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Abstract: The most efficient tool for practical uses, like weed monitoring in smart farming, is presently
small object localization from drone images. While most object detection models indicate competency
in localization when trained on large datasets, applying a few-shot learning technique can enhance
scene comprehension, even when provided with limited training data. This investigation introduces
a few-shot model for localizing weed grasses in multispectral drone images. The model encompasses
a reflectance calibration factor, enabling it to perform well on tasks that it has yet to be specifically
trained. An inductive transfer system enhances the model’s ability to generalize and accurately
localize weeds. The research results demonstrate the potential of the suggested approach to detect
weed grasses in drone-based multispectral images and calibration reflectance factor with a mIoU
score of 71.45% and an accuracy of 84.3%, despite several difficulties in practical implementation.

Keywords: few-shot learning; weed grass monitoring; drone imagery; deep learning; limited
training data

1. Introduction

Increased world population growth will demand more high-quality food production,
which can only be achieved by applying a sustainable method for increasing crop yields.
The FAO pointed out that weed grasses increase environmental and economic costs of
pesticide use by spreading them across farm boundaries, and their competition with
agricultural crops reduces quantity and quality output [1]. Among pests, weed grasses are
considered a crucial biotic constraint to food production [1,2]. In traditional pest control
methods in agriculture, most farm fields are spatially variable in grass weed infestation
to a certain degree, but general weed management methods for herbicide application
are based on the assumption that grass weeds are distributed uniformly in agricultural
fields [3]. However, a smart weed localization system for optimized herbicide dose in the
agricultural filed is a crucial step for smart farming and is still an open problem in pest
control methods [4].

A drone-based smart weed localization system is an effective method for real-time
and precise grass weed control and optimized herbicide dosage selection [5]. Due to the
similarity between weed grasses and crops, visual grass weed localization in drone-based
multispectral images is an important task in precision farming [6]. In contrast, designing
diverse approaches for various target types at different scales is ineffective due to the
growth of spectral and spatial similarities. For practical applications, including weed
monitoring in smart farming, small object localization from drone images has emerged as a
distinctive technique [7]. A few-shot learning method could enhance scene comprehension
with minimal or no training data. Yet, numerous object detection models comprehend
localization with much training data. The diversity of geospatial data from agricultural
regions might make it challenging to identify the most effective technique that meets their
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learning preferences for dataset generation and processing. Real-world applications of deep
learning with few training images are often challenging; however, the resulting high-value
output is valued commercially and technologically. Farmers and scholars can make a
significant livelihood using a drone-based smartweed localization system with limited
training data.

2. Method

This research utilizes reflectance calibration factor and weed grass localization employ-
ing drone-based multispectral images to pinpoint the weed on large-scale images. While
several weed detector models claim to comprehend single-time tracking with extensive
training data, weed grass localization utilizing few-shot learning for drone-based multi-
spectral images could enhance multispectral scene knowledge with short training data.
Few-shot learning, a transfer model whose major objective is to enhance the generalization
capacity for numerous tasks, can perform unseen tasks following training on a small set of
annotated datasets and considers various tasks to develop a predictive model. Although
the trained model’s localization of weed grasses could be believed to be accurate, this issue
is not the case for making decisions. For instance, timely weed grass localization in agricul-
tural fields is essential for producing high-quality crops. The presence of weed grasses in
agricultural fields significantly decreases available areas for growing crops. Despite recent
advancements in deep learning and drone imaging, weed grass localization continues to
be an issue for smart farming. The suggested approach uses three sets, each containing
K multispectral images, consisting of a training set train =

{
lj, mj

}K
j=1, an input of mul-

tispectral data, a support set support =
{

lj, mj
}Ksupport

j=1 , and a test set test =
{

lj
}ktest

j=1 [8].
A limited training set of 80 image patches was utilized to train the proposed network (a
patch size would be 480 × 360 pixels). Our network overcomes the limitations of con-
volution blocks and binary mask creation for the localization of weed grasses, since it is
distinct from comparable models in the meta-feature extraction relying on a convolution
neural network. The model being presented consists of a set of encoders and decoders [9].
The encoder consists of five attention modules [10], while the decoder comprises a single
transpose convolution module and interpolation technique, which enables the learning
of spatial–spectral representations. We implement five attention layers on the multi-scale
outputs of the network to aggregate multistep representations, improving the boundaries
of weed grasses. The proposed layer (aout) for meta-feature extraction of the input image is
defined as follows (Figure 1):

aout =
(
relu

(
aj[pooling(I)]

)
⊗

(
lj − mj

)
(1)

where relu is the rectified linear activation function, aj is an attention function with three
convolutional layers, lj is the observed data, and mj is the predicted map.
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The empirical line model [11] is a frequently used method for converting digital
numbers into surface reflectance based on before/after calibration drone-based images.
The technique implies a linear correlation between the digital numbers of each pixel in
an image and the surface reflectance. On average, one or more reflectance calibration
panels with established reflectance values are employed to estimate this correlation [12].
According to [13,14], the reflectance calibration factor for band j is as follows:

f j =
ρj

average
(

Lj
) (2)

where ρj is the calibrated reflectance value for the jth spectral channel and Lj is the radiance
value for the calibrated reflectance panel.

3. Results and Discussion

The indicated technique’s performance was determined by employing a single ef-
fective measure for pixel-based object localization. The researchers presented the ratio
measurement between accurately categorized pixels as weed grasses and the total count
of ground reference pixels, often referred to as the intersection over union (IoU) [15].
We apply the WeedMap [13] dataset for the suggested network’s training and evalua-
tion. The RedEdge-M sensor-based drone-based multispectral images having a size of
480 × 360 pixels that are assigned for weed detection contain considerable crop and weed
changes from a variety of settings that are located in Rheinbach, Germany. These drone-
based images were captured on 18 September 2017. At the time of data collection, they
were at an estimated one-month stage of development, with crops and weeds measuring
15 to 20 cm and 5 to 10 cm, correspondingly.

Figure 2 illustrates the test stage’s findings of the localization of weed grasses. For the
tested images, the suggested model acquires a mean IoU and a corresponding kappa value
for the localization of weed grasses of 69.7% and 76.4% for the 1-shot and 73.2% and 80.7%
for 10-shot, respectively.
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4. Conclusions

In this manuscript, a few-shot approach is designed for weed grass localization from a
small training dataset in multispectral images. The outputs highlight the features of the
proposed approach to weed grass localization from drone-based multispectral images and
reflectance calibration factor with a mIoU score of 71.45 and correctness of 84.3, which
include various challenges in real-world application. The goal of this paper is to inves-
tigate the features of one-shot learning and reflectance calibration factor estimation for
precision farming.
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