,
10.22% of the study area was estimated as a stable area. The latter is considered as the area
covering the reservoir water body, with no landslide risk. Similarly, a 23.67% area was
estimated as a low landslide risk zone, with low slope elevation (<20 degrees), whereas
23.23% was identified as a moderate risk zone area, and a 42% area as a high-risk zone
for landslide hazards (Figure 12). It is noteworthy that the elevation factor did not always
determine the landslide events in the higher part of the upper stream of the study area as
we observed other anthropogenic factors (like road construction activities) play a vital role
in causing landslides in the study area.

Based on the remote sensing data analysis, field observation, and local-level informa-
tion gathering, it has been determined that the accumulation of sediments in the reservoir
poses a significant challenge, mainly affecting the storage capacity of the reservoir. Over
time, sediments gradually settle at the bottom of the reservoir, reducing the available space
for water storage. As a result, the water level in the reservoir rises, overwhelming the dam
capacity and potentially leading to flash flooding events when the barriers are opened to
release excess water that it cannot hold. Managing sedimentation involves implementing
various techniques and practices to control and minimize sediment deposition. These may
include sediment trapping structures, such as sediment basins or settling ponds, which
help capture and retain sediments before they reach the reservoir. In addition, sediment
dredging or removal operations can be conducted periodically to restore the reservoir’s
storage capacity.
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Figure 10. Road density in the study area between 2004 and 2020.
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Figure 11. Landslide events in the study area from 2004 to 2020, showing the severity rate associated 
with each landslide occurrence (left y-axis) and the number of landslide incidents (right y-axis). 
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Based on the remote sensing data analysis, field observation, and local-level 
information gathering, it has been determined that the accumulation of sediments in the 
reservoir poses a significant challenge, mainly affecting the storage capacity of the 
reservoir. Over time, sediments gradually settle at the bottom of the reservoir, reducing 
the available space for water storage. As a result, the water level in the reservoir rises, 
overwhelming the dam capacity and potentially leading to flash flooding events when the 
barriers are opened to release excess water that it cannot hold. Managing sedimentation 
involves implementing various techniques and practices to control and minimize 
sediment deposition. These may include sediment trapping structures, such as sediment 
basins or settling ponds, which help capture and retain sediments before they reach the 
reservoir. In addition, sediment dredging or removal operations can be conducted peri-
odically to restore the reservoir’s storage capacity. 
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Figure 11. Landslide events in the study area from 2004 to 2020, showing the severity rate associated
with each landslide occurrence (left y-axis) and the number of landslide incidents (right y-axis).
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Figure 12. Landslide risk map and photo source of sediment collection in dam area due to landslide. 
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this period. Reportedly, the capacity of the Kulekhani reservoir has rapidly decreased 
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about 13 m in the last three decades [49]. This has a direct impact on the power generation 
capacity of the Kulekhani reservoir [8], which highlights the importance of monitoring 
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4. Discussion

This study primarily focused on the role of sedimentation in affecting reservoir capac-
ity. Overall, the sedimentation status of Kulekhani is showing an increasing trend, and the
discharge of the river is showing a decreasing trend. Our analysis found the following land
use changes in the reservoir area from 2004 to 2020: road density increased from 0.85 km
to 3.13 km; and the settlement area increased from 25.19 ha to 55.49 ha. Sedimentation
deposition is particularly high around the dam area where frequent, small-scale landslides
have occurred, largely associated with topography and road construction activities. The
surface water level in Kulekhani dam has drastically increased between 1988 and 2020,
represented by the NDWI analysis using Landsat images of 0.182 and 0.405, respectively.
A local site observation inferred that there is no adequate control mechanism in place to
avoid the direct release and deposition of the materials released during road construction
in the reservoir, typically during monsoon (high rain) incidents. A small stream area check
dam can potentially protect such types of deposition in the reservoir.

Natural events affecting the reservoir capacity over the study period include sedi-
mentation collection and deposition during flood events and gully erosion. Such events
are aggravated due to the climate change impact on long dry seasons, irregular rains, and
high-intensity rainfall resulting in increased run-off and reduced infiltration. As a result,
rural communities in these areas are experiencing the effects of climate change on their
water resources. Specifically, increased landslides are associated with slope stability, soil
moisture content, and erosion rates, thereby increasing the susceptibility of certain areas to
landslides [76]. The annual mean temperature was found to have an increasing trend from
1985 to 2020; the annual mean rainfall was largely unchanged over this period. Reportedly,
the capacity of the Kulekhani reservoir has rapidly decreased from 85 MCM to 60 MCM in
the past decade and the surface of the reservoir has risen by about 13 m in the last three
decades [49]. This has a direct impact on the power generation capacity of the Kulekhani
reservoir [8], which highlights the importance of monitoring and managing sedimentation
in order to maintain the functionality and efficiency of the reservoir. This is in addition to
previous studies reporting the role of the climate change impact [23,50], the reduction in
the precipitation ratio in monsoon time [50,77] compared to the previous decade, and the
role of LULC change and its impacts in another river basin [78].

Recent trends have been alarming—heavy rainfall on 28 September 2024 led to
Kulekhani reservoir gates being opened when the water level increased to the danger
point [79]. The absence of disaster preparedness is leading to significant damage to hy-
dropower projects in Nepal [80,81]. Heavy floods and landslides have already affected
hydropower projects in eastern Nepal, and at least 11 hydropower projects with a total
capacity of 107.54 MW were damaged in June 2023 [80]. Altogether, in 2024 alone, 664 MW
hydropower capacity from 16 hydropower projects were damaged by flooding and land-
slides [81], with an approximate NPR 5 billion (approx. USD 3.7 million) loss to the power
sector due to flooding and landslides [82]. A recent study has suggested that probability
analysis is essential for long-term slope stability [83].

AI and machine learning techniques are increasingly being used for application in
environment monitoring, data collection, and analysis of land surface characters using
satellite imagery [28,84–86]. AI can be deployed to remotely sensed data for the monitoring,
analysis, and decision making to develop sustainable dam areas. This can involve applying
a remote sensing technique for baseline mapping of upstream and downstream parts of
the dam area for forecasting hazards using training data (multiple hazards, geology, slop
analysis) from previous instances and/or alternative sites. Artificial Neural Networks
(ANNs) and the K-Nearest Neighbor (K-NN) model can be considered for the evaluation
of the land system of complex topography elsewhere in the future [87].

We acknowledge this study is based on remote sensing data, primarily using a third-
party supplier. This study specifically focuses on the dam environment under investigation.
The research and analysis conducted are limited to the specific context of the dam being
studied. Nevertheless, the findings and conclusions of this study may be applicable to
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other dam environments or settings. Going forward, the analysis outcomes of this work,
specifically the satellite-based analysis, will be developed to explore its implementation
for safeguarding future damages to dam environments of more recently built storage-type
hydropower projects. Further, the uncertainty in landslide dam erodibility parameters has
not been taken into account in this study. This warrants further research to quantify the
uncertainty associated with landslide dam material properties and sedimentation using
AI technology. By addressing this uncertainty, a more comprehensive understanding of
the factors influencing landslide dam behavior can be achieved. This will contribute to
improved assessments and management strategies for landslide-prone areas. Modern
techniques should be adopted for controlling the risk assessment and developing the
information to support decisions for sustainable dam management and construction.

5. Conclusions and Further Research

This study provided an analysis framework for the monitoring and management of
long-term dam environment health using satellite imagery and field-level observation,
associated mainly with the reduction in the storage capacity of the reservoir from natural
and anthropogenic activities. The key parameters studied included changes in surface water
level, land cover, landslide impact of the dam area, mainly sedimentation deposition factors,
climate change impact, and the impact of infrastructure development around the reservoir.
This study highlighted the importance of monitoring and managing sedimentation in
order to maintain the functionality and efficiency of the reservoir. This was applied to the
evaluation of the changes to the storage capacity of the Kulekhani reservoir in Nepal from
1988 to 2020.

The surface water level in the Kulekhani dam is found to have drastically increased
between 1988 and 2020, represented by the NDWI analysis using Landsat images of 0.182
and 0.405, respectively. A local site observation inferred that there is no adequate control
mechanism in place to avoid the direct release and deposition of the materials released
during road construction in the reservoir, typically during monsoon (high rain) incidents.
We conclude that sedimentation deposition due to landslides, gully erosion, decreasing
trend of rainfall, drought, and road construction activities are the major threats to the
sustainable production of hydropower from the Kulekhani reservoir.

This study has mainly focused on evaluating the long-term historical trends of the
dam environment. In the next step, more research is needed to evaluate the combined
role of satellite imagery and advanced AI to provide a dynamic long-term production
capacity and impact assessment of existing reservoirs for future climate-induced hazards.
This should address the need for timely database updates and advanced machine learning
algorithms customized to the problems. Further research is also warranted to assess the
potential benefits of implementing an adequate sedimentation control mechanism, so that
the reservoir’s capacity can be preserved, enhancing its overall functionality and efficiency.
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Appendix A. Applied Landslide Risk Mapping Methodology
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List of available data for landslide mapping.

1. Land use/land cover data using SPOT Image 2020.
2. Slope and slope aspect from SRTM DEM.
3. Relative relief derived from DEM.
4. River network from land use/land cover data, 2020, and topographical data prepared

by the Survey Department of Nepal, 1996.
5. Geology data from ICIMOD.
6. Soil and Terrain (SOTER), 2009, data from SRIC Report 2009/01: Soil and Terrain

database for Nepal.
7. Rainfall data from DHM, 2020, and CBS, 2008, 2013, and 2019, from 1985 to 2020.
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Appendix B. Drainage, Elevation, Slope, Soil, Geology, and Seismic Risk Level Map for
Landslide Evaluation
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