Seasonal Changes in Air Pollutants and Their Relation to Vegetation over the Megacity Delhi National Capital Region †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
3. Result and Discussion
3.1. Seasonal Variations in Vegetation Indices and Different Air Pollutants
3.2. Comparison of Vegetation Indices with Different Selected Air Pollutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, A.K.; Singh, S.; Berwal, S.; Kumar, D.; Pandey, P.; Prakash, A.; Lodhi, N.; Maithani, S.; Jain, V.K.; Kumar, K. Spatio- temporal variations of urban heat island over Delhi. Urban Clim. 2014, 10, 119–133. [Google Scholar] [CrossRef]
- Rani, A.; Rajlaxmi, A.; Kumar, M. Effect of Air Pollutants on the Carbon Sequestration Rate and Other Physiological Processes in Different Vegetation Types: A Review. MAPAN 2023, 38, 1053–1065. [Google Scholar] [CrossRef]
- Paul, S.; Nagendra, H. Vegetation change and fragmentation in the megacity of Delhi: Mapping 25 years of change. Appl. Geogr. 2015, 58, 153–166. [Google Scholar] [CrossRef]
- Currie, B.A.; Bass, B. Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst. 2008, 11, 409–422. [Google Scholar] [CrossRef]
- Snehlata; Rajlaxmi, A.; Kumar, M. Urban tree carbon density and CO2 equivalent of National Zoological Park, Delhi. Environ. Monit. Assess. 2021, 193, 841. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Yin, H.; Nakagoshi, N. Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China. Landsc. Urban Plan. 2007, 79, 240–252. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in the open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Hama, S.M.; Kumar, P.; Harrison, R.M.; Bloss, W.J.; Khare, M.; Mishra, S.; Namdeo, A.; Sokhi, R.; Goodman, P.; Sharma, C. Four-year assessment of ambient particulate matter and trace gases in the Delhi-NCR region of India. Sustain. Cities Soc. 2020, 54, 102003. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Rihan, M.; Ishtiaque, M. Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using Landsat datasets. J. Urban Manag. 2020, 9, 347–359. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309–317. [Google Scholar]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Naif, S.S.; Mahmood, D.A.; Al-Jiboori, M.H. Seasonal normalized difference vegetation index responses to air temperature and precipitation in Baghdad. Open Agric. 2020, 5, 631–637. [Google Scholar] [CrossRef]
- Schnur, M.T.; Xie, H.; Wang, X. Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern USA. Ecol. Inform. 2010, 5, 400–409. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Sellers, P.J.; Berry, J.A.; Collatz, G.J.; Field, C.B.; Hall, F.G. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 1992, 42, 187–216. [Google Scholar] [CrossRef]
- Mavi, H.S.; Tupper, G.J. Agrometeorology: Principles and Application of Climate Studies in Agriculture; Food Products Press: Binghamton, NY, USA, 2004; pp. 50–64. [Google Scholar]
- Halos, S.H.; Abed, F.G. Effect of spring vegetation indices NDVI & EVI on dust storms occurrence in Iraq. AIP Conf. Proc. 2019, 2144, 040015. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Lee, H.J.; Koutrakis, P. Daily ambient NO2 concentration predictions using satellite ozone monitoring instrument NO2 data and land use regression. Environ. Sci. Technol. 2014, 48, 2305–2311. [Google Scholar] [CrossRef]
- Pandey, A.K.; Mishra, A.K.; Kumar, R.; Berwal, S.; Devadas, R.; Huete, A.; Kumar, K. CO variability and its association with household cooking fuels consumption over the Indo-Gangetic Plains. Environ. Pollut. 2017, 222, 83–93. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Vijayan, N.; Mandal, T.K. Seasonal characteristics of aerosols (PM2. 5 and PM10) and their source apportionment using PMF: A four-year study over Delhi, India. Environ. Pollut. 2020, 262, 114337. [Google Scholar] [CrossRef]
- Tiwari, S.; Dahiya, A.; Kumar, N. Investigation into relationships among NO, NO2, NOx, O3, and CO at an urban background site in Delhi, India. Atmos. Res. 2015, 157, 119–126. [Google Scholar] [CrossRef]
- Xu, X.; Xia, J.; Gao, Y.; Zheng, W. Additional focus on particulate matter wash-off events from leaves is required: A review of studies of urban plants used to reduce airborne particulate matter pollution. Urban For. Urban Green. 2020, 48, 126559. [Google Scholar] [CrossRef]
- Revadekar, J.V.; Tiwari, Y.K.; Kumar, K.R. Impact of climate variability on NDVI over the Indian region during 1981–2010. Int. J. Remote Sens. 2012, 33, 7132–7150. [Google Scholar] [CrossRef]
- Mozumder, C.; Reddy, K.V.; Pratap, D. Air pollution modeling from remotely sensed data using regression techniques. J. Indian Soc. Remote Sens. 2013, 41, 269–277. [Google Scholar] [CrossRef]
Vegetation Indices/ Air Pollutants | Sensors | Data Product Information | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
NDVI/EVI | MODIS (Terra) | L3–MOD13C2 | 0.05° | Monthly |
SO2 | OMI | L3–OMSO2e | 0.25° | Daily |
NO2 | OMI | L3–OMNO2d | 0.25° | Daily |
CO | MERRA-2 | M2TMNXCHM | 0.5 × 0.625° | Monthly |
PM2.5 | MERRA-2 | M2TMNXAER | 0.5 × 0.625° | Monthly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, A.; Kumar, M. Seasonal Changes in Air Pollutants and Their Relation to Vegetation over the Megacity Delhi National Capital Region. Environ. Sci. Proc. 2023, 27, 16. https://doi.org/10.3390/ecas2023-15119
Rani A, Kumar M. Seasonal Changes in Air Pollutants and Their Relation to Vegetation over the Megacity Delhi National Capital Region. Environmental Sciences Proceedings. 2023; 27(1):16. https://doi.org/10.3390/ecas2023-15119
Chicago/Turabian StyleRani, Archana, and Manoj Kumar. 2023. "Seasonal Changes in Air Pollutants and Their Relation to Vegetation over the Megacity Delhi National Capital Region" Environmental Sciences Proceedings 27, no. 1: 16. https://doi.org/10.3390/ecas2023-15119
APA StyleRani, A., & Kumar, M. (2023). Seasonal Changes in Air Pollutants and Their Relation to Vegetation over the Megacity Delhi National Capital Region. Environmental Sciences Proceedings, 27(1), 16. https://doi.org/10.3390/ecas2023-15119