Identification of Areas with Instability and Surface Deformation: Using Advanced Radar Interferometry in the Municipality of Fusagasugá, Colombia †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluated Area
2.2. Selection of Method and Materials
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bryant, E. Natural Hazards; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Sahraoui, O.H.; Hassaine, B.; Serief, C. Radar Interferometry with Sarscape Software. 2006, pp. 1–10. Available online: https://fig.net/resources/proceedings/fig_proceedings/fig2006/papers/ps05_08/ps05_08_03_sahraoui_0222.pdf (accessed on 2 February 2022).
- Schuster, R.L.; Highland, L.M. Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere; Open-File Report 2001-276; U.S. Geological Survey: Denver, CO, USA, 2001.
- Haque, U.; da Silva, P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Wilopo, W.; Andersen, P.; Lu, P.; Lee, J.; et al. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Sci. Total. Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Vandromme, R.; Thiery, Y.; Bernardie, S.; Sedan, O. ALICE (Assessment of Landslides Induced by Climatic Events): A single tool to integrate shallow and deep landslides for susceptibility and hazard assessment. Geomorphology 2020, 367, 107307. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C.; Ngai, Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Trigo, R.M.; Trigo, I.F. Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation. Nat. Hazards Earth Syst. Sci. 2005, 5, 331–344. [Google Scholar] [CrossRef]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Segoni, S.; Alamri, A.M. Rainfall Induced Landslide Studies in Indian Himalayan Region: A Critical Review. Appl. Sci. 2020, 10, 2466. [Google Scholar] [CrossRef]
- Ma, F.; Sui, L. Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China. Earth Sci. Res. J. 2020, 24, 373–386. [Google Scholar] [CrossRef]
- Mirus, B.B.; Jones, E.S.; Baum, R.L.; Godt, J.W.; Slaughter, S.; Crawford, M.M.; Lancaster, J.; Stanley, T.; Kirschbaum, D.B.; Burns, W.J.; et al. Landslides across the USA: Occurrence, susceptibility, and data limitations. Landslides 2020, 17, 2271–2285. [Google Scholar] [CrossRef]
- Grima, N.; Edwards, D.; Edwards, F.; Petley, D.; Fisher, B. Landslides in the Andes: Forests can provide cost-effective landslide regulation services. Sci. Total Environ. 2020, 745, 141128. [Google Scholar] [CrossRef]
- Meng, Q.; Xu, Q.; Wang, B.; Li, W.; Peng, Y.; Peng, D.; Qi, X.; Zhou, D. Monitoring the regional deformation of loess landslides on the Heifangtai terrace using the Sentinel-1 time series interferometry technique. Nat. Hazards 2019, 98, 485–505. [Google Scholar] [CrossRef]
- Rateb, A.; Abotalib, A.Z. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Sci. Total Environ. 2020, 729, 138868. [Google Scholar] [CrossRef]
- Awasthi, S.; Jain, K.; Bhattacharjee, S.; Gupta, V.; Varade, D.; Singh, H.; Narayan, A.B.; Budillon, A. Analyzing urbanization induced groundwater stress and land deformation using time-series Sentinel-1 datasets applying PSInSAR approach. Sci. Total Environ. 2022, 844, 157103. [Google Scholar] [CrossRef] [PubMed]
- Budillon, A.; Crosetto, M.; Monserrat, O. Editorial for the Special Issue “Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR Tomography”. Remote Sens. 2019, 11, 1306. [Google Scholar] [CrossRef]
- Monika; Govil, H.; Chatterjee, R.; Bhaumik, P.; Vishwakarma, N. Deformation monitoring of Surakachhar underground coal mines of Korba, India using SAR interferometry. Adv. Space Res. 2022, 70, 3905–3916. [Google Scholar] [CrossRef]
- Chung, C.-J.F.; Fabbri, A.G. Probabilistic Prediction Models for Landslide Hazard Mapping. Photogramm. Eng. Remote Sens. 1999, 65, 1389–1399. [Google Scholar]
- Hu, L.; Dai, K.; Xing, C.; Li, Z.; Tomás, R.; Clark, B.; Shi, X.; Chen, M.; Zhang, R.; Qiu, Q.; et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinform. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng. Geol. 2003, 68, 3–14. [Google Scholar] [CrossRef]
- Fernández, J.; Escayo, J.; Camacho, A.G.; Palano, M.; Prieto, J.F.; Hu, Z.; Samsonov, S.V.; Tiampo, K.F.; Ancochea, E. Shallow magmatic intrusion evolution below La Palma before and during the 2021 eruption. Sci. Rep. 2022, 12, 20257. [Google Scholar] [CrossRef]
- El Kamali, M.; Abuelgasim, A.; Papoutsis, I.; Loupasakis, C.; Kontoes, C. A reasoned bibliography on SAR interferometry applications and outlook on big interferometric data processing. Remote. Sens. Appl. Soc. Environ. 2020, 19, 100358. [Google Scholar] [CrossRef]
- Dávila-Hernández, N.A.; Madrigal-Uribe, D. Aplicación de interferometría radar en el estudio de subsidencias en el Valle de Toluca, México. Cienc. Espaç. 2015, 8, 294–309. [Google Scholar] [CrossRef]
- Mora-Páez, H.; Díaz-Mila, F.; Cardona, L. Mapping land subsidence in Bogotá, Colombia, using the interferometric synthetic aperture radar (InSAR) technique with TerraSAR-X images. In The Geology of Colombia; Qua-ternary, Volume 4 Quaternary; Gómez, J., Pinilla–Pachon, A.O., Eds.; Servicio Geológico Colombiano: Bogotá, Colombia, 2020; pp. 515–548. [Google Scholar] [CrossRef]
- Estudio Semidetallado de Suelos de Fusagasugá. Bogota. 2010. Available online: https://www.academia.edu/28243073/ESTUDIO_SEMIDETALLADO_DE_SUELOS_DE_FUSAGASUGA_29_06_10_pdf (accessed on 19 March 2023).
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Smolianinova, E.; Schmidt Institute of Physics of the Earth RAS; Kiseleva, E.; Mikhailov, V. Sentinel-1 InSAR for investigation of active deformation areas: Case study of the coastal region of the Big Sochi. Curr. Probl. Remote Sens. Earth Space 2019, 16, 147–155. [Google Scholar] [CrossRef]
- Haris, N.A. Prediksi Penurunan Muka Tanah Menggunakan Teknik Differential Interferometic Synthetic Aperture Radar (Dinsar) Di Kota Makassar Indonesia. J. Environ. Sci. 2018, 1. [Google Scholar] [CrossRef]
- Tzouvaras, M.; Danezis, C.; Hadjimitsis, D.G. Differential SAR Interferometry Using Sentinel-1 Imagery-Limitations in Monitoring Fast Moving Landslides: The Case Study of Cyprus. Geosciences 2020, 10, 236. [Google Scholar] [CrossRef]
SBAS Technique | PS Technique | |||||||
---|---|---|---|---|---|---|---|---|
Zone | LOS (mm) | Ang. Incident | u-d (mm) | e-w (mm) | LOS (mm) | Ang. Incident | u-d (mm) | e-w (mm) |
(a) | −60.4 | 38.4717 | −20.6 | −21.2 | −6.4 | 38.4788 | −9 | −9.1 |
(b) | −56.8 | 38.4863 | −80.4 | −80.1 | −21.9 | 38.484 | −30.9 | −30.9 |
(c) | −42.2 | 38.8217 | −97.3 | −46.8 | NA | NA | NA | NA |
(d) | −102.9 | 38.7789 | −218.2 | −116.6 | −5.2 | 38.7844 | −11.1 | −5.8 |
(e) | −77.4 | 38.6752 | −138.1 | −93.44 | −4.6 | 38.678 | −8.2 | −5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila, E.F.; Benavides, B.R.; Amarillo, G.E. Identification of Areas with Instability and Surface Deformation: Using Advanced Radar Interferometry in the Municipality of Fusagasugá, Colombia. Environ. Sci. Proc. 2023, 28, 19. https://doi.org/10.3390/environsciproc2023028019
Ávila EF, Benavides BR, Amarillo GE. Identification of Areas with Instability and Surface Deformation: Using Advanced Radar Interferometry in the Municipality of Fusagasugá, Colombia. Environmental Sciences Proceedings. 2023; 28(1):19. https://doi.org/10.3390/environsciproc2023028019
Chicago/Turabian StyleÁvila, Edier Fernando, Bibiana Royero Benavides, and Gelberth Efren Amarillo. 2023. "Identification of Areas with Instability and Surface Deformation: Using Advanced Radar Interferometry in the Municipality of Fusagasugá, Colombia" Environmental Sciences Proceedings 28, no. 1: 19. https://doi.org/10.3390/environsciproc2023028019
APA StyleÁvila, E. F., Benavides, B. R., & Amarillo, G. E. (2023). Identification of Areas with Instability and Surface Deformation: Using Advanced Radar Interferometry in the Municipality of Fusagasugá, Colombia. Environmental Sciences Proceedings, 28(1), 19. https://doi.org/10.3390/environsciproc2023028019