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Abstract: Soil moisture (SM) is an important variable related to the health of terrestrial ecosystems,
agriculture, the continental water cycle, etc. It also provides an opportunity for drought monitoring,
flood forecasting, weather forecasting, and the calibration of hydrological models. This study aims to
estimate the surface soil moisture at a high spatial resolution (10 m) by combining radar and optical
remote sensing data and improving the spatial resolution and accuracy. Synthetic aperture radar
(SAR) operates with the competence to acquire data in any weather condition. The SAR images
were acquired by C-band SAR sensors in the VV polarization boarded on Sentinel-1 satellites and
the optical images were obtained from a Sentinel-2 multispectral instrument. The main algorithm
involves the retrieval of soil moisture using radar data through a change detection (CD) method
that is somehow combined with the WCM (parameters include vegetation descriptors and model
coefficients) to estimate the SM and reduce the effect of vegetation cover. The method is applied to
13 months of time-series satellite data, from 7 November 2019 to 20 October 2020, over Salamanca
(western Spain) and is validated using field data acquired at a study site with the use of a TDR sensor.
The results showed good accuracy between the retrieved and ground measurement soil moisture data
(Root Mean Square Error (RMSE) of 0.053 m3/m3) and the obtained accuracy is promising compared
to recent similar works.

Keywords: soil moisture; change detection; time series; Sentinel-1; Sentinel-2; SAR; WCM

1. Introduction

With the increase in population and excessive use of available water resources, many
different parts of the world have experienced the phenomenon of water shortage and
drought, which leads to dangers and adverse consequences such as the disruption of
natural and human ecosystems. Due to the criticality of this issue and the discussion
of water resource management, it is necessary to study soil moisture in different parts.
Remote sensing technology is an effective way to understand the behavior of the world and
evaluate changes on Earth, and of course, it provides a very powerful tool for describing the
monitoring of soil moisture on a large scale near the Earth’s surface. Soil moisture is one of
the basic components of the water cycle that affects the processes of infiltration, runoff, and
evaporation. In addition, it modulates the energy exchange as well as the carbon exchange
at the surface, which is influenced by a wide range of spatial factors: climate, meteorology,
and hydrology [1].

With advances in remote sensing technologies, many algorithms for scheduling surface
soil moisture depending on the use of light, especially reflection and thermal diffusion, and
remote sensing radar, especially synthetic aperture radar (SAR), have been introduced in
previous studies. In recent years, SAR satellite data have been used to estimate soil texture,
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surface roughness, and soil moisture. In addition to the fact that the recoveries are only
sensitive to high soil, the information provided by them can be used to assess the root-soil
moisture of the area, which is an important variable for climate prediction, drought analysis,
and carbon cycle modeling [2,3]. SAR data also have limitations on surface soil moisture
recovery because accurate information on surface soil moisture depends on the target
parameters, such as surface roughness, vegetation, dielectric constant, and topography, and
the radar characteristics, such as frequency, polarization, and incidence angle (θ). Various
methods have been proposed in recent years. For microwave remote sensing, models
depending on the type of data (active or inactive microwave) for bare and vegetated soil
surfaces are presented.

The backscattering coefficient is a function of the physical and electrical properties of
the soil surface and the characteristics of the radar (wavelength, polarization, and incidence
angle). In addition, in the case of the vegetation soil surface, the backscattering coefficient
depends on the amount of radiation reflected from the vegetation as well as the soil layers.
In the case of vegetation soils, vegetation attenuation increases with vegetation water
content. Therefore, the contribution of vegetation to the rear scattering coefficient, which is
measured by an active sensor in a vegetative pixel, should be considered [4]. This model
is naturally quasi-experimental because the model parameters are site-dependent and
require calibration [5]. The water cloud model represents the canopy as a cloud of water
droplets, and higher-order scattering contributions are neglected. Bindlish and Barros [5]
incorporated the water cloud model to retrieve the soil moisture in the vegetated area.
Xu et al. [6] utilized the water cloud model to remove the vegetation effect from the
observed backscattering coefficient.

In this study, the soil moisture was estimated by two WCMs and the changes were
performed using the active radar time-series data of the Sentinel-1 satellite, the Sentinel-2
optical data, and also the soil moisture data in nine different stations in the central part
of Spain (Salamanca Province). The optical images used in this research have been used
to eliminate the effect of vegetation on radar signals and the main processing has been
performed on the radar data. The ground station data were used to validate the model
outputs. The reason for choosing the WCM in this study is to eliminate the effect of land
cover vegetation and also for the model to investigate changes in reducing the effect of
surface roughness on radar data.

2. Materials and Method
2.1. Case Study

According to the objectives of this study, the main part of which is estimating the soil
moisture in areas with agricultural use as well as simultaneous access to three types of data
(radar, optical data, and ground measurement) and the joint coverage of these three types
of data in a single image of remote sensing data, several areas were examined.

The priorities for selecting these areas are as follows:

1. The soil moisture of the stations should be measured at a depth of 5 cm;
2. A large part of the target area includes agricultural land;
3. The stations are located in different vegetation;
4. All the stations are in the same image of the radar and optical data.

According to surveys, a region in the province of Salamanca in the west of Spain was
selected (Figure 1). Salamanca is a province in western Spain, in the western part of the
Autonomous Community of Castile-Leon. The provincial capital is the city of Salamanca.
The area of the province is 12,058 square kilometers. Agriculture and animal husbandry
are prominent in this region. The reason for choosing this area in this study is the existence
of the agricultural areas as well as the terrestrial data network with continuous data. The
study area is located between the three cities of Salamanca, Valladolid, and Zamora, most
of which include agricultural land. The dimensions of this area are 36 × 24 km.
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2.2. Data Collection

According to the selected method, by reviewing previous studies on soil moisture
estimation, the required data include radar and optical data and ground measurements.
Radar data were used in the change detection model to estimate the soil moisture using the
backscatter of radar signals, and optical data were used to calculate the vegetation indices
to remove the effect of ground cover vegetation from the radar signals. The soil moisture
data measured at fixed ground stations were used to calibrate the model as well as validate
the model results.

2.2.1. Radar Data

Sentinel-1A (S-1A) and Sentinel-1B (S-1B) were launched in April 2014 and April 2016,
respectively, as part of the European Space Agency’s Copernicus program, which surveys
and monitors the Earth’s surface. Operations are designed with environmental information
in mind. Artificial aperture radars (SARs) are indifferent to weather conditions and allow
for data to be retrieved at any time of the day or night. SAR sensors on each of these
satellites, located 180 degrees apart on a simultaneous solar orbital plane, provide images
at both the VV and VH polarizations in the C band.

In the present study, signals recorded at the VV polarization were used to calculate the
soil moisture estimates. According to the studies by Karjalainen [7] and Chauhan [8], VH
data have only limited potential for estimating soil moisture, especially as a result of their
high sensitivity to volume dispersion, which depends a lot on the geometric alignment and
vegetation characteristics.

The Sentinel-1 data were collected from 7 November 2019 to 20 October 2020. Several
processing steps were performed on each image to extract the backscattering coefficient.
These products are available from the Copernicus website (https://scihub.copernicus.eu).
These processes are developed in the SNAP 9.0.0 software environment developed by the
European Space Agency (ESA) for the radiometric and geometric calibration of Sentinel
satellite images.

The pre-processing performed on the Sentinel-1 images includes the following:

1. Radiometric calibration;
2. Thermal noise removal;
3. Terrain correction using SRTM DEM at 30 m.

2.2.2. Optical Data

Sentinel-2 is an Earth observation mission developed by the European Space Agency
(ESA) and includes two multispectral imaging satellites, Sentinel-2A and Sentinel-2B.
Sentinel-2A was launched in June 2015, followed by Sentinel-2B in March 2017. These

https://scihub.copernicus.eu
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satellites provide complete coverage of the Earth’s surface with repeated 5-day visits. The
images are produced in 13 spectral bands that cover visible and mid-infrared wavelengths
in three different spatial resolutions (10, 20, and 60 m). The optical images used for
the present study were obtained from the USGS website at the French Territorial Data
Center (https://earthexplorer.usgs.gov), which makes the data available in the so-called
“Level-2A” format. These data were collected between 8 November 2019 and 18 October
2020. These data are co-registered in the ENVI 4.8 software environment with a quadratic
polynomial compared to the first image.

NDVI =
NIR − Red
NIR + Red

(1)

EVI = G.
NIR − Red

(NIR + C1 ∗ Red − C2 ∗ Blue) + L
(2)

The Sentinel-2 optical data were used in the calculation of the NDVI and EVI to
calibrate the WCM to eliminate the effect of vegetation.

2.2.3. Ground Measurement

The International Soil Moisture Network is an international partnership to establish
and maintain a global soil moisture database. This database is an essential tool for validating
and improving global satellite products and land, climate, and hydrological models (https:
//ismn.geo.tuwien.ac.at/).

The in situ soil moisture data in this study were used as a reference for the validation of
the soil moisture products recovered from the satellite sources. The ground measurements
in Spain were obtained free of charge through the International Soil Moisture Network
(ISMN). The data from the REMEDHUS network in Spain were used to validate the
humidity obtained through the remote sensing data.

Because ground measurements were used to evaluate the quality of the products
obtained from the Sentinel-1 images, the selection of the sites was performed by considering
being in the common area between the Sentinel-1 and Sentinel-2 images in the study area.
Also, the measurements were made at the stations at a depth of 5 cm above the soil surface.
Therefore, the soil moisture data were collected from nine stations.

2.3. Method

In summary, the method used and the pre-processing and processing performed in
this study to estimate soil moisture can be outlined in the following steps:

1. Perform the pre-processing of the radar and optical images and calculate the NDVI
and EVI.

2. Calculate coefficients A and B related to the calibration of the WCM by the least
squares method using the backscatter of the Sentinel-1 radar signals, NDVI and
EVI obtained from the Sentinel-2 data, and soil moisture data measured at the
ground stations.

3. Calculate the backscatter of the radar signals from the soil surface by the WCM
method, using the coefficients A and B obtained in step (2), backscatter of radar signal
levels of Sentinel-1, and the NDVI and EVI obtained from the Sentinel-2 optical data.

4. Retrieve soil moisture by change detection and using the backscatter of the soil
surface radar data calculated in step (3) and the soil moisture data measured at the
ground stations.

5. Validate the change detection model results using the soil moisture data measured at
the ground stations.

This method involves the retrieval of soil moisture using radar data through a change
detection method that is somehow combined with the WCM. During the process of per-
forming soil moisture estimation processes, 8 ground stations were used and the Granja
G station was considered as a checkpoint. According to this method, which is compatible

https://earthexplorer.usgs.gov
https://ismn.geo.tuwien.ac.at/
https://ismn.geo.tuwien.ac.at/
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with the data characteristics of Sentinel-1, the backscatter of radar signals from the soil
surface without vegetation and under the influence of vegetation is as follows:

σ0
cover = σ0

veg + τ2σ0
soil (3)

σ0
veg = AV1cos(θ)

(
1 − τ2

)
(4)

τ2 = exp(−2BV2/cos(θ)) (5)

σ0
cover is the surface backscatter; σ0

veg is the backscatter from the plant surface; σ0
soil is

the backscatter from the soil surface; τ2 is the effect of vegetation on the backscattering
from the soil surface (attenuation coefficient) (due to re-crossing on the return route, it has
a power of 2) [9]; θ is the incidence angle; V1 and V2 are the vegetation descriptors that
show the scattering and attenuation characteristics of the vegetation; and A and B are the
model coefficients that depend on the vegetation descriptor and sensor configuration.

Vegetation indices such as the NDVI, EVI, NDWI, LAI, or other indices are used for
parameters V1 and V2. In this study, the NDVI and EVI were used for parameters V1
and V2.

By performing pre-processing of the Sentinel-1 radar data, σ0
cover is obtained. Ac-

cording to the pixels associated with the ground stations, NDVI and EVI, and ground
surface backscatter σ0

cover, with two scenarios and using least squares division, the A and
B coefficients related to the WCM calibration were obtained. These two scenarios and
calibration coefficients obtained can be seen in Table 1.

Table 1. Calibration coefficients.

Scenario V1 V2 A B

First NDVI EVI −40.16 0.63
Second EVI NDVI −67.31 0.38

All the processing steps related to soil moisture retrieval were performed programmat-
ically in the Matlab 2016a software environment. All the processes related to the removal
of the vegetation effect and the estimation of soil moisture were performed according to
the two scenarios mentioned.

Considering the two previous scenarios and the obtained coefficients, and the backscat-
ter of the ground surface using Equations (3)–(5), the backscatter of the soil surface σ0

cover is
obtained. Due to the time difference between two consecutive images, the roughness effect
is greatly reduced, which is one of the reasons for using the method to detect changes in
this issue. According to the output obtained from the WCM method, the minimum value
of σ0 is related to the drier state specified for each pixel:

∆σNDVI
(i,j) = σ0

(i,j)(d)− σ0
dry,(i,j) (6)

∆σNDVI
(i,j) : the difference between backscatter on the date d and driest day. σ0

(i,j)(d): the
backscatter in pixel (i, j) on the date d obtained using Sentinel-1 and Sentinel-2 images.
σ0

dry,(i,j): the lowest backscatter value is associated with the driest day (according to the
Sentinel-1 time-series data).

According to several experimental studies that show a linear relationship between
changes in radar signal and changes in soil moisture [10,11],

∆σNDVI = α(NDVI)∆Mv (7)

∆Mv: The soil moisture changes between day d and the driest day. The α parameter
is dependent on the NDVI.
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As the NDVI increases, the signal sensitivity to soil moisture is expected to decrease [12,13].
This means that the difference between the backscatter on day d and the backscattering on
the driest day is reduced due to the NDVI. The strongest variable in humidity is related to
the difference between the wettest and driest states:

∆Mvmax = Mvmax − Mvmin (8)

According to the defined conditions of ∆Mvmax, the most changes in the backscatter
are as follows:

∆σmax = α(NDVI)∆Mvmax = f(NDVI) (9)

To calculate the equation f, taking into account the NDVI as well as the driest backscat-
tering difference for each pixel, and subtracting the top 1% of the data with the highest
backscattering difference, one line is fitted to the points that have the most ∆σNDVI

max , which
can be seen in Figure 2 [14,15].
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The equation of this line is calculated by considering all the points in the time series of
the Sentinel-2 radar data. Considering the largest backscattering difference in the different
NDVIs, the equation f changes as follows [16]:

∆σmax = f(NDVI) = aNDVI + ∆σbare
max (10)

When the NDVI is zero, it corresponds to the largest open-point difference relative to
the driest state on the surface of vegetation-free soil; in fact, ∆σmax = ∆σbare

max.
Finally, the soil moisture in each pixel is estimated using the following formula [17]:

Mv(i, j, d) =
∆σ(i, j)

f(NDVI)
(Mvmax − Mvmin) + Mvmin(d) (11)

3. Experimental Results

In this part of this study, the output results of the soil moisture estimate model are
presented according to the two scenarios mentioned in the previous chapter. Also, the
evaluation of the results has been performed according to the ground stations for measuring
the soil moisture, and the two scenarios for estimating the soil moisture have been compared
with each other and the statistical indicators have been obtained.

For processing related to soil moisture estimation, two scenarios were considered in
the vegetation removal section using the WCM, and further, the process of soil moisture
estimation processing based on the change detection model has been performed for both
scenarios. Soil moisture is estimated based on changes in pixel-by-pixel backscatter every
day compared to the driest day of the period. According to Table 2, the image taken on 14
September 2020 is the driest day during the one year under review. Based on this, using
30 radar images, you have 29 outlets of soil moisture. The following is an example of the
output of the model related to two scenarios and similar dates.
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Table 2. Statistical index values calculated at each station.

Ground
Station

RMSE (m3/m3) MBE Average Station
Soil Moisture

(m3/m3)
1st

Scenario 2nd Scenario 1st Scenario 2nd Scenario

Las Arenas 0.08340 0.08123 −0.01435 −0.01474 0.181
Paredinas 0.03122 0.03800 0.01744 0.02225 0.031
Zamarron 0.05093 0.04817 0.01444 0.01438 0.094

Las Bodega 0.14884 0.14416 −0.14259 −0.13789 0.162
Carretoro 0.03447 0.03817 0.01212 0.01522 0.054
Granja G 0.03365 0.03176 0.01743 0.01629 0.032

Las Victorias 0.04290 0.03812 0.01563 0.01512 0.054
Las Brozas 0.03449 0.03291 0.01710 0.01498 0.035

El Coto 0.06062 0.05807 0.0160 −0.04470 0.111

The outputs obtained from the model used to have an image size of 3600 × 2400 pixels,
and each pixel has a spatial resolution of 10 m. These results have been validated using
soil moisture measured by on-site soil moisture stations. The results obtained in the two
scenarios show the correlation of the results with the values of the soil moisture measured
by the ground stations. Table 2 lists the calculated values of the accuracy indicators.

One station has a very high RMSE compared to the other stations and the difference
between the estimated and measured values of the soil moisture. According to the charac-
teristics of this station, the vegetation on its surface is forest trees, which has a great effect
on the radar signal.

The samples of the results from retrieving soil moisture in two scenarios (Table 3) in
the study area are visible in the images above. In Figures 3 and 4, the upper right and
lower left sections exhibit denser vegetation compared to the other areas, as evidenced
by the estimation of the soil moisture. Figure 5 depicts the driest day during the period
under review.

Table 3. Examining statistical indicators for two scenarios (*: by removing Las Bodega station).

RMSE (m3/m3) R2 MBE MAE

1st scenario 0.06807 0.2524 −0.00680 0.05296
2nd scenario 0.06626 0.2675 −0.00654 0.05191
1st scenario * 0.04943 0.5391 0.01018 0.04176
2nd scenario * 0.04840 0.5453 0.00988 0.04416
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soil moisture values m3/m3 × 100).

The Granja G station, which is considered a check and according to the RMSE values
calculated in this station, is close to the average RMSE of the other stations. Linear regres-
sion was performed between the two scenarios concerning the ground station data, and the
determination coefficient (R2), RMSE, and mean absolute error (MAE) were calculated.

The soil moisture values of each station during the period under review and the RMSE
calculated show the close performance of the two scenarios. As discussed in the previous
section, at Las Bodega Station, due to the type of ground cover, there was a large difference
between the values estimated by the model and the values of the soil moisture measured
by the station. This difference increases the number of the RMSE in the evaluation of the
model used. By deleting this station in calculating the statistical indicators and performing
regression, significant changes are made in the model evaluation. The regression results, in
this case, are as follows (Figure 6).

Table 3 shows the statistical indices and determination coefficient for the two scenarios
in the two mentioned cases, which shows an increase in the output accuracy of the model
by removing the Las Bodega station. In addition to increasing the RMSE, the absolute mean
error also decreases.
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4. Discussion

Based on previous studies, there are various methods for estimating soil moisture
under vegetation, which can be obtained by combining different remote sensing data,
such as radiometric, radar, thermal, and optical data. Different algorithms have been
proposed and implemented. In this study, an attempt was made to improve the accuracy of
estimating soil moisture in agricultural areas and also to increase the spatial accuracy of
the final output of soil moisture. For this purpose, the radar data of the Sentinel-1 sensor
as well as the optical data of the Sentinel-2 sensor with a spatial accuracy of 10 m have
been used.

According to the results and methods used in this study, to estimate soil moisture
without the use of ground data, it is necessary to calibrate the models used to eliminate
the effect of vegetation in the study area. Also, during the processing process related to
the change detection section, which uses soil moisture values, the soil moisture products
of radiometer sensors can be used to replace the soil moisture used during the calculation
process. Because the spatial accuracy of these sensors is very low, it reduces the accuracy of
the soil moisture output obtained by the model.

The number of ground stations in the calibration process and calculations related to
the soil moisture estimation model can be checked by performing calculations using the
number of different ground stations in an area to check the number of optimal stations for
estimating soil moisture. Other models such as the IWCM, which is an extended model
of the WCM, or AIEM can also be used to eliminate the effect of vegetation and surface
roughness to assess the impact on the accuracy of a soil moisture assessment and the use of
different vegetation indicators in the calibration of these models.

5. Conclusions

Due to the selected method used in this study as well as studies that have been con-
ducted in the past, models that use radar data have better accuracy than other models. Also,
for vegetated areas, hybrid models perform better in accurately estimating soil moisture.

In this study, an effort has been made to improve the accuracy of soil moisture esti-
mation in agricultural areas and also to increase the spatial accuracy of the final output
of soil moisture. For this task, the radar data from the Sentinel-1 sensor and the optical
data from the Sentinel-2 sensor, with a spatial accuracy of 10 m, were utilized. Based on
past studies, radar signal backscatter is affected by changes in soil moisture, as well as



Environ. Sci. Proc. 2024, 29, 75 10 of 11

by vegetation and soil roughness. Using the WCM, attempts have been made to mitigate
the impact of vegetation on radar signals by utilizing suitable data. Because the change
detection method is employed to estimate soil moisture, the alterations in soil roughness
during the investigated time period are negligible and can be disregarded. The calibration
of the WCM greatly impacts the accuracy of soil moisture estimation. This is achieved
using the NDVI and EVI indicators obtained from the optical data of the Sentinel-2 sensor
in conjunction with the soil moisture values measured by fixed stations.

In a study by Gao et al. (2017), the estimation of soil moisture in the agricultural region
of northeastern Spain in the range of 20 × 20 km using two ground stations measuring soil
moisture, the value of the determination coefficient (R2) is equal to 0.099 and the value of
the RMSE is equal to 0.087 (m3/m3) with a spatial resolution of 100 m. Also, in a study
conducted by [18], which used Sentinel-1 radar data and MODIS optical data on an area
similar to the study area in this dissertation, the RMSE value was obtained. It is equal to
0.055 (m3/m3). In this study, in addition to increasing the accuracy of the soil moisture
estimation (RMSE) from 0.055 to 0.049 (m3/m3), the spatial accuracy also increased from
100 m to 10 m.

Author Contributions: Conceptualization, M.A. and R.S.-H.; Methodology M.A. and R.S.-H.; Project
administration, M.A. and R.S.-H.; Resources, M.A. and R.S.-H.; Validation, M.A. and R.S.-H.; Supervi-
sion, R.S.-H. and O.G.; Writing—original draft, M.A. and R.S.-H.; Writing-review and editing, M.A.,
R.S.-H. and O.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data can be accessed for free on the websites (https://scihub.
copernicus.eu) and (https://ismn.geo.tuwien.ac.at/).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yee, M.S.; Walker, J.P.; Monerris, A.; Rüdiger, C.; Jackson, T.J. On the identification of representative in situ soil moisture

monitoring stations for the validation of SMAP soil moisture products in Australia. J. Hydrol. 2016, 537, 367–381. [CrossRef]
2. Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. Predicting root zone soil moisture with soil properties and satellite near-surface

moisture data across the conterminous United States. J. Hydrol. 2017, 546, 393–404. [CrossRef]
3. Dumedah, G.; Walker, J.P.; Merlin, O. Root-zone soil moisture estimation from assimilation of downscaled Soil Moisture and

Ocean Salinity data. Adv. Water Resour. 2015, 84, 14–22. [CrossRef]
4. Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [CrossRef]
5. Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote. Sens.

Environ. 2001, 76, 130–137. [CrossRef]
6. Xu, L.; Li, J.; Niu, R. Soil moisture estimation over Jianghan plain using ENVISAT ASAR data. In Proceedings of the Internet

Conference Multimedia Technology, Ningbo, China, 29–31 October 2010; pp. 1–4.
7. Karjalainen, M.; Kaartinen, H.; Hyyppä, J.; Laurila, H.; Kuittinen, R. The Use of ENVISAT Alternating Ploarization SAR Images

in Agricultureal Monitoring in Compatison with RADARSAT-1 SAR Images. In Proceedings of the ISPRS Congress, Istanbul,
Turkey, 12–23 July 2004.

8. Chauhan, S.; Srivastava, H.S. Comparative evaluation of the sensitivity of multi-polarized SAR and optical data for various land
cover classed. Int. J. Remote Sens. 2016, 4, 1–14.

9. Gupta, V.K.; Sharma, N.; Jangid, R.A. Emission and scattering behaviour of bare and vegetative soil surfaces of different moist
states by microwave remote sensing. Indian J. Radio Space Phys. 2013, 42, 42–51.

10. Srivastava, H.S.; Patel, P.; Sharma, Y.; Navalgund, R.R. Large-area soil moisture estimation using multi-incidence-angle
RADARSAT-1 SAR data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2528–2535. [CrossRef]

11. Baghdadi, N.; Cerdan, O.; Zribi, M.; Auzet, V.; Darboux, F.; El Hajj, M.; Kheir, R.B. Operational performance of current synthetic
aperture radar sensors in mapping soil surface characteristics in agricultural environments: Application to hydrological and
erosion modeling. Hydrol. Process. 2007, 22, 9–20. [CrossRef]

12. Zribi, M.; Dechambre, M. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sens.
Environ. 2003, 84, 42–52. [CrossRef]

https://scihub.copernicus.eu
https://scihub.copernicus.eu
https://ismn.geo.tuwien.ac.at/
https://doi.org/10.1016/j.jhydrol.2016.03.060
https://doi.org/10.1016/j.jhydrol.2017.01.020
https://doi.org/10.1016/j.advwatres.2015.07.021
https://doi.org/10.1029/rs013i002p00357
https://doi.org/10.1016/s0034-4257(00)00200-5
https://doi.org/10.1109/TGRS.2009.2018448
https://doi.org/10.1002/hyp.6609
https://doi.org/10.1016/S0034-4257(02)00069-X


Environ. Sci. Proc. 2024, 29, 75 11 of 11

13. Baghdadi, N.; Aubert, M.; Cerdan, O.; Franchistéguy, L.; Viel, C.; Martin, E.; Zribi, M.; Desprats, J.F. Operational Mapping of Soil
Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France). Sensors 2007, 7, 2458–2483. [CrossRef]
[PubMed]

14. Santi, E.; Paloscia, S.; Pettinato, S.; Notarnicola, C.; Pasolli, E.; Pistocchi, A. Comparison between SAR Soil Moisture Estimates
and Hydrological Model Simulations over the Scrivia Test Site. Remote Sens. 2013, 5, 4961–4976. [CrossRef]

15. Liu, C. Analysis of Sentinel-1 SAR Data for Mapping Standing Water in the Twente Region. Master’s Thesis, University of
Twente, Twente, The Netherlands, February 2016. Available online: http://www.itc.nl/library/papers_2016/msc/wrem/cliu.pdf
(accessed on 22 May 2017).

16. Zribi, M.; Andre, C.; Decharme, B. A method for soil moisture estimation in Western Africa based on the ERS scatterometer. IEEE
Trans. Geosci. Remote Sens. 2008, 46, 438–448. [CrossRef]

17. Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at
100 m Resolution. Sensors 2017, 17, 1966. [CrossRef] [PubMed]

18. Han, Y.; Bai, X.; Shao, W.; Wang, J. Retrieval of Soil Moisture by Integrating Sentinel-1A and MODIS Data over Agricultural Fields.
Water 2020, 12, 1726. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s7102458
https://www.ncbi.nlm.nih.gov/pubmed/28903238
https://doi.org/10.3390/rs5104961
http://www.itc.nl/library/papers_2016/msc/wrem/cliu.pdf
https://doi.org/10.1109/TGRS.2007.904582
https://doi.org/10.3390/s17091966
https://www.ncbi.nlm.nih.gov/pubmed/28846601
https://doi.org/10.3390/w12061726

	Introduction 
	Materials and Method 
	Case Study 
	Data Collection 
	Radar Data 
	Optical Data 
	Ground Measurement 

	Method 

	Experimental Results 
	Discussion 
	Conclusions 
	References

