Anthropization, Salinity and Oxidative Stress in Animals in the Coastal Zone †
Abstract
:1. Introduction
2. Anthropogenic Activities, Levels of Salinity and Ecological Threat
3. Salinization Induced Oxidative Stress Physiology in Aquatic Inhabitants
3.1. Oxidative Stress Physiology in Aquatic Invertebrates
3.2. Oxidative Stress Physiology in Aquatic Vertebrates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bal, A.; Panda, F.; Pati, S.G.; Anwar, T.N.; Das, K.; Paital, B. Influence of Anthropogenic Activities on Redox Regulation and Oxidative Stress Responses in Different Phyla of Animals in Coastal Water via Changing in Salinity. Water 2022, 14, 4026. [Google Scholar] [CrossRef]
- Banerjee, A.; Shelver, W.L. Micro- and Nanoplastic Induced Cellular Toxicity in Mammals: A Review. Sci. Total Environ. 2021, 755, 142518. [Google Scholar] [CrossRef] [PubMed]
- Doaemo, W.; Betasolo, M.; Montenegro, J.F.; Pizzigoni, S.; Kvashuk, A.; Femeena, P.V.; Mohan, M. Evaluating the Impacts of Environmental and Anthropogenic Factors on Water Quality in the Bumbu River Watershed, Papua New Guinea. Water 2023, 15, 489. [Google Scholar] [CrossRef]
- Stryjecki, R.; Zawal, A.; Krepski, T.; Stępien, E.; Buczynska, E.; Buczynski, P.; Czachorowski, S.; Jankowiak, Ł.; Pakulnicka, J.; Sulikowska-Drozd, A.; et al. Anthropogenic Transformations of River Ecosystems Are Not Always Bad for the Environment: Multi-Taxa Analyses of Changes in Aquatic and Terrestrial Environments after Dredging of a Small Lowland River. PeerJ 2021, 9, e12224. [Google Scholar] [CrossRef]
- Bal, A.; Panda, F.; Pati, S.G.; Das, K.; Agrawal, P.K.; Paital, B. Modulation of Physiological Oxidative Stress and Antioxidant Status by Abiotic Factors Especially Salinity in Aquatic Organisms. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 241, 108971. [Google Scholar] [CrossRef]
- Paital, B. Antioxidant and Oxidative Stress Parameters in Brain of Heteropneustes Fossilis under Air Exposure Condition; Role of Mitochondrial Electron Transport Chain. Ecotoxicol. Environ. Saf. 2013, 95, 69–77. [Google Scholar] [CrossRef]
- Paital, B.; Guru, D.; Mohapatra, P.; Panda, B.; Parida, N.; Rath, S.; Kumar, V.; Saxena, P.S.; Srivastava, A. Ecotoxic Impact Assessment of Graphene Oxide on Lipid Peroxidation at Mitochondrial Level and Redox Modulation in Fresh Water Fish Anabas Testudineus. Chemosphere 2019, 224, 796–804. [Google Scholar] [CrossRef]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Li, S.; Bundschuh, J. A Review of the Distribution, Sources, Genesis, and Environmental Concerns of Salinity in Groundwater. Environ. Sci. Pollut. Res. Int. 2020, 27, 41157–41174. [Google Scholar] [CrossRef]
- Thai-Hoang, L.; Thong, T.; Loc, H.T.; Van, P.T.T.; Thuy, P.T.P.; Thuoc, T.L. Influences of Anthropogenic Activities on Water Quality in the Saigon River, Ho Chi Minh City. J. Water Health 2022, 20, 491–504. [Google Scholar] [CrossRef]
- De Freitas Souza, C.; Baldissera, M.D.; Verdi, C.M.; Santos, R.C.V.; Da Rocha, M.I.U.M.; da Veiga, M.L.; da Silva, A.S.; Baldisserotto, B. Oxidative Stress and Antioxidant Responses in Nile Tilapia Oreochromis Niloticus Experimentally Infected by Providencia Rettgeri. Microb. Pathog. 2019, 131, 164–169. [Google Scholar] [CrossRef]
- Talke, S.A.; Jay, D.A. Changing Tides: The Role of Natural and Anthropogenic Factors. Ann. Rev. Mar. Sci. 2020, 12, 121–151. [Google Scholar] [CrossRef] [Green Version]
- Paun, I.; Pirvu, F.; Iancu, V.I.; Chiriac, F.L. Occurrence and Transport of Isothiazolinone-Type Biocides from Commercial Products to Aquatic Environment and Environmental Risk Assessment. Int. J. Environ. Res. Public Health 2022, 19, 7777. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Lai, W.W.-P.; Tung, H.-h.; Lin, A.Y.C. Occurrence of Pharmaceuticals, Hormones, and Perfluorinated Compounds in Groundwater in Taiwan. Environ. Monit. Assess. 2015, 187, 256. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Rosa, A.; Cravo, A.; Jacob, J.; Fortunato, A.B. Effects of Climate Change and Anthropogenic Pressures in the Water Quality of a Coastal Lagoon (Ria Formosa, Portugal). Sci. Total Environ. 2021, 780, 146311. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I.; Bagnyukova, T.V.; Lushchak, O.V.; Storey, J.M.; Storey, K.B. Hypoxia and Recovery Perturb Free Radical Processes and Antioxidant Potential in Common Carp (Cyprinus carpio) Tissues. Int. J. Biochem. Cell Biol. 2005, 37, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Ingraham, G.A.; Barri, K.; Boël, M.; Farcy, E.; Charles, A.-L.; Geny, B.; Lignot, J.-H. Osmoregulation and Salinity-Induced Oxidative Stress: Is Oxidative Adaptation Determined by Gill Function? J. Exp. Biol. 2016, 219 Pt 1, 80–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuccaro, A.; De Marchi, L.; Oliva, M.; Monni, G.; Miragliotta, V.; Fumagalli, G.; Freitas, R.; Pretti, C. The Influence of Salinity on the Toxicity of Chemical UV-Filters to Sperms of the Free-Spawning Mussel Mytilus galloprovincialis (Lamark, 1819). Aquat. Toxicol. 2022, 250, 106263. [Google Scholar] [CrossRef]
- Han, J.; Lee, K.-W. Influence of Salinity on Population Growth, Oxidative Stress and Antioxidant Defense System in the Marine Monogonont Rotifer Brachionus plicatilis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2020, 250, 110487. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeong, E.H.; Jeon, Y.H.; Kim, S.K.; Hur, Y.B. Salinity-Mediated Changes in Hematological Parameters, Stress, Antioxidant Responses, and Acetylcholinesterase of Juvenile Olive Flounders (Paralichthys olivaceus). Environ. Toxicol. Pharmacol. 2021, 83, 103597. [Google Scholar] [CrossRef]
- Lee, D.W.; Choi, Y.U.; Park, H.S.; Park, Y.S.; Choi, C.Y. Effect of Low PH and Salinity Conditions on the Antioxidant Response and Hepatocyte Damage in Juvenile Olive Flounder Paralichthys olivaceus. Mar. Environ. Res. 2022, 175, 105562. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, J.; Álvarez-Vergara, F.; Peña-Villalobos, I.; Contreras-Ramos, C.; Sanchez-Hernandez, J.C.; Sabat, P. Effect of Salinity Acclimation on Osmoregulation, Oxidative Stress, and Metabolic Enzymes in the Invasive Xenopus laevis. J. Exp. Zool. Part A, Ecol. Integr. Physiol. 2020, 333, 333–340. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bal, A.; Paital, B. Anthropization, Salinity and Oxidative Stress in Animals in the Coastal Zone. Environ. Sci. Proc. 2023, 25, 7. https://doi.org/10.3390/ECWS-7-14228
Bal A, Paital B. Anthropization, Salinity and Oxidative Stress in Animals in the Coastal Zone. Environmental Sciences Proceedings. 2023; 25(1):7. https://doi.org/10.3390/ECWS-7-14228
Chicago/Turabian StyleBal, Abhipsa, and Biswaranjan Paital. 2023. "Anthropization, Salinity and Oxidative Stress in Animals in the Coastal Zone" Environmental Sciences Proceedings 25, no. 1: 7. https://doi.org/10.3390/ECWS-7-14228
APA StyleBal, A., & Paital, B. (2023). Anthropization, Salinity and Oxidative Stress in Animals in the Coastal Zone. Environmental Sciences Proceedings, 25(1), 7. https://doi.org/10.3390/ECWS-7-14228