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Abstract: Climate change affects many meteorological parameters that could result in spatiotemporal
variations of the hydrological cycle. These variations can affect local rainfall intensities or design
storms; therefore, it is necessary to assess the local effects of climate change in different areas.
Therefore, the current research aims at evaluating the accuracy of the precipitation data of the most
recent Coupled Model Intercomparison Project phases 5 and 6 (CanESM2 from CMIP5 and CanESM5
from CMIP6 models), over a historical period from 1953 to 2010, as well as the predicted data for
the future between 2010 and 2050 for the Quebec City rain gauge Station (Jean Lesage Intl). In this
regard, precipitation data were analyzed using a statistical index to find the most accurate model
for the study area. The results of this evaluation showed that CanESM5 is more accurate than
CanESM2 for most of the evaluation indices. However, both of these models did not perform well
since the precipitation prediction for CanESM5 (as the accurate model) R index was 0.48 for the
monthly and was 0.75 in the seasonal scale. In addition, the Bias index revealed that both models
underestimated rainfall prediction with negative index values for both scales and models. The trend
of future precipitation under socio–economic scenarios (4.5 (pessimistic) and 8.5 (optimistic)) shows
that the changes in future precipitation are not significant. In addition, for scenario 4.5, the trend
of precipitation decreases for almost half of the year, while for scenario 8.5, the magnitude of the
decrease and the number of months with a decreasing trend of precipitation are significantly reduced
when compared to scenario 4.5.

Keywords: precipitation; CMIP; Quebec; Mann–Kendall test; GCM

1. Introduction

Global warming has caused significant changes in the climate. In recent years, the
severity of droughts, floods and extreme events has increased in different parts of the globe.
The Intergovernmental Panel on Climate Change (IPCC) was established to identify its
effects and especially how human activities affect it. In order to conduct climate change
studies, climate variables under the influence of greenhouse gas emissions must first be
simulated [1].

One of the important consequences of climate change is the change in the meteoro-
logical parameters’ trend, especially the precipitation trend [2]. Therefore, a great deal
of research has been conducted to evaluate climate change’s effect on extreme rainfall
events. These studies showed that global warming is affecting and causing climate changes
based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) and Coupled Model
Intercomparison Project Phase 6 (CMIP6) climate reports in Canada [3]. Compared to
other methods such as the multi-model ensemble (MME), the CMIP5 and CMIP6 models
showed better performance. In addition, various methods can be used to reduce their
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uncertainty [4]. With the release of the sixth report (CMIP6), the desire to examine the
performance of this report compared to the fifth report (CMIP5) has increased among re-
searchers. One of the major improvements in CMIP6 is the introduction of socio–economic
scenarios [5]. Examining the difference between the data from the report 5 and 6 climate
models for temperature and precipitation shows that for the fixed time intervals, most of the
temperature indices show higher predicted changes in CMIP6 when compared to CMIP5
in Canada. Rainfall changes in CMIP6 mainly occurred in extreme precipitation indices [3].
However, it is clear that the method of General Circulation Models (GCM) ensembles can
lead to different estimates of future mean changes and different levels of uncertainty in
those estimates [4]. Overall, current research has shown that the CMIP6 ensemble provides
a narrower band of the uncertainty of future climate projections specifically for North
America and brings more confidence to hydrological impact studies [6]. The importance
of such analysis is in assessing risk and future vulnerability, and implementing efficient
measures to control the changes made in the flow of rivers and their ability to warn of
floods [5,7].

It is necessary to examine the system’s response as a general unit for determining the
possible effects of climate changes such as the increase in the concentration of greenhouse
gases and the impact of socio–economic activities on the climate system [5]. For this
purpose, it seems necessary to use climate models. These models include the main stages
that occur in the climate system and calculate the corrections of different components
when responding to the changes in the forcing factors. Therefore, evaluating the accuracy
of the data of these models and choosing the most efficient and adaptable models are
important and necessary steps for any forecasting [8]. This assessment is more important for
precipitation, which has a more significant behavioral complexity than other meteorological
phenomena. Therefore, identifying the mechanism and evaluating the effectiveness of
atmospheric general circulation models in estimating precipitation and knowing their
temporal and spatial frequency significantly affects the preparedness for such extreme
events. Therefore, in this research, the effectiveness of the CMIP5 and CMIP6 for predicting
extreme rainfall events is assessed, and the future trend of rainfall reported by the superior
model is evaluated.

2. Methods and Materials
2.1. Data and Models

Monthly precipitation records of the Jean Lesage Intl Station (Figure 1) were collected
from Canada Gov. historical meteorology data records [9]. The data-set period was from
1953 to 2020 (67 years). In addition, the CMIP5 and CMIP6 models were used to investigate
the accuracy and evaluate future climate change under different scenarios. For these
purposes, 2 different models (one from each CMIP) were selected according to previous
research results [3,5]. These models are reported in Table 1. The historical period for
evaluating the accuracy of the selected models was chosen. For CMIP5, this period was
between 1953 to 2005 and for CMIP6, the period from 1953 to 2010 was selected.

Table 1. The selected CMIP models.

Model CMIP Scenario Resolution

CanESM2 5 RCP
2.6, 4.5, 8.5 0.5◦ × 0.5◦

CanESM5 6 SSP
2.6, 4.5, 8.5 0.5◦ × 0.5◦

2.2. General Circulation Models

Climatic variables are simulated under the influence of increasing or decreasing
greenhouse gases. There are different methods for this task; however, the most reliable is the
use of atmospheric general circulation models or GCMs. GCMs can be used to understand
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the dynamics of the physical components of the atmosphere that are related to climate
change phenomena. The purpose of using GCMs is to obtain spatial–temporal patterns of
climate changes as well as long-term forecasting of climate variables [5]. Climate modeling
is an important tool for understanding past, present and future climate changes [2]. In
other words, currently the most reliable tool for investigating the effects of climate change
on different systems is the use of a GCM. These models are able to model the trends
of atmospheric and oceanic parameters for a long-term period using approved IPCC
scenarios [2]. Their main weakness is the low spatial resolution and the simplification they
consider for climate processes. To overcome the weakness of low resolution, it is necessary
to scale the output of these models before using them in climate-change impact-assessment
studies [1].
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2.3. Mann–Kendall Trend Analysis

The Mann–Kendall method was first presented by Mann (1945) and then expanded
and developed by Kendall (1970). Among the non-parametric tests, the Mann–Kendall test
is the best choice for checking the uniform trend in series [10]. This test is used to determine
the randomness and trend in the series. First, to determine the non-parametric nature of
the statistical series, data are arranged and ranked in ascending order and then based on
that, the randomness of the data with no trend is specified. If there is a trend in the data,
then it is non-random.

The null hypothesis of the Mann–Kendall test indicates randomness and the absence
of a trend in the data series, and the acceptance of the one hypothesis (rejection of the null
hypothesis) indicates the existence of a trend in the data series [10].

2.4. Evaluation of Performance

Five types of statistical indices were employed to assess the performance of the CMIP
data sets. The correlation coefficient (R) (Equation (1)) as a correlation-based index, Nor-
malized Root Mean Square Error (NRMSE) (Equation (4)), Bias (Equation (2)), Root Mean
Square Relative Error (RMSRE) (Equation (5)) and Slope (Equation (3)). The mathematical
definitions of the mentioned indices are as follows:

R =
∑n

i=1 (yi − y)(xi − x)√
∑n

i=1 (yi − y)2∑n
i=1(xi − x)2

(1)
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Bias = ∑n
i=1(xi − yi)

n
(2)

SLOPE =
∑ (xi − x)(yi − y)

(n− 1)S2x
(3)

NRMSE =
1
y

√
1
n

n

∑
i=1

(xi − yi)
2 (4)

RMSRE =

√√√√ 1
n

n

∑
i=1

(
xi − yi

yi

)2
(5)

where xi and yi are the ith samples of the estimated and actual values (respectively), x
and y are the average of the estimated and actual values (respectively), n is the number of
samples, and S2x is the Variance of x.

3. Results
3.1. Evaluation the Performance of the Models

The performance of the CMIPs’ models is shown in Table 2, which reported the
accuracy of the models to compare to the observation data. Five different indices were
used for evaluation at two different time scales. Based on the correlation coefficient (R),
CanESM5 had better performance when compared to the CanESM2 model. Nevertheless,
the correlation coefficient on a monthly scale was poor since R values were less than 0.5,
although if the scale changed to the seasonal, they improved ideally (between 0.65 and 0.75).

Table 2. Performance of CMIP models.

Model Scale R NRMSE RMSRE Bias Slope

CanESM2 Monthly 0.43 0.40 0.36 −85.6 −0.30
CanESM5 0.48 0.54 0.30 −58.7 0.20
CanESM2

Seasonal
0.65 1.51 0.96 −11.8 0.50

CanESM5 0.75 1.08 0.67 −10.3 0.13

In addition, Normalized Root Mean Square Error (NRMSE) results showed that
CanESM5 had better performance when compared to CanESM2 on the seasonal scale.
These results are promising and show that the model can estimate precipitation within ac-
ceptable errors because the NRMSE values are close to one, which means that the deviations
in precipitation estimates are small.

The RMSRE is a criterion similar to RMSE; their main difference is that RMSRE
is divided by projected values. The best value for these criteria is 0, meaning there is
no difference between projected and observed values. Based on Table 2, the CanESM5
model performed better with an RMSRE of 0.3 and 0.67 for the monthly and seasonal
scales, respectively.

Mean Bias deviation shows the systematic error in the amount of precipitation. A
value of zero indicates that the difference between the observed and predicted precipitation
amount is not systematic, while a large Bias indicates that the amount of precipitation
deviates greatly from the observed amount of precipitation. The fact that the Bias parameter
is close to zero also indicates the model’s accuracy in the simulation. A negative Bias
indicates underestimation, while a positive Bias indicates overestimation. Based on the
results in Table 2, both models underestimated precipitation at this Station.

Finally, the Slope is used to assess the direction of the projection line or the angle
coefficient. If the Slope is negative, the relationship between the two variables (X and Y)
will be inverse, and the Slope expresses the amount of change in Y relative to each unit of
change in X. For this index, a Slope of 1, or regression 1:1 between the two variables, means
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perfect correlation. The value of the Slope in Table 2 shows that the estimated data were far
from the regression line (1:1) and the value of the Slope statistic for both models was equal
to or less than 0.5.

Taylor diagrams provide a visual framework for comparing a suite of variables from
one or more test data sets to one or more reference data sets. Commonly, the test data
sets are model experiments while the reference data set is a control experiment or some
reference observations (e.g., Station data sets). Generally, the plotted values are derived
from climatological monthly, seasonal or annual means. Because the different variables
(e.g., precipitation, temperature) may have widely varying numerical values, the results are
normalized by the reference variables. The normalized variances ratio indicates the model’s
relative amplitude and observed variations [11]. Figures 2 and 3 provide information about
monthly and seasonal Taylor diagrams of the CanESM2 and CanESM5. It is clear that
CanESM5′s performance on the monthly scale is better than CanESM2’s, although both
models have poor performance on the seasonal scale. All in all, CanESM5 can provide
better results compared to CanESM2.
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Figure 3. Models’ performance in seasonal scale.

In summary, the values obtained by the models show that the efficiency of the
CanESM5 model in estimating the amount of precipitation was better than the CanESM2
model. In addition, due to the closeness of the indicators that take into account the number
of deviations and compare the estimated and actual time series, the mentioned model can
detect fluctuations and precipitation trends in the selected Station.

3.2. Precipitation Future Trend

It is more suitable to use non-parametric methods for series that cannot be fitted with
a special statistical distribution and have high skewness or elongation. The Mann–Kendall
test is one of the most common and widely used non-parametric trend analysis methods of
time series. Data changes are identified using the Mann–Kendall method, and their type



Environ. Sci. Proc. 2023, 25, 42 6 of 8

and time are determined [12]. According to the essential role of precipitation in providing
water resources, it is vital to study the process of its changes in the future. This study
will help the authorities with planning and managing water resources. Since international
reports have delivered serious warnings about the crisis and even the physical lack of
water in the future for different parts of the world, knowing the predicted variability of
this important meteorological parameter is essential [13]. Although the evaluation of the
models’ performance on historical data has shown that the models do not have a high ability
to estimate the amount of precipitation, the comparison of the projected and observed time
series shows a slight deviation and an acceptable agreement between the two data sets.
Therefore, the future forecast of the precipitation by the selected model (CanESM5) is an
effective step in understanding the precipitation pattern in the future.

Table 3 presents the Mann–Kendall parameters (Test Z) for the different time-scale
rainfall future trends (from 2020 to 2049) using the best-fit model (CanESM5) for the
two socio–economic (SSP) scenarios. The selected SSP scenarios for this study were 4.5
(Pessimistic) and 8.5 (Optimistic). The time scales were Monthly (Jan to Dec), Seasonal
(Spring to Winter) and Annual for the selected model’s scenarios (4.5 and 8.5). For scenario
4.5, rainfall changes were decreasing for February and June to August, while for other
months, these changes were increasing. These outputs can be found based on Test Z values
in Table 3. Moreover, rainfall changes in the seasonal scale were also decreasing in the
Summer and Fall. Trend analysis results for May, for July in the monthly scale and for
Summer and Fall in the seasonal scale showed that the downward trend was more intense
since the value of Test Z (Kendall’s score) reached more than −1 in this period of time.

Table 3. Mann–Kendall test Z values for 4.5 and 8.5 scenarios.

Time Series 4.5 Test Z 8.5 Test Z Time Series 4.5 Test Z 8.5 Test Z

Jan. 1.48 0.04 Jul. −1.78 1.89
Feb. −0.30 0.25 Aug. −0.36 1.53
Mar. 0.16 −0.71 Sep. 1.30 0.14
Apr. −0.43 −0.79 Oct. 2.02 2.86
May. −1.07 1.46 Nov. 1.30 0.18
Jun. −0.46 −0.09 Dec. 1.48 1.71

Spring 0.71 −0.18
Summer −1.25 0.39 Annual 0.00 2.82

Fall −1.32 2.32
Winter 1.78 2.21

On the other hand, for scenario 8.5 (Table 3), rainfall changes were increasing in most
of the months, although, like scenario 4.5, the decreasing trend remained. However, the
intensity of the downward trend became less prominent when compared to scenario 4.5. In
addition, rainfall changes in the spring tended to decrease, unlike the 4.5 scenario.

4. Conclusions

The results showed that the studied models do not have a high ability to estimate
precipitation in the Jean Lesage Intl Station. According to the results of the studied statistics
such as the correlation coefficient (R) and Slope, the accuracy of the models was poor and
the correlation coefficient in all models was less than 0.5 on a monthly scale. However, in
the seasonal scale, the correlation value was reached at 0.75 in the best model. The Slope
index was also consistent with the correlation coefficient because in the two investigated
models, the distribution of precipitation data was rarely very close to the regression line
(1:1) and the Slope value was usually less than 0.5. In addition, the results of the two
selected models were close to each other, but the CanESM5 model was more accurate than
the other model in the studied Station. The deviation of the projected data and the Station
data was very small, which can be shown based on the NRMSE index in all the investigated
models as less than 2. In addition, in the selected Station, the Bias index indicated both
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models would underestimate the rainfall trend in both time scales. The comparison of the
obtained findings showed that the present research results were largely consistent with
some other researchers. For example, Hidalgo and Alfaro (2014) showed that most of the
CMIP5 models have a low ability to estimate precipitation in the central regions of the
United States [11]. Rupp et al. (2013) showed that although the CMIP5 model rainfall
data have less accuracy compared to other grided data such as NCEP and ERA40, they
estimate the seasonal cycle of precipitation with the same accuracy as networked data in
the northwestern regions of America [12]. Mehran et al. (2014) concluded that the CMIP5
model rainfall data are consistent with GPCP data in most parts of the world but do not
perform well in dry areas [13]. Ebtehaj and Bonakdari (2023) concluded that the results of
the comparison of the CanESM5 and CanESM2 models strongly depend on the month and
season, and that the results of CanESM5 are slightly better compared to the other model [5].

Finally, the precipitation trend analysis results for the CanESM5 model and under the
two scenarios 4.5 and 8.5 showed that the trend of precipitation changes at the Jean Lesage
Intl Station will not be significant. In addition, in scenario 4.5, the precipitation trend
decreased in almost half of the year, while in scenario 8.5, the intensity of the decrease and
the number of months with a decreasing trend of precipitation were significantly reduced.
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