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Supplementary Material 

Supplementary Table S1. Role of UC-associated miRNAs in intestinal epithelial permeability. 

miRNA 
Expression 

in UC 
Target Function

miR-16 Elevated CLDN2 
The upregulation of miR-16 decreased claudin-2 expression and increased 
TEER in T84 cells[1]. 

miR-21 Elevated Unspecified 
The overexpression of miR-21 in Caco-2 cells impaired the integrity of the tight 
junctions and resulted in a decrease of TEER and an increase of the inulin per-
meability[2]. 

miR-29a/b Elevated 
CLDN1 
NKRF 

MiR-29 reduced the expression of claudin-1 and NKRF to increase permeability 
in intestinal epithelial cells[3]. 

miR-31 Elevated ACVRL1 
MiR-31-5p targets ACVRL1 responsible for colonocyte differentiation in human 
colonic epithelial cells and may thereby impair epithelial barrier integrity[4]. 

miR-125b Elevated CGN 
The downregulation of miR-125b increased cingulin expression and decreased 
TEER in T84 cells[1]. 

miR-142 Elevated CLDN1 
The overexpression of miR-142-5p in thyrocytes reduced claudin-1 expression 
and increased the permeability of thyrocytes monolayer in vitro[5]. 

miR-155 Elevated CLDN1 
MiR-155 targeted CLDN1 and suppressed the invasive capacity of ovarian can-
cer-initiating cells in a Transwell migration assay[6]. 

miR-223 Elevated CLDN8 
IL-23-induced miR-223 targets CLDN8 and decreases TEER in colonic epithelial 
cells[7]. 

miR-200a/b/c Reduced 
OCLN 
CDH11 

IL-1β-induced miR-200c-3p downregulated occludin expression in enterocytes 
and thereby increased epithelial permeability[8]. MiR-200c-3p directly regulates 
CDH11 expression[9]. 

ACVRL1, activin A receptor-like type 1; CDH11, cadherin-11; CGN, cingulin; CLDN1, claudin-1; CLDN2, claudin-2; CLDN8, claudin-
8; OCLN, occludin; NKRF, nuclear factor- B -repressing factor; TEER, transepithelial electrical resistance 
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Supplementary Table S2. Role of UC-associated miRNAs in innate immunity. 

miRNA 
Expression 

in UC 
Target Function

miR-16 Elevated Pdcd4 
MiR-16 drives macrophages towards the M1 phenotype[10]. MiR-16 directly 
targets Pdcd4 to suppress the activation of inflammatory macrophages in ather-
osclerosis[11]. 

miR-21 Elevated 
Tlr4 

PTEN 
PDCD4 

LPS stimulation induces miR-21 expression in NR8383 alveolar macrophages, 
which in turn suppress the LPS‐mediated induction of IL-1β, IL-6, and TNF-α 
by targeting Tlr4[12]. MiR-21 suppress LPS-mediated NFκB activation by tar-
geting PTEN in human monocyte-derived macrophages, while it promotes IL-
10 production by targeting PDCD4[13]. 

miR-125b Elevated Irf4 
MiR-125b drives bone marrow-derived macrophages to adopt a pro-inflamma-
tory phenotype at least partially by targeting Irf4 in mice[14]. 

miR-142 Elevated IL6 LPS-induced miR-142-3p directly targets IL-6 in DCs[15]. 

miR-146a/b Elevated 

IRAK1 
TRAF6 
RIPK2 
Notch1 
INHBA 

MiR-146a reduces the induction of TNF-α, IL-1β, IL-6, and MCP-1 by targeting 
IRAK1 and TRAF6 in mycobacteria-infected macrophages[16]. MiR-146a limits 
NOD2 signaling by targeting RIPK2 and suppresses the production of IL-1β, IL-
6, and IL-23 in intestinal DCs and macrophages[17]. MiR-146a promotes M2 
macrophage polarization by inhibiting Notch1 in RAW264.7 cells[18] and IN-
HBA in monocytes from patients with systemic juvenile idiopathic arthritis[19]. 

miR-155 Elevated 

TAB2 
Socs1 
Ship1 

IL13RA1 

MiR-155 modulates TLR/IL-1 signaling pathway in activated human monocyte-
derived DCs by targeting TAB2[20]. The overexpression of miR-155 targeting 
Socs1 and Ship1 promotes pro-inflammatory cytokine production in LPS-stimu-
lated DCs[21] and macrophages[22] in mice. MiR-155 targets IL13RA1 in human 
monocyte-derived macrophage and modulates IL-13 signaling cascade respon-
sible for macrophage differentiation towards M2 phenotype[23]. 

miR-223 Elevated NLRP3 

MiR-233 limits NLRP3 inflammasome activation and suppresses the production 
of IL-1β and IL-18 both in mouse and human macrophages[24, 25]. MiR-223 
modulates NFκB and MAPK signaling by targeting RhoB and suppresses pro-
inflammatory cytokine production in LPS-stimulated macrophages[26]. 

DC, dendritic cell; INHBA, inhibin  A subunit of activin A;  IRAK1, interleukin-1 receptor-associated kinase 1; IL13RA1, interleukin-
13 receptor subunit alpha-1; Irf4, interferon regulatory factor 4; NRLP3, NLR family pyrin domain containing 3; PTEN, phosphatase 
and tensin homolog; PDCD4, programmed cell death 4; RhoB, ras homolog gene family member B; RIPK2, receptor interacting ser-
ine/threonine kinase 2; Ship1, src homology 2 domain-containing inositol-5-phosphatase 1; Socs1, suppressor of cytokine signaling 
1; TRAF6, TNF receptor associated factor 6; Tlr4, toll-like receptor 4; TAB2, transforming growth factor β-activated protein kinase 1-
binding protein 2 
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Supplementary Table S3. Role of UC-associated miRNAs in adaptive immunity. 

miRNA 
Expression 

in UC 
Target Function

miR-21 Elevated 
Il12a 
Il10 

MiR-21 promotes Th2 differentiation by modulating IL-12 production from den-
dritic cells in mice[27]. MiR-21 acts as a potent negative regulator of IL-10-pro-
ducing Breg differentiation in mice[28]. 

miR-29a/b Elevated 
IL12B 
Tbx21 
Eomes 

The NOD2-mediated upregulation of miR-29 suppresses IL-23 production in 
human dendritic cells by targeting IL-12p40 directly and IL-23p19 indirectly, 
and thereby inhibits Th17 differentiation[29]. IL-29 represses Th1 differentiation 
in mice by targeting Tbx21 (T-bet) and Eomes, inhibiting the production of IFN-
γ [30].

miR-31 Elevated 

HIF1AN 
MAP3K14 
SH2D1A 
Gprc5a 

MiR-31 promotes Th1 differentiation by targeting HIF1AN, MAP3K14, and 
SH2D1A in primary human T cells[31]. TCR signaling-induced miR-31 nega-
tively regulates peripherally-induced Tregs by targeting Gprc5a in mice[32]. 

miR-126 Elevated Irs1 
MiR-126 deficiency enhances the activation and proliferation capacity in T cells 
and promotes Th1/Th2 balance towards Th1 phenotype by upregulating IRS-1 
expression in mice[33, 34]. 

miR-142 Elevated 
Pde3b 
Socs1 

MiR-142-5p plays a critical role in maintaining Treg suppressive function by re-
pressing Pde3b expression in mice[35]. MiR-142a-5p overexpression shifted T 
cell differentiation towards Th1 phenotype[36]. 

miR-146a/b Elevated 
Stat1 

Ncoa4 

MiR-146a prevents Th17 differentiation in a rodent model of multiple sclerosis 
by reducing the production of IL-6 and IL-21 from auto-reactive T cells[37]. The 
downregulation of Stat1 by miR-146a is critical for the suppressor function of 
Tregs in mice[38]. MiR-146b may inhibit Th17 differentiation by targeting 
Ncoa4 and suppressing NCOA4-mediated PPARγ activation in mice[39]. MiR-
146a may promote IL-10-producing Breg differentiation[40]. 

miR-155 Elevated 
Jarid2 
c-Maf
Socs1

MiR-155 drives T cell differentiation towards Th17 lineage[21, 41]. MiR-155 pro-
motes Th9/Th17 differentiation potentially by targeting c-Maf in mice[21]. MiR-
155 promotes Treg proliferation by preventing SOCS1-dependent suppression 
of IL-2 receptor signaling in mice[42]. 

Eomes, eomesodermin; Gprc5a, G protein-coupled receptor class C group 5 member A; HIF1AN, hypoxia inducible factor 1 subunit 
alpha inhibitor; IRS1, insulin receptor substrate 1; Il10, interleukin-10; Il12a, interleukin-12a; IL12B, interleukin-12B; Jarid2, jumonji, 
AT-rich interaction domain containing 2; MAP3K14, mitogen-activated protein kinase kinase kinase 14; NCOA4, nuclear receptor 
coactivator 4; PPARg, peroxisome proliferator-activated receptor Pde3b, phosphodiesterase 3 B; Breg, regulatory B cell; Treg, 
regulatory T cell; SH2D1A, SH2 domain containing 1A; Stat1, signal transducer and activator transcription 1; Socs1, suppressor of 
cytokine signaling 1; Tbx21, T-box transcription factor 21  
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