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Abstract: Assessment of forest above ground biomass (AGB) is critical for managing forest and un-
derstanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products 
offer the chance to map forest biomass and carbon stock. The present study focuses on comparing 
the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical 
data to estimate above ground biomass and carbon stock using Genetic-Random forest machine 
learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter 
coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parame-
ters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were 
used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALO-
SPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result 
showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model 
performed better than Sentinel-2 data. 

Keywords: above ground biomass; GA-RF; polarimetric decompositions; texture characteristics 
 

1. Introduction 
Forests are the wealth of the community in every country, that’s why these ecosys-

tems are becoming more and more popular today. Carbon is converted into living mat-
ter by the process of photosynthesis and is returned to the atmosphere as carbon dioxide 
by performed reaction over it. Therefore, the forest is considered as the most important 
resource of carbon [1]. For this reason, forest biomass estimate is important in assessing 
the amount of energy in trees and climate change. Biomass is any organic matter - wood, 
products, seaweed, animal waste - that can be used as an energy source. Biomass is our 
oldest resource of energy after the sun [2].The most abundant biomass used worldwide 
is derived from trees or other types of woody plants. Accurate measurement of biomass 
and other biophysical parameters in forests is essential for a better understanding of the 
global carbon cycle and land surface temperature. In addition, having information on 
biomass is important for managing forest areas, energy resources, detecting land 
changes and forestry [3]. Distribution of biomass at local, regional and global scales re-
duces ambiguity in carbon degradation, understanding the role of carbon in soil, erosion 
or land reclamation, and environmental processing [4]. Biomass measurement has par-
ticular importance in the planning and management cycle of forestry and environment; 
it is also one of the important and influential elements in the country's economic cycle. 
Therefore, it can be used to prevent excessive and premature destruction of forests. 
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Many methods for calculating biomass have been studied, which generally include 
GIS (Geospatial information system), conventional and remote sensing methods [5,6]. 
GIS-based approaches require ancillary data such as land map and forest age to establish 
an indirect relationship for biomass in an area. Estimates of biomass using conventional 
methods include high cost and time constraints [7]. Ground measurements can be used to 
determine the accuracy and precision of biomass estimation using remote sensing meth-
ods. Due to the difficulty, time, and cost of collecting and measuring biomass ground data, 
most previous research work has focused on biomass above ground level using remote 
sensing method [8].Hence, using remote sensing data is the only appropriate way for large 
areas to be cost effective [9,10]. Biomass estimation is performed using remote sensing 
based on returned radiation from the plant. Estimation of forest biomass requires further 
studies on vegetation cover using remote sensing [11]. Many research has been done to 
develop models to measure forest biophysical parameters using various remote sensing 
data such as aerial photographs, Multispectral images, Hyperspectral imaging, synthetic 
aperture radar and Lidar data [12,13]. Biomass estimation using optical remote sensing 
data is usually performed by using the correlation between biomass and spectral re-
sponses and vegetation indices derived from multispectral images [10,14]. Optical data 
due to short wavelengths have deficiencies in biomass estimation such as cloud cover and 
signal saturation [15]. Although, optical data is still a popular source of information, the 
use of radar data due to microwave ability to penetrate the foliage of plants and estimate 
the trunk biomass under the foliage covers is under development [10,16]. In this regard, 
synthetic radar remote sensing has become an attractive technology for forest research, 
especially in areas with frequent cloud cover [16]. Previous studies have demonstrated 
the ability of SAR images to estimate forest biophysical parameters, especially AGB 
[16,17]. Recent studies on biomass estimation using microwave imagery have focused on 
the relationship between radar backscatter and forest biomass [18]. Related to the relation-
ship between L-band backscatter and forest biomass, the correlation coefficient varies ac-
cording to different forest types and land area [19]. 

However, weak and insignificant correlations have been observed between C-band 
backscatter and AGB [20]. On the other hand, combining the extractive information of 
different sensors instead of using a single sensor has produced more promising results for 
estimating biophysical parameters, especially forest biomass [21]. 

Foody et al. (2003) used artificial neural networks (ANN) to estimate above ground 
biomass in three different tropical forests by Landsat TM data. The best result of biomass 
calculation had R2= 0.49 and the weakest result had R2= 0.38 [4]. 

Mutanga et al. (2012) used Worldview-2 satellite data to estimate biomass of the Wet-
land plants by Random Forest (RF) methods. In this study, performance of Normalized 
Difference Vegetation Index (NDVI) was evaluated in biomass estimation and the result 
of evaluating the random forest method included RMSE= 0.44 Km/m2 [22]. 

Ghasemi et al. (2012) Estimated northern of Iran forest biomass by using multiple 
regression and ALOSAVNIR and ALOSPALSAR images. In this study, vegetation indices, 
Wavelet coefficient and texture index in the images were calculated for biomass estima-
tion. The result of modelling was R2= 0.80 [10].  

Laurin et al. (2014) used Lidar and Hyperspectral data to estimate the AGB of an 
African tropical forest by Multiplicative Power Model (MPM) and Partial Least Square 
Regression (PLSR) model. In this study, the result of integration of Lidar and Hyperspec-
tral data was the best by PLSR that was R2 = 0.70 [23]. 

Karlson et al. (2015) developed a Random Forest model to estimate forest AGB by 
using Landsat-8 and world view-2 data. In this study, vegetation indices, tasseled cap and 
texture index were calculated to model AGB and the result of modelling was RMSE= 17.6 
ton/ha [24]. 

Pham et al. (2018) used Sentinel-2 and ALOSPALSAR data to estimate forest AGB in 
Japan by support vector regression (SVR) method. The result of biomass estimation had 
R2= %59 and RMSE= 0.187. 
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Tavasoli et al. (2019) used Sentinel-1, Sentinel-2 and ALOSPALSAR data to estimate 
forest AGB by GA-SVM in north of Iran. The result of integration of the data was the best 
with R2= %83. In this study, 65 plots of ground biomass data were used to train and vali-
date the model [25]. 

Nuthammacho et al. (2020) used Sentinel-1 and Sentinel-2 data to develop forest AGB 
model in Indonesia.  AGB correlated with the synergistic use of Sentinel-1 and Sentinel-
2 yielded the highest accuracy (i.e., R2 = 0.84) [26]. 

The objectives of this study are to investigate the usability of genetic-Random forest 
(GA-RF) model for estimating the AGB in Hyrcanian forest using a combination of ALOS 
PALSAR, Sentinel-2 and Sentinel-1 data in north of Iran and to compute performance of 
the Random forest model for estimating the AGB. 

2. Materials and Methods 
2.1. Study Area 

Our study area was the Kheyroudkenar Forest in Mazandaran province (North of 
Iran). The forests of these areas are Hyrcanian forests that are one of the most unique 
forests in the world. The average temperature of this region varies from 5 to 35 °C annu-
ally. Its height varies from 0 to 2050 meters above mean sea level. The study area has a 
longitude from 51° 35’ 33’’ to 51° 35’ 58’’ and latitude 36° 34’ 49’’ to 36° 34’ 32’’ with an 
area of 34 hectares (Figure 1). 

 
Figure 1. Location of the study area. The blue figure on the upper right, Mazandaran Province and 
the lower right Landsat image show the exact location of the area. 

2.2. Data Set 
2.2.1. Field Data 

Field data were collected from 39 the square sample plots during July 2014 in the 
Kheyroudkenar forest and each plot had an area of approximately 0.2 ha (2000 m2). In 
each sampling plots, Type of tree species and the diameter at breast height (DBH, cm) of 
all trees were recorded. The trees with DBH below 7.5 cm were not recorded in the survey. 
The sampling plots are located using a Trimble real time kinematic (RTK) GPS on the 
ground. The volume of each tree was calculated using tree-volume Tarif table and the 
total volume of trees in each sampling plot was obtained The total AGB of each sampling 
plot was calculated using the Allometric equation (Equation 1) [27,28].  AGB ൬Mgha ൰ = volume × WD  (1)

Where the volume is volume of wood (m3/ha) and WD is the average critical wood den-
sity (ton/m3) [29]. 
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2.2.2. Remote Sensing Data 
 Optical Data 

The second series of Sentinel satellites began their mission on June 23, 2015. Sentinel-
2 is a satellite designed to monitoring the Earth from the Copernicus EU program. The 
satellite is a polar orbit whose mission is to capture high resolution images to monitor 
phenomena such as water, soil, vegetation, and so on. The satellite has 13 spectral bands 
in the visible, near infrared and short wavelength infrared bands. The longest wavelength 
and the shortest band are related to SWIR band (2190 nm) and Coastal aerosol band (443 
nm), respectively. These images have a spatial resolution of 10 to 60 meters [30]. In this 
research, the image was taken on 02 July 2018. 
 SAR Data 

ALOSPALSAR is a large Japanese satellite built by JAXA (Japan Aerospace Explora-
tion Agency) for Earth observation. One of the most important features of a satellite is 
high resolution [25]. It has various applications in land cover, environment, forestry and 
agriculture research and plant ecosystems, topography and environmental hazard moni-
toring with the ability of 48 hours resolution [31]. For this study, the ALOSPALSAR image 
with high resolution HH-VV polarization was obtained on 21 June 2009. 

Sentinel-1 is a satellite operated by the European Space Agency (ESA) and consists 
of two satellites, Sentinel-1A and Sentinel-1B. It can also collect data from the ground in 
the worst weather conditions. The satellite records microwave and C-band wavelengths. 
Applications of this satellite include monitoring of frozen seas and the environment and 
care of marine environments, monitoring of land surface hazards, mapping of land, for-
ests, soil and water, and emergency support in times of crisis and natural hazards [32]. In 
this research, the image was taken on 24 August 2018. 

2.3. Methodology 
In this study, forest above ground biomass and carbon stock modelling has been per-

formed by GA-RF method. Figure 2 shows the process of AGB and carbon stock estima-
tion which consists of the following: 

(1) processing of remotely sensed data which includes preprocessing, feature extraction 
(calculation of vegetation indices, tasseled cap, texture parameters and principal com-
ponent analysis (PCA) of Optical data, and extraction of Polarimetric decompositions, 
texture characteristics and backscatter coefficients of SAR data); 

(2) selection of the optimal features, generating a biomass estimation model, and biomass 
map generation. 
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Figure 2. Flowchart of steps used for AGB and carbon stock estimation in this study. 

2.3.1. Preprocessing of Remote Sensing Data 
 Optical Data 

Radiometric correction is used to reduce or eliminate three major errors (atmospheric 
errors, device errors, and topographic errors) and tries to improve the grayscale pixel 
value [25]. Due to the azimuth and altitude of the sun, atmospheric conditions such as fog 
or atmospheric aerosol particles, the reflected electromagnetic wave of the object received 
by the sensor does not match the returned wave of the observed object [30]. 
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Geometric correction is the process of correcting the geometric distortion. Images 
must be converted to a reference coordinate system. Then the pixel values in the image 
should be compared with the reference image. Due to the change of viewing geometry of 
the satellite, the reflectance values for the same land cover feature are different [25]. 
 SAR Data  

SAR imagery in high altitudes has an error due to radar imagery geometry and high 
slope. The returned wave of the pixels under these conditions must be eliminated. Radar 
signals must be preprocessed to take account of geometric distortions such as overlap, 
foreshortening, shadow which disrupt the structure of images and differences in lighting 
conditions due to topography [25]. Noises created by reflection of features must be elimi-
nated. These noises are called speckle noises and are eliminated by the Speckle filtering. 
This noise is a major reason of disturbance in SAR image matching and reduces the radi-
ometric quality of SAR images. A typical process is applied to SAR data, including multi 
looking noise filtering, ground illumination correction, radiometric correction, and mosaic 
correction. Generally, the despeckling filter is used to move the kernel on each pixel in the 
image and performs mathematical calculations using the pixel values under this kernel 
and then replaces the central pixel with the calculated value. The image kernel moves 
along one pixel of the image simultaneously until the entire image is covered. Many filters 
have been developed to eliminate this noise while preserving edge information [33]. The 
enhanced Lee filter [34,35] was applied on the SAR images to reduce the speckle noise. As 
optical data, SAR data are refined and radiometrically calibrated to produce suitable im-
ages for comparison. This step applies to images to correct radiometric and geometric dis-
tortions. These distortions mask useful backscatter related to land cover with geophysical 
features and need to be corrected for effective land cover mapping and visualization using 
SAR data. 

2.3.1. Feature Extraction 
 Optical Feature Extraction 

(1) Vegetation Index (VI): VI is some mathematical constituent or spectral bands trans-
form that shows the spectral properties of plants which appear distinct from other 
image features. Vegetation information from remote sensing data is mainly inter-
preted by the differences and variations of green leaves of plants and spectral features 
of the canopy [36]. Vegetation index enhances plant signal while reducing solar irra-
diance and soil background effects [37].The vegetation indices used are described in Table 
1 [38–41]. 

Table 1. Vegetation Indices. 

Vegetation Index Equation 
Ratio vegetation index NIR/R 

Normalized difference Vegetation index (NDVI) (NIR-R)/(NIR+R) 
Transformed vegetation index (TVI) √NDVI + 0.5 

Ashburn vegetation index (AVI) 2.0[800:1100]-[600:700] 
 

(2) Texture: The texture is related to the spatial distribution of the intensity values in the 
image and the grayscale characteristics and expresses the spatial distribution of the 
pixel values in the image. Therefore, the texture can be described as the spatial distri-
bution of grayscale in a neighborhood. Texture plays an important role in image anal-
ysis and pattern recognition. A number of texture features are extracted from the 
GLCM. The GLCM method is a way for extracting texture properties based on second-
order statistics [42].  
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(3) Tasseled Cap: the tasseled cap is a transformation for converting the original image 
bands into a new set of bands with defined interpretations useful for vegetation map-
ping. The transformation is performed to evaluate the change in green biomass based 
on three components which are brightness, greenness, and wetness, indicating the 
correlation of the visible and infrared bands. Brightness and greenness shows changes 
in soil reflectance and variations in the power of green plants, respectively and wet-
ness indicates surface moisture [43,44]. 

(4) Principle Component Analysis (PCA): PCA can identify the main components and 
help us to analyze a set of features that have more information instead of all features. 
PCA is widely used to remove waste data in satellite data. Principal component anal-
ysis is divided into three steps; The first step is to obtain the variance-covariance ma-
trix, the second step is to calculate the eigenvectors, and the third step is to linearly 
transform the data set [45]. 

 Radar Feature Extraction 
(1) Back Scatter Coefficient: The normalized measure of returned radar signal from a dis-

tributed target is called the back scatter coefficient and is defined as the unit of the 
surface. The back scatter depends on the dielectric content properties of the surface. 
Analysis and evaluation of backscatter coefficients can provide valuable information 
on surface moisture content, surface roughness and dielectric content, and vegetation 
cover [46]. The back scatter of a canopy depends on the geometry of the leaves, 
branches, trunk, and moisture inside the canopy. Back scatter of the forest may in-
clude a number of scattering components from different parts of the forest, such as 
volume scattering of canopy branches, back scatter of the ground, and back scatter of 
branches and leaves [47,48].  

(2) Polarimetric Decomposition: Polarimetric decomposition is the decomposition of the 
coherent matrix or covariance matrix [47] into a set of independent matrices that ex-
hibit independent scattering related to various physical scattering mechanisms such 
as surface, double bounce and volume scattering. The Polarimetric decomposition of 
SAR data is an analysis to determine different types of backscatter. There are different 
types of decomposition methods. The Polarimetric decomposition methods used are 
m-sigma (𝑚_δ) decomposition, m-chi (m_χ) decomposition, m-alpha (m_α) decom-
position [49–52], compact decomposition [53], Eigen vector decomposition [47] and 
H/A/Alpha decomposition [54]. 

(3) Texture: The texture feature of radar data is the same as the texture feature of optical 
data. 

2.3.1. Above Ground Biomass Modelling Based on GA-RF 
To model the relationship between the features and forest biomass, we used random 

forest [55]. Random forest (RF) is a cumulative learning technique that is combining set of 
decision trees to improve the classification and regression trees (CART) methods. In ran-
dom forest, each tree is built using a defined algorithm by selecting a random sample from 
the training dataset. Bootstrap is built on the number of training data. bootstrap samples 
mean sample with replacement [22]. The two parameters need to be determined: ntree 
variable, the number of decision trees that need to be created and mtry, the number of 
features to each node in a tree [56]. These two parameters were optimized based on the 
root mean square error (RMSE) [22]. 

In this section, the Genetic-Random Forest Algorithm is developed which aims to use 
Genetic algorithm [57] to improve above ground biomass model. The main goal of Genetic 
algorithm is feature selection [58]. Given that, the number of extracted features is large; 
using a suitable method to select the best features has a significant impact on the efficiency 
of the Random Forest model in biomass estimation. The total process of Genetic algorithm 
to select features among total features performs as follow: 



Environ. Sci. Proc. 2021, 5, 13 8 of 15 
 

 

The first population of features created randomly. Every sample of the population 
has n Genes which is equal to the number of features in dataset. On the other hand, each 
Gene determines whether a feature commensurate with that gene has been used to build 
the model; if used, its value is equal to 1; otherwise it is equal to zero [59]. As a result, each 
sample of the population represents a choice for the existing features. For each sample of 
the population, the corresponding model is created. After the Random Forest model cre-
ation, this model is evaluated with validation dataset and its RMSE is obtained. A random 
forest with less RMSE is a better sample. When all samples of the population have been 
evaluated, the genetic algorithm builds the next generation. 

3. Results and Discussion 
Above Ground Biomass 

In this section, after data preprocessing and indices extraction, the AGB and carbon 
stock maps were determined by GA-RF method. First, the best indices of Optical and SAR 
Data were selected by GA algorithm, distinctly (Figures 3 and 4). The quantitative result 
which were used R2 to analyse GA-RF model of AGB. 

 
Figure 3. The best selected features of the Optical data for biomass estimation by GA: (a) texture (Data range variable) of 
band 6, (b) texture (variance variable) of band 6, (c) texture (variance variable) of band 5, (d) texture (variance variable) of 
band 8. 
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Figure 4. The best selected features of the SAR data for biomass estimation by GA: (a) m-δ decomposition (Delta variable) 
of Sentinel-1, (b) Compact decomposition (Compact RSOV variable) of Sentinel-1, (c) Compact decomposition (Compact 
pd variable) of Sentinel-1, (d) H/A/Alpha decomposition (P1 variable) of Sentinel-1, (e) texture (Homogeneity variable) of 
Sentinel-1, (f) Eigen vector decomposition (Entropy variable) of ALOSPALSAR. 

As mentioned, in this study, the total number of field data plots is 39. About 70% and 
30% of them were selected as model train and test data, respectively. The measured AGB 
plots and the measured indices of the data were also considered as response variables and 
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independent variables, respectively. In this model, among 27 bootstrap samples, 100 de-
cision trees (ntrees) were achieved the best result for AGB modeling by optical data and 
300 decision trees for AGB modelling by SAR data (Figure 5). Optimization of the number 
of trees variable is calculated by minimizing the RMSE using test data. The final output 
(AGB) was the average output of decision trees. 

 
Figure 5. The RMSE variation based on ntree: (a) modelling by optical data, (b) modelling by SAR data. 

Figure 6 shows the results of the proposed method which are the biomass predictions 
obtained from the RF model of the best performance using the optical and SAR data. The 
road area was masked out. 



Environ. Sci. Proc. 2021, 5, 13 11 of 15 
 

 

 
Figure 6. Above ground biomass derived from GA-RF: (a) AGB by optical data, (b) AGB by SAR data. 

The AGB map is converted to carbon by the scaling factor. We use carbon fraction of 
dry matter conversion factor of 0.47 (Figure 7) [60]. 

(a) 
(b) 
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Figure 7. Carbon stock derived from GA-RF: (a) carbon stock map by optical data, (b) carbon stock map by SAR data. 

Figure 8 compares the predicted AGB by the GA-RF model and the AGB field meas-
urements. The results show significant accuracies which illustrate the result of AGB esti-
mation of combination of Sentinel-1 and ALOSPALSAR data (R2 = 70%) is better than the 
result of Sentinel-2 data (R2 = 62%). 

 

Figure 8. Comparisons between the field AGB and predicted AGB derived from Optical and SAR data: (a) modelling by 
Optical data, (b) modelling by SAR data. 

  

(a) 

(b) 

(b) (a) 
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4. Conclusions 
Accurate biomass assessment is essential in order to manage the forest and under-

stand its role as a carbon source. In this study, we assessed the ability of combination of 
Sentinel-1 and ALOSPALSAR data, and Sentinel-2 data for mapping aboveground bio-
mass (AGB) in a part of Hyrcanian forest of northern Iran. Vegetation indices, tasseled 
cap, texture parameters and principal component analysis (PCA) variables of Sentinel-2 
data, and Polarimetric decompositions, texture characteristics and backscatter coefficients 
of Sentinel-1 and ALOSPALSAR data were extracted and used as input to GA-RF model. 
We reached the following conclusions from this study: 

(1) Due to the lack of access to all areas and high cost and time consuming by ground 
method, these problems can be overcame by using remote sensing method. 

(2) The combination of Sentinel-1 and ALOSPALSAR data illustrated better performance 
in estimating AGB compared to sentinel-2 data. 

(3) GA-RF Model is beneficial and fast to achieve high accuracy in AGB prediction. 
(4) The use of feature selection method (GA) to reduce the number of predictor features 

improved the performance of the RF model. 
(5) Effectiveness of texture and decomposition features on AGB calculation. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AGB Above Ground Biomass 
GA-RF Genetic-Random Forest 
PCA Principle Component Analysis 
GIS Geospatial Information System 
MPM Multiplicative Power Model 
PLSR Partial Least Square Regression 
SVR Support Vector Regression 
GA-SVM Genetic-Support Vector Machine 
DBH Diameter at Breast Height 
RTK Real Time Kinematic 
ESA European Space Agency 
JAXA Japan Aerospace Exploration Agency 
SAR Synthetic Aperture Radar 
GLCM Gray Level Co occurrence Matrix 
VI Vegetation Index 
RMSE Root Mean Square Error 
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