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Abstract: In Cuba, short-term predictions have been developed for wind speed in the Gibara wind
farms. These predictions present an mean absolute error (MAE) that sometimes exceeds 3 m/s.
This study aims to verify the wind forecast generated by SisPI using the Synoptic Situation Types
Catalog (TSS), a form of wind speed observation data provided by the anemometers installed in
the wind turbine. The study period spanned from May 2020 to April 2021. For the evaluation, the
metrics root mean square error (RMSE) and MAE were used, and the analysis was made in the
rainy and dry seasons via the methodology developed by Patiño (2023). The results indicate that
subtype 3 (extended undisturbed anticyclonic flow) had the highest frequency of cases between very
good and good in both seasonal periods. Subtype 19 (migratory anticyclone in an advanced state of
transformation) was the system that produced the worst results in the dry season, with the largest
number of cases of bad wind speed forecasts. The results of the statistical bias (BIAS) and Pearson’s
Correlation Coefficient (R) were very favorable.

Keywords: wind energy; short-term forecast; wind speed; types of synoptic situations

1. Introduction

Wind energy is a renewable source that harnesses the power of the wind to generate
electricity. However, from an energy perspective, wind exhibits significant variations in
both time and space. These variations can be quite pronounced even over short periods,
meaning that wind energy generation can be intermittent and subject to large changes in
short spans. This, in turn, suggests that accurately predicting the amount of energy that
wind farms will generate can be a challenging task.

Unlike other power plants, which can adjust their production according to demand,
wind farms are at a disadvantage due to their intermittent nature. This situation has led to
the need for developing wind forecasting models that allow for a more accurate prediction
of the amount of energy that will be generated at any given time. In this way, the aim is
to minimize the impact of wind variability on the operation of wind farms and ensure a
constant supply of electricity.

According to the most recent report from the Global Wind Energy Council [1] (77.6 GW
of wind power capacity was added to electrical grids in 2022. This resulted in a 9% increase
in the total installed wind power capacity, which now stands at 906 GW compared to the
previous year, 2021.
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Cuba, for its part, has four experimental wind farm installations with a total capacity
of 11.8 MW. Out of these, the ones installed in northern Holguín, Gibara I and II (9.6 MW),
have achieved an annual capacity factor exceeding 27% [2].

Accurate wind speed forecasts are essential due to the significant economic invest-
ments made in the Gibara region. These forecasts play a crucial role in predicting the
amount of energy generated by wind farms, which is vital for the daily planning of the
National Load Dispatch (DNC).

Currently, short-term forecasts for wind energy production are widely used interna-
tionally. One of the most relevant projects in this field is ANEMOS [3], whose main objective
was to develop advanced prediction models that improve upon existing tools. Additionally,
there are other important works in this area, such as those conducted by [4–11].

In Cuba, studies have been conducted to predict short-term wind in wind farms, as in
the case of [12–18], where it was found that improving the resolution of the SisPI model
(WRF) to 1 km yielded better results compared to previous studies. However, there were
days when the forecast was not accurate, with errors exceeding 4 m/s at a resolution of
3 km. In order to understand the causes of this behavior, a study was carried out by [19].
In this work, wind speed forecasts based on MAE were analyzed in relation to TSS as the
main wind-generating factor in Cuba. The study was conducted in the Gibara I Wind Farm
during the period from May 2020 to April 2021.

To expand on the previous research, it was decided to extend the study to the Gibara
II Wind Farm, using additional metrics to gain a more comprehensive understanding of
the forecasts, considering that one of the possible factors influencing accurate forecasts is
the behavior of synoptic-scale winds, which may not be well represented by the forecast
model, and therefore, the results may not be as expected.

2. Materials and Methods

The Gibara I and Gibara II wind farms are located in the province of Holguin, near the
coastline, about 300 m away, and have an elevation of 3 m above sea level. The Gibara II
Wind Farm (PEGII), manufactured by GOLDWIND, has a capacity of 4.5 MW and has six
wind turbines (Figure 1).
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Note: Taken from [18]. 

  

Figure 1. Location of the Gibara I and II wind parks in the Holguin province. The circles represent
the wind parks in Gibara. The star between both parks represents Los Cocos wind survey mast. Note:
Taken from [18].

2.1. Data Used

The research period spanned from 1 May 2020 to 30 April 2021. During this period,
the Gibara II Wind Farm (PEGII) had 6 wind turbines in operation.

Hourly wind speed values from anemometers located on the nacelles of the wind
turbines at a height of 55 m were used. Hourly wind speed forecast values were provided
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by the Immediate Forecast System (SisPI), which uses the Weather Research and Forecasting
(WRF) atmospheric model.

The Synoptic Situation Subtypes (subTSS) database was provided by [20], as well
as the Catalogue of Synoptic Situation Types, where they are characterized. However, in
this study, we used the thirteen subtypes that were observed daily in Gibara during the
2020–2021 research period, which are included in the [19] study and are shown in Table 1
and Figure 2.

Table 1. Synoptic Situation Subtypes presented in Gibara. Note: Taken from [19].

No SubTSS

1 Subtropical anticyclone with first quadrant flow

2 Subtropical anticyclone with second quadrant flow

3 Extended undisturbed anticyclonic flow

4 Extended flow in the divergent sector of waves

5 Weak barometric gradient

6 Influence of a tropical cyclone

7 East waves and troughs

8 West convergence and troughs

13 Classic cold front

14 Reverse cold front

17 Migratory continental anticyclone

18 Migratory anticyclone in the process of transformation

19 Migratory anticyclone in an advanced stage of transformation
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Figure 2. Annual behavior of the subTSS in the study period (May 2020 to April 2021). Note: Taken
from [19].

2.2. Immediate Forecast System (SisPI)

Wind speed forecast data were generated by SisPI, a system that predicts short-term
weather phenomena. This system has a forecast range of 24 h, with four daily updates
every six hours (0000, 0600, 1200, and 1800 UTC) and three domains with resolutions of 27,
9, and 3 km. SisPI is initialized with data from the Global Forecast System (GFS) and uses
the Weather Research and Forecasting (WRF) atmospheric model, which is widely used in
wind resource research around the world [21].
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2.3. Used Metrics

The metrics used were Mean Absolute Error (MAE) (1); Root Mean Square Error
(RMSE) (2); Bias (BIAS) (3); and Pearson correlation coefficient (R) (4).

MAE =
1
n∑n

i−1|x̂i − xi| (1)

RMSE =
1
n∑n

i−1(x̂i − xi)
2 (2)

BIAS =
1
n∑n

i−1(x̂i − xi) (3)

R =
∑ (xi − xi)(yi − yi)√
∑ (xi − xi)

2(yi − yi)
2

(4)

where x̂i is the observed value, and xi is the forecast value at time i.

2.4. Methodology

Based on the subtypes that occurred in Gibara during the research period conducted
by [19], the same methodology used by the author was applied. Firstly, the daily variation
in wind speed for the specific area was studied. Subsequently, the Mean Absolute Error
(MAE) and the Root Mean Square Error (RMSE) of the wind speed forecast in Gibara II
were determined, and their behavior with respect to the subtype was analyzed. In this
way, the MAE and RMSE could be classified as very good if the values were between 0
and 1 m/s; good between 1 and 2 m/s; fair between 2 and 3 m/s; and poor when the
values were greater than 3 m/s. The values classified as fair and poor with respect to the
subTSS were analyzed in the two seasonal periods (PLL and PPLL) to determine if there
was any relationship between them. Finally, unlike Gibara I, the BIAS and R statisticians
were analyzed in this research.

3. Discussion of Results
3.1. Analysis of Wind Speed Behavior in Gibara during the Period from May 2020 to April 2021

Figure 3 shows that wind speed in Gibara decreases during the early hours of the
morning until 7:00 a.m. local time, similar to Gibara I in the previous study conducted
by [19]. This behavior was pointed out by [22–24]. These authors explain that this decrease
is due to the interaction between the predominant synoptic flow and the local circulation
of sea breezes on the north coast. Starting at 7:00 a.m. local time, wind speed begins to
increase and reaches its maximum value at 3:00 p.m. local time, but after 5:00 p.m. local
time, it decreases again.
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In addition, the figure also shows that the highest values of wind speed occur during
the characteristic period of the passage of frontal systems and the presence of the Migratory
Continental Anticyclones, which was reported by [25]. Despite these differences, the
average maximum values occur at the same times in both analyzed periods.

3.2. Forecast Behavior of Wind Speed in the Period from May 2020 to April 2021 via MAE Analysis

Figure 4 shows that the forecasts of the studied cases were classified as very good in
10.4% of the cases; good in 53% of the cases; regular in 26.8% of the cases; and 9.8% of the
cases were classified as bad.
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Figure 4. Frequency of the MAE statistic in 4 defined intervals for PEGII.

In more detail, more than 60% of the forecasts resulted in very good and good classifi-
cations, a significant figure. However, around 37% of the remaining forecasts were classified
as regular and bad, representing a considerable percentage and focused the analysis on the
relationship or link of each subtype with the classified forecast (Figure 5).
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In general, it was noted that subtypes 3 and 5 were the most predominant and were
present in all analyzed intervals. Of all the subTSS presented during the period, 8 (con-
vergence and west troughs), 14 (Reversing cold front), and 17 (migratory continental
anticyclone) did not show MAE values in the range of regular and bad. It was also found
that subtypes 1 (subtropical anticyclone with first quadrant flow) and 18 (migratory anti-
cyclone in the process of transformation) were never classified as bad by the MAE. This
indicates that the SisPI had a good performance in representing these subTSS despite their
low frequencies of occurrence.
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3.3. Analysis of the Association between MAE and subTSS in the Rainy Period (RP) and Less
Rainy Period (LRP)
3.3.1. Rainy Period (RP)

Figures 6 and 7 show the frequency distribution of MAE for the RP of May–October
2020. It presented a similar distribution to what was found for the annual case, with the
good interval being the most frequent. Of the cases, 64.6% were classified as very good and
good, while 35.4% were considered regular and bad.
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3.3.2. Less Rainy Period (LRP)

Figures 8 and 9 show the association between MAE and subTSS for the LRP, displaying
a similar behavior to what has been analyzed so far. Once again, the intervals of very good
and good encompassed the majority of cases, with 62.3%, while 37.7% represented the
cases of regular and bad.
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3.4. Analysis of the Association between Regular and Bad MAE Values and subTSS in the Rainy
Period (RP) and Less Rainy Period (LRP)

Considering that the cases classified as regular and bad represented around 37% of
the entire sample studied, it was of interest to determine if there was any preferential
relationship between the behavior of MAE and subtypes in either of the two seasonal
periods for Cuba. The results for the RP and LRP are shown in Figure 10.

Environ. Sci. Proc. 2023, 27, 25 7 of 15 
 

 

 
Figure 8. Frequency distribution of the MAE statistic for the less rainy period (November 2020–
April 2021). 

 
Figure 9. Behavior of the MAE in the less rainy period according to the subTSS (November 2020–
April 2021). 

3.4. Analysis of the Association between Regular and Bad MAE Values and subTSS in the Rainy 
Period (RP) and Less Rainy Period (LRP) 

Considering that the cases classified as regular and bad represented around 37% of 
the entire sample studied, it was of interest to determine if there was any preferential 
relationship between the behavior of MAE and subtypes in either of the two seasonal pe-
riods for Cuba. The results for the RP and LRP are shown in Figure 10. 

 
(a) 

Figure 10. Cont.



Environ. Sci. Proc. 2023, 27, 25 8 of 14Environ. Sci. Proc. 2023, 27, 25 8 of 15 
 

 

 
(b) 

Figure 10. Frequency distribution of regular and bad MAE cases by subTSS for the rainy period (a) 
and the less rainy period (b). 

3.4.1. RP Analysis 
In Figure 10a, it can be observed that over 50% of the cases with an MAE between 

regular and bad corresponded to subtype 3; around 20% to subtype 5; approximately 12% 
to subtype 7; about 11% to subtype 6; and the rest with less than 5%. It was noteworthy 
that subtype 3 continued to have a high incidence of cases with an MAE index classified 
as regular and bad. This trend could be related to the lack of precision of SisPI in correctly 
predicting the position of the subtropical ridge, as pointed out by [26]. However, it is im-
portant to note that this statement requires further experiments to confirm it in the context 
of this study. 

3.4.2. LRP Analysis 
Despite the low frequency of subtype 19 in the study year, this subtype had a high 

percentage of cases where the wind speed forecast was classified as regular and bad ac-
cording to the MAE, indicating that attention should be paid to this subtype by SisPI de-
velopers and weather forecasters in general. 

3.5. Wind Speed Forecast Behavior during the Period May 2020–April 2021 via RMSE Analysis 
Similar to the MAE analysis, it was decided to apply this classification of forecast 

error to analyze the root mean square error (RMSE). 
Figure 11 illustrates the performance of the examined cases. A percentage greater 

than 42% of the forecasts were classified between very good and good, reflecting more 
favorable results. It is important to note, however, that 58% of the forecasts were classified 
as regular or bad, which motivated a more detailed analysis. 

 

Figure 10. Frequency distribution of regular and bad MAE cases by subTSS for the rainy period (a)
and the less rainy period (b).

3.4.1. RP Analysis

In Figure 10a, it can be observed that over 50% of the cases with an MAE between
regular and bad corresponded to subtype 3; around 20% to subtype 5; approximately 12%
to subtype 7; about 11% to subtype 6; and the rest with less than 5%. It was noteworthy
that subtype 3 continued to have a high incidence of cases with an MAE index classified as
regular and bad. This trend could be related to the lack of precision of SisPI in correctly
predicting the position of the subtropical ridge, as pointed out by [26]. However, it is
important to note that this statement requires further experiments to confirm it in the
context of this study.

3.4.2. LRP Analysis

Despite the low frequency of subtype 19 in the study year, this subtype had a high
percentage of cases where the wind speed forecast was classified as regular and bad
according to the MAE, indicating that attention should be paid to this subtype by SisPI
developers and weather forecasters in general.

3.5. Wind Speed Forecast Behavior during the Period May 2020–April 2021 via RMSE Analysis

Similar to the MAE analysis, it was decided to apply this classification of forecast error
to analyze the root mean square error (RMSE).

Figure 11 illustrates the performance of the examined cases. A percentage greater than
42% of the forecasts were classified between very good and good, reflecting more favorable
results. It is important to note, however, that 58% of the forecasts were classified as regular
or bad, which motivated a more detailed analysis.
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The dynamics of RMSE in relation to the subTSS are shown explicitly in Figure 12. In
general terms, subtypes 3 and 5 presented the highest prevalence.
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3.6. Analysis of the Association between RMSE and subTSS in the Rainy Period (RP) and Dry
Period (DP)
3.6.1. Rainy Period (RP)

Figures 13 and 14 show the frequency distribution of RMSE for the RP corresponding
to the period May–October 2020. Of the cases, 40.4% were classified as very good and good,
while 59.6% were considered as regular and bad.

Environ. Sci. Proc. 2023, 27, 25 9 of 15 
 

 

Figure 11. Frequency of the RMSE statistic. 

The dynamics of RMSE in relation to the subTSS are shown explicitly in Figure 12. In 
general terms, subtypes 3 and 5 presented the highest prevalence. 

 
Figure 12. Frequency of the RMSE statistic associated with the subTSS. 

3.6. Analysis of the Association between RMSE and subTSS in the Rainy Period (RP) and Dry 
Period (DP) 
3.6.1. Rainy Period (RP) 

Figures 13 and 14 show the frequency distribution of RMSE for the RP corresponding 
to the period May–October 2020. Of the cases, 40.4% were classified as very good and 
good, while 59.6% were considered as regular and bad. 

 
Figure 13. Frequency distribution of the RMSE statistic for the rainy period (May–October 2020). Figure 13. Frequency distribution of the RMSE statistic for the rainy period (May–October 2020).

Environ. Sci. Proc. 2023, 27, 25 10 of 15 
 

 

 
Figure 14. Frequency distribution of the RMSE statistic associated with the subtypes for the rainy 
period (May–October 2020). 

3.6.2. Dry Period (DP) 
Figures 15 and 16 show the relationship between RMSE and subtypes in the DP; 

43.7% were considered very good and good, while 56.3% were categorized as regular and 
bad. 

 
Figure 15. Frequency distribution of the RMSE statistic for the less rainy period. 

 
Figure 16. Behavior of the RMSE in the less rainy period according to the subTSS (November 2020–
April 2021). 

  

Figure 14. Frequency distribution of the RMSE statistic associated with the subtypes for the rainy
period (May–October 2020).



Environ. Sci. Proc. 2023, 27, 25 10 of 14

3.6.2. Dry Period (DP)

Figures 15 and 16 show the relationship between RMSE and subtypes in the DP; 43.7%
were considered very good and good, while 56.3% were categorized as regular and bad.
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2020–April 2021).

3.7. Analysis of the Association between Bad and Regular RMSE Values and subTSS in the Rainy
Period (RP) and Dry Period (DP)

It is noteworthy that a high percentage of cases showed results between regular and
bad, representing 58% of the analyzed sample. Therefore, it was considered necessary to
further analyze these cases. Similar to the approach used in the MAE study, the analysis
was carried out considering the two seasons of the year in Cuba, with the aim of evaluating
if there was any correlation between the behavior of RMSE and subTSS during seasonal
periods. The results during the rainy period (RP) and dry period (DP) are presented clearly
in Figure 17.

3.7.1. Analysis of RP

Figure 17a shows that subtype 3 has a prevalence greater than 60%. While subtype 5
is evident with more than 15%. The remaining subtypes had less than 10% of the instances.
Subtype 3, similar to the MAE analysis, concentrates the majority of cases with regular or
bad RMSE, indicating a possible relationship with the tendency of SisPI to not correctly
predict the position of the subtropical high, as indicated in the MAE observation.

3.7.2. Analysis of DP

When examining the behavior of RMSE for the cases of regular and bad in the DP
(Figure 17b), it can be observed that although subtype 3 has decreased its frequency to less
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than 30%, demonstrating a lower presence compared to RP, it still prevails among the cases
of regular and bad classification. This suggests that subtype 3 is better represented by SisPI
in this period of the year. However, the analysis highlights subtype 5 with around 15%.
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3.8. Behavior of Wind Speed Forecast in the Period from May 2020 to April 2021 via BIAS Analysis

The analysis of the BIAS statistic (Figure 18) allows us to see a general trend where an
overestimation is observed in all hours.
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It was evident that subtype 19, which represented more than 20% of the cases, had a
significantly high frequency of wind speed forecasts classified as regular or bad despite
its low frequency in the year of study, indicating that this subtype is poorly represented
by SisPI and should receive more attention. The rest of the subtypes had frequencies
below 10%.

The forecast overestimation was most noticeable during the early hours until 9 a.m.
and then in the evening–night between 6 p.m. and 11 p.m., with a behavior between
0.3 m/s and 1.2 m/s. In the timeframe from 9 a.m. to 5 p.m., the behavior was more
favorable, as it was closer to zero. This behavior turned out to be better compared to what
was found by [18], whose BIAS values for PEGI and PEGII were underestimated in all
timeframes, with a behavior between 0 m/s and −4 m/s.

3.9. Behavior of Wind Speed Forecast in the Period from May 2020 to April 2021 via R Analysis

Figure 19 shows the Pearson correlation coefficient R, the other analyzed statistic. It is
easy to appreciate that there is a positive correlation, with values greater than 0.7 in the
early morning hours until 9 am, from which the values begin to decrease to approximately
0.5 m/s at 5 p.m., after which they start to increase again up to 0.7 m/s.
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4. Conclusions

The research conducted yielded the following conclusions:

• It was obtained that, in the case of MAE, 63.4% of the wind speed forecasts were
classified as very good or good, while 36.6% were classified as regular and bad, which
reflects the good representation of most subTSS by SisPI. However, for RMSE, it was
obtained that 42% of the values fell between very good and good, and 58% of the
forecasts were classified as regular and bad, which was not as favorable.

• The MAE analysis of the cases classified as regular and bad for both seasonal pe-
riods yielded well-defined results, highlighting subtype 3 (unperturbed extended
anticyclonic flow), which represented over 50% of the cases in PLL and just over 35%
in PPLL, reflecting the improvement by SisPI in forecasting this subtype in the low
rainfall period. In the case of RMSE analysis, it was obtained that this subtype had a
prevalence of over 60% in PLL and less than 35% in PPLL, showing a lower presence
compared to PLL.

• Subtype 19 was the system that achieved the worst results, as despite its low frequency
in the study year, over 50% of the days it was present, the wind speed forecast was
classified as regular and bad.
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• In the case of BIAS analysis, both parks showed favorable behavior, with overestimated
values between 0 and 1.2 m/s. On the other hand, the R analysis also showed good
behavior, between 0.4 and 0.8 m/s.

5. Recommendations

• Sharing the results of this research with SisPI developers, as well as with weather
forecasters in general.

• Further investigating the relationship between TSS and forecast errors via new experi-
ments.

• Incorporating the underlying subTSS into the wind speed forecast.
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