Estimation of Remotely Sensed Actual Evapotranspiration in Water-Limited Mediterranean Agroecosystems for Monitoring Crop (cotton) Water Requirements †
Abstract
:1. Introduction
2. Materials and Methods—Study Area
3. Results
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gowda, P.H.; Chávez, J.L.; Howell, T.A.; Marek, T.H.; New, L.L. Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains. Sensors 2008, 8, 5186–5201. [Google Scholar] [CrossRef]
- Bastiaanssen, G.M.W. SEBAL-based sensible and latent heat fluxes in the irrigated GedizBasin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.J.; van der Wal, T. The Surface Energy Balance Algorithm for Land (SEBAL): Part 2 validation. J. Hydrol. 1998, 212–213, 213–229. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Ruescas, A.B.; Peters, M. S3TBX Collocation Tutorial, V1/rev6 1.0; ESA & Brockmann Consult GMBH. Available online: https://step.esa.int/docs/tutorials/Collocation_S3TBX_Tutorial_v1_rev6.pdf (accessed on 7 October 2022).
- Alpanakis, N.; Tziatzios, G.; Faraslis, I.; Spiliotopoulos, M.; Sidiropoulos, P.; Sakellariou, S.; Blanta, A.; Brisimis, V.; Dalezios, N.; Dercas, N. Modeling and Estimation of Actual Evapotranspiration in 3 Mediterranean agricultural areas in France, Greece, and Portugal by the aspect of the Sentinel 2 and 3 observations. In Proceedings of the 2nd AgroEcoInfo, Volos, Greece, 30 June–1 July 2022; ISBN 978-618-84403-8-8. [Google Scholar]
Steps | Procedures |
---|---|
1 | Download Sentinel images |
2 | Preprocessing of Sentinel-2 |
3 | Creation of a Digital Elevation Model (DEM) |
4 | Creation of a land use map of the study area |
5 | Leaf reflection and transmission assessment based on the chlorophyll and water content of the plants |
6 | Estimation of fraction of green vegetation |
7 | Production of land use/land cover maps |
8 | Aerodynamic roughness assessment |
9 | Pre-processing and downscaling of Sentinel-3 data |
10 | From warp to template—Resampling into a standard image using GDAL Warp |
11 | Sharpen land surface temperature |
12 | Download WRF meteorological data by 3D S.A partner |
13 | WRF meteorological data preparation based on the High-Resolution Digital Elevation Model (DEM) of the study area |
14 | Long-wave irradiance estimation based on WRF meteorological data |
15 | Estimation of net shortwave radiation based on WRF meteorological data and biophysical parameters |
16 | Estimation of energy fluxes of the land surface |
17 | Estimation of daily evapotranspiration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spiliotopoulos, M.; Alpanakis, N.; Tziatzios, G.A.; Faraslis, I.; Sidiropoulos, P.; Sakellariou, S.; Karoutsos, G.; Dalezios, N.R.; Dercas, N. Estimation of Remotely Sensed Actual Evapotranspiration in Water-Limited Mediterranean Agroecosystems for Monitoring Crop (cotton) Water Requirements. Environ. Sci. Proc. 2023, 25, 9. https://doi.org/10.3390/ECWS-7-14200
Spiliotopoulos M, Alpanakis N, Tziatzios GA, Faraslis I, Sidiropoulos P, Sakellariou S, Karoutsos G, Dalezios NR, Dercas N. Estimation of Remotely Sensed Actual Evapotranspiration in Water-Limited Mediterranean Agroecosystems for Monitoring Crop (cotton) Water Requirements. Environmental Sciences Proceedings. 2023; 25(1):9. https://doi.org/10.3390/ECWS-7-14200
Chicago/Turabian StyleSpiliotopoulos, Marios, Nicolas Alpanakis, Georgios A. Tziatzios, Ioannis Faraslis, Pantelis Sidiropoulos, Stavros Sakellariou, George Karoutsos, Nicolas R. Dalezios, and Nicholas Dercas. 2023. "Estimation of Remotely Sensed Actual Evapotranspiration in Water-Limited Mediterranean Agroecosystems for Monitoring Crop (cotton) Water Requirements" Environmental Sciences Proceedings 25, no. 1: 9. https://doi.org/10.3390/ECWS-7-14200
APA StyleSpiliotopoulos, M., Alpanakis, N., Tziatzios, G. A., Faraslis, I., Sidiropoulos, P., Sakellariou, S., Karoutsos, G., Dalezios, N. R., & Dercas, N. (2023). Estimation of Remotely Sensed Actual Evapotranspiration in Water-Limited Mediterranean Agroecosystems for Monitoring Crop (cotton) Water Requirements. Environmental Sciences Proceedings, 25(1), 9. https://doi.org/10.3390/ECWS-7-14200