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Abstract: The gasification of residues into syngas offers a versatile gaseous fuel that can be used
to produce heat and power in various applications. However, the application of syngas in engines
presents several challenges due to the changes in its composition. Such variations can significantly
alter the optimal operational conditions of the engines that are fueled with syngas, resulting in
combustion instability, high engine variability, and misfires. In this context, this work presents
an experimental investigation conducted on a port-fuel injection spark-ignition optical research
engine using three different syngas mixtures, with a particular focus on the effects of CO/H2

and diluent ratios. A comparative analysis is made against methane, considered as the baseline
fuel. The in-cylinder pressure and related parameters are examined as indicators of combustion
behavior. Additionally, 2D cycle-resolved digital visualization is employed to trace flame front
propagation. Custom image processing techniques are applied to estimate flame speed, displacement,
and morphological parameters. The engine runs at a constant speed (900 rpm) and with full throttle
like stationary engine applications. The excess air–fuel ratios vary from 1.0 to 1.4 by adjusting
the injection time and the spark timing according to the maximum brake torque of the baseline
fuel. A thermodynamic analysis revealed notable trends in in-cylinder pressure traces, indicative of
differences in combustion evolution and peak pressures among the syngas mixtures and methane.
Moreover, the study quantified parameters such as the mass fraction burned, combustion stability
(COVIMEP), and fuel conversion efficiency. The analysis provided insights into flame morphology,
propagation speed, and distortion under varying conditions, shedding light on the influence of fuel
composition and air dilution. Overall, the results contribute to advancing the understanding of
syngas combustion behavior in SI engines and hold implications for optimizing engine performance
and developing numerical models.
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1. Introduction

Depleting fossil fuel reserves and the increase in climate change are the main reasons
to seek alternative methods for the more efficient use of energy and the wider application of
renewable resources. New policies are addressed to reduce greenhouse gas emissions and
increase the use of sustainable fuels from renewable sources, in both transportation and
power generation [1]. The concept of sustainability lies in the ability to satisfy the necessities
of the present without compromising the resources of the future. In this way, biomass is the
fourth most abundant energy source after coal, oil, and natural gas throughout the world,
satisfying almost 14% of the total energy demand globally [2]. The present challenge is to
produce good quality fuels for engine applications from non-edible biomass resources like
agricultural wastes and municipal solid wastes, among others [3].
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The use of biomass in engines requires its conversion to liquid or gaseous forms to
generate power. This conversion can be achieved via thermochemical [4] or biological
processes [5]. In recent years, gasification reached a considerable level of technical de-
velopment and emerged as a great alternative due to its high conversion efficiency and
versatility. Many studies have proved the superiority of gasification over other biomass
conversion processes [4,6,7], and its main product is called producer gas or synthesis gas
(syngas). The name producer gas is normally given when the gasification agent is air and
has a low heating value, while the name syngas is normally given after purifying the fuel
fraction of the producer gas or when the gasification produces a gas with a high calorific
value [8]. The major components of dry syngas are nitrogen (N2), carbon dioxide (CO2),
hydrogen (H2), carbon monoxide (CO), and methane (CH4). Mole fractions of combustible
components in dry syngas vary and depend on the feedstock composition, oxidizing agent,
and the gasification process: 15 to 40% for CO, 10 to 35% for H2, and 2 to 5% for CH4 [9].

Most gasification plants are relatively small (<5 MW) [10]; at this range, after proper
cleaning [11], the use of syngas in internal combustion engines is more economically
favorable than gas or steam turbines [12]. Since the specific energy of syngas is lower
than conventional fossil fuels, consequently, the engine’s output will be relatively low
when syngas is used to feed it [9,13]. To overcome this issue, some methodologies can be
applied, such as using superchargers, increasing the compression ratio [9,14], or blending
the syngas with other higher-ranked fuels, such as methane [15], hydrogen [16,17], or
others [18]. Currently, the primary focus of research on syngas-powered engines is centered
around optimizing the engines to the fullest potential and enhancing numerical models [14].
Optically accessible engines provide results that can be used to benefit both endeavors,
thereby enabling the development of advanced solutions for the optimization of engines,
such as the ones developed by Irimesco [19] or Merola et al. [20], which can be applied
in the development of more efficient commercial engines. The authors of this work have
shown in recent studies that the addition of methane to syngas will favor the stability of
the flame and the conversion efficiency [15], while the addition of hydrogen will improve
not only the flame stability but also its emissions [16,21,22]. The addition of hydrogen
to syngas also improves the propagation stability of lean operation [21]. However, given
the intrinsic variability of syngas composition, understanding its combustion behavior in
engines remains essential for developing broader and more advanced solutions.

Starting from these considerations, this study provides results of the behavior of
flame propagation using equivalent syngas mixtures under engine-relevant conditions with
compositions that were never executed before. Compositions of interest are synthesized
and analyzed on a chromatograph to analyze the effect on the combustion process under
different CO/H2 ratios and degree of dilution (DOD, defined as the inert components
divided by the total sum of the components) proportions; the CH4/H2 ratio was fixed for
all cases. The experiments were performed in a port-fuel injection (PFI) spark-ignition (SI)
engine equipped with a wide optical access, at fixed crankshaft speed and maximum load,
to represent stationary applications. The air–fuel ratio (λ) was changed from stoichiometric
to values close to the lean flammability limit of methane (used as baseline fuel). The
analysis of the combustion process was conducted through combined thermodynamic
and optical investigations. High spatial resolution cycle-resolved digital imaging was
used to characterize the flame front propagation using macroscopic and microscopic flame
parameters. This work contributes to the further development of numerical models and
the calibration of simulation codes. The text is divided explaining the methodology used to
obtain the thermodynamic main parameters of the engine as well as the detailed combustion
diagnosis with the optical setup. The result in a similar way is divided into thermodynamic
and optical results with a final section of the main conclusions.



Gases 2024, 4 99

2. Materials and Methods
2.1. Engine Setup

All tests were performed on an optically accessible single-cylinder PFI-SI engine AVL
5406 (Figure 1a). The cylinder head featured four valves and a spark plug located 7.54 mm
from the center of the combustion chamber (Figure 1b). Optical accessibility was provided
via an elongated piston with a wide flat quartz window in its crown and a quartz ring
replacing the upper part of the cylinder liner. To reduce window contamination with
lubricating oil, self-lubricating Teflon-bronze piston rings were used in the optical section.
During combustion, the light emitted from the combustion chamber passed through the
quartz window and was reflected towards the optical detection assembly via a 45◦ inclined
UV–visible mirror located in the elongated piston, and then recorded with the acquisition
system aimed at studying flame front propagation. The optical setup allowed a bottom
field of view that corresponded to 78% of the piston diameter and 61% of the piston area
(Figure 1b). The crankshaft was equipped with a shaft encoder resolving 3600 increments
per revolution. An ETU 427 engine-timing unit was employed for ignition and injection
control, as well as for the provision of synchronized triggering for image acquisition and
recording in-cylinder pressure data. Further details of the engine specifications are shown
in Table 1.
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Figure 1. Experimental setup. (a) Single-cylinder research engine and the optical experimental
arrangement; (b) cylinder head bottom view from inclined mirror located below the piston.

Table 1. Specifications of the PFI SI single-cylinder research engine.

Component Size Unit

Total volume 475 cm3

Piston bore 90 mm

Crevice volume 9.3 cm3

Stroke 82 mm

Compression ratio 9.68:1 -

Number of valves 4 2 int, 2 exh

Connecting rod 144 mm

Intake valve diameter 34 mm

Exhaust valve diameter 26 mm

Open intake valve 718 CAD

Close intake valve 204 CAD
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Table 1. Cont.

Component Size Unit

Open exhaust valve 480 CAD

Close exhaust valve 716 CAD

Intake valves lift 10.5 mm

Exhaust valves lift 9.3 mm

The experiments were performed at a fixed 900 rpm crankshaft rotational speed and
wide-open throttle, as a representative point of electric power generation applications, with
the engine operated at full load for extensive periods. All timings given in CAD refer to
‘Crank Angle Degree’, with 1 CAD corresponding to 0.185 ms at a speed of 900 rpm used
throughout this study. In this work, the PFI setup was used, being the most representative
choice for SI engines with gaseous fueling. Three equivalent syngas mixtures were tested,
using methane as the baseline fuel. Fuel composition (Table 2) was changed to analyze the
effect on the combustion process under different CO/H2 ratios (0.5 and 2.0) and dilution
proportions (0.4 and 0.6); the CH4/H2 ratio was fixed (0.5) for all cases. Table 3 shows
the main properties of the blends used in this study. The gas filling system consists of
individual cylinders of pure gases, i.e., CH4 (99.5%), H2 (99.9%), CO (99.9%), CO2 (99.9%),
and N2 (99.9%). The mixture, stored in the 20-liter-volume auxiliary cylinder, is obtained
with the partial pressure method of the pure gases and then fed to the PFI injector at 6 bar
gauge pressure. A Perkin Elmer Clarus 580 gas chromatograph was used for verifying
mixture compositions after preparation.

Table 2. Fuel composition in percentage of total volume and ratio between components.

Fuel CH4 (%) H2 (%) CO (%) CO2 (%) N2 (%) CO/H2 (%) DOD (%) CH4/H2 (%) LHV (MJ/kg)

Baseline 100 0 0 0 0 - 0 - 50.18
Syngas 1 10 20 10 15 45 0.5 0.6 0.5 6.54
Syngas 2 15 30 15 30 10 0.5 0.4 0.5 10.15
Syngas 3 8.6 17.1 34.3 20 20 2.0 0.4 0.5 8.07

Table 3. Main parameters of the engine test.

Parameter Value

Engine speed [RPM] 900
Lambda [λ] 1.0/1.2/1.4

Injection pressure [bar] 7.0
Spark advance [CAD BTDC] 7.0

Fire cycles [-] 200
Engine coolant temperature [K] 330

The air–fuel ratio was initially set at a stoichiometric value and then increased until
reaching the flammability limit of methane (λ = 1.4). The air dilution was measured using
a wide-band exhaust gas oxygen sensor, with an accuracy of ±1%. The injection pressure
was maintained at 7 bar for all conditions, as the rated pressure for the Bosch ML082G
injector was designed to operate with gaseous fuels in a port-fuel configuration. Coolant
and lubricant temperatures were maintained at 330 K using a thermal conditioning unit;
the intake air temperature was in the range of 300 K and the ambient pressure was around
1 atm.

The spark advance (SA) was fixed at 7 CAD BTDC, which corresponded to the maxi-
mum brake torque (MBT) of methane in stoichiometric conditions. The same SA allowed
for the analysis of flame propagation and combustion behavior at roughly the same fluid
dynamics conditions [20]. For each engine operational condition, tests were performed
according to a procedure of 1 min of warm-up in motored mode, followed by firing until a
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stable lambda (λ), around 15 s; after this, 200 consecutive cycles were recorded. In-cylinder
pressure was measured with an accuracy of ±1% using a quartz pressure transducer flush-
installed in the region between the intake and exhaust valves and a crank angle resolution
was 0.1 CAD. Based on these data, the rate of heat release and related parameters were
evaluated. Optical data were detected in the last 25 cycles of the sets of 200 to retrieve
information from more stable combustion conditions. Pressure values, as well as the image
sequences, were related to piston movement by triggering the data acquisition system in
gated mode. A summary of the main parameters can be found in Table 3.

2.2. Thermodynamic Analysis

A heat release analysis was performed with the first law of thermodynamics using
Equation (1),

dQ =
γ

γ − 1
·p·dV +

1
γ − 1

·V·dp − γ

γ − 1
·p·V·dm

m
+

1
γ − 1

·p·V·dM
M

, (1)

where Q is the net heat released measured in (J), p is the pressure in (Pa), V is the cylinder
volume in (m3), m is the gas mass contained within the combustion chamber in (kg), M is
the molar mass in (kg/kmol), and the ratio of specific heats γ was calculated for each crank
angle step. More details on how this procedure was applied can be found in [23]. Mass
fraction burned (MFB) was calculated based on the integral heat release via Equation (2),

MFBk =
Qk − Qign

QEOC − Qign
, (2)

where the subscript ‘k’ means the position (CAD) during the combustion process, ‘ign’
denotes the initiation of combustion (ignition), and ‘EOC’ is the end of combustion that
was considered equal to exhaust valve opening (EVO). The combustion process in SI
engines can be divided into four main stages: spark and flame initiation, initial flame kernel
development, turbulent flame propagation, and flame termination. This process can be
quantified with the MFB curve, in which the CA corresponds to 0–10%, MFB is the flame
development angle, 10–90% MFB corresponds to the rapid burning angle, and 0–90% MFB
is the overall duration of the process. Combustion stability is represented by the cyclic
variability derived from pressure data (COVIMEP).

Lastly, the fuel conversion efficiency was calculated using Equation (3),

η f =
IMEP·Vd
m f ·LHV

, (3)

where η f is the fuel conversion efficiency, the indicated mean effective pressure (IMEP) was
calculated based on recorded in-cylinder pressure curves (in Pa), Vd (in m3) corresponds to
the displacement volume, and LHV is the lower heating value (in J/kg); the mass of fuel
injected per cycle is m f (measured in kg, with an accuracy of ±1%).

2.3. Optical Setup

Flame front propagation was investigated using cycle-resolved digital imaging. A
high-speed 12-bit CMOS (PCO Dimax S1) camera was coupled with a double intensi-
fier (Video Scope VS4-1845HS), (Excelitas Technologies Corp., Waltham, MA, USA). The
assembly allowed a high sensitivity in the spectral range from 290 nm to 700 nm, with
50% quantum efficiency at 450 nm. The camera could work in a full-chip configuration
(1008 × 1008 pixels) with a maximum frame rate of 4467 fps. To improve the acquisition
speed, a region of interest of 864 × 896 pixels was selected; this permitted it to reach a frame
rate of 5400 fps, corresponding to 1 image/CAD at 900 rpm (1 CAD = 185 µs). The detection
system was equipped with a UV-Nikkon 105 mm f/4.5 lens. To improve the signal-to-noise
ratio, the level of intensification was increased by 30% at an increasing λ value. Moreover,
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the f/stop of the objective was maintained at f/11 for methane and f/4.5 for all the tests on
syngas fuels. The optical setup allowed for the detection of image sequences with a spatial
resolution of 91 µm/pixel. For all the optical measurements, the synchronization between
the cameras and the engine was achieved through the crank angle encoder signal and the
delay unit. The detection of the spark arc denotes the start of combustion. This moment
will be named the start of spark. The camera images are referenced to this moment through
the angle after the start of spark (ASOS). This instant is after the spark advance angle and
the differences are due to the signal delay.

The application of a custom procedure of image processing allowed for a detailed
analysis of flame morphology [24,25]. Specifically, using a routine developed in Vision of
National Instruments (Vision Assistant 2016, NI ACADEMIC SITE LICENSE, Austin, TX,
USA), CMOS 8-bit images were treated to retrieve the geometrical parameters of the flame
front. Following the procedure sketched in Figure 2, after the extraction of the intensity
level, a circular mask was fixed to cut light from reflections at the boundaries of the optical
access (Figure 2a). Successively, the image processing procedure adjusted the contrast and
brightness of the images with respect to the maximum intensity value in order to optimize
the signal-to-noise ratio (Figure 2b). Then, a threshold was applied to obtain binary images,
with 1 (white) associated with a pixel belonging to the object (foreground) and 0 (black)
referring to the background (Figure 2c). In this work, an automatic threshold operation
(the metric method) based on a locally adaptive algorithm was used [26]. After this step,
morphological transformations were applied to fill holes and remove small objects that
were not part of the flame and could bias the evaluation of morphological parameters
(Figure 2d). Finally, the outline border of the flame was extracted (Figure 2e). More details
on the procedure are given in [24].
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Figure 2. Image processing stages: intensity extraction (a), contrast adjustment (b), binary image
generation via thresholding (c), morphological transformations (d), and flame outline extraction (e);
for reference intake and exhaust valves are depicted schematically by red and green lines respectively,
while the cylinder bore is illustrated in blue.

The image processing sequence also estimated the clamp distances (Dx and Dy) and
the flame centroid coordinates, both in the x and y directions. The maximum clamp of
the flame front represented the distance between the furthest opposed points on the edge
found in the image along the horizontal (x) and vertical (y) directions. For a circle, these
two parameters would be equal; therefore, their ratio intrinsically allowed for the retrieval
of information on the flame front distortion. Moreover, the average value between Dx and
Dy was considered representative of the mean flame diameter (Dm). The flame speed was
calculated as the incremental ratio between two frames of Dm with respect to the dwell
time. The flame centroid was the arithmetical center of luminosity evaluated for a binary
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image. It was identified using the x and y coordinates with respect to the Cartesian system
fixed in the center of the combustion chamber.

2.4. Data Acquisition and Experimental Errors

All instruments used in this analysis were calibrated according to the manufacturer’s
recommendations to ensure their nominal accuracy. AVL Indiset/indicom was used for the
data acquisition. The data were processed using the MATLAB v2024b. Table 4 summarizes
the most important measured parameters and their uncertainty.

Table 4. Experimental errors and uncertainty.

Instrument Parameter Measurement Technique Accuracy Maximum Uncertainty
[%]

AVL 365C Angle Reflection light principle ±0.1 CAD 0.14
HBM T40 Torque Strain gauge principle ±0.1 Nm 0.10

Bosch LS44107 Stoichiometric air–fuel ratio (λ) Nernst principle ±0.01 1
AVL GU22C Cylinder pressure Principle of piezoelectricity ±1% 1

AVL Flowsonix
FSA100 Airflow Ultrasonic transit-time

difference method 0.03 kg/h 0.25

ETU 427 Camera trigger Electric Pulse ±1 CAD 0.14
PCO Dimax S1 Pixel size Referenced to the calibration image 91 ± 0.52 µm 0.06

3. Results
3.1. Combustion Diagnosis
Thermodynamic Results

This preliminary analysis of the combustion process was performed through the
thermodynamic approach. The in-cylinder pressure was analyzed as average traces of
200 consecutive cycles for each case; the results are reported in Figure 3. The motored
pressure signal (dashed line) is also shown as the reference; the pressure levels are slightly
higher during compression with respect to the fired operation, given that the working fluid
contained only air.
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Figure 3. In-cylinder pressure traces averaged over 200 consecutive cycles for different air–fuel ratios
(λ = 1.0 (a), λ = 1.2 (b), and λ = 1.4 (c)).

Due to its large content of inert species, syngas 1 resulted in the ‘slowest’ combustion
evolution, and related lowest peak pressure, for the stoichiometric cases. Syngases 2 and 3
featured intermediate pressure evolutions, with methane having the highest peak pressure.

Given the catalytic effect of hydrogen on CO combustion, even in small concentra-
tions [27], it is expected that syngas 2 would feature a high laminar flame speed; on the
other hand, the complex effect of diluents on chemical reaction rates [28] resulted in ‘slower’
oxidation compared to syngas 3 and even more so for syngas 1. An interesting observation
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is that syngas 3’s stoichiometric combustion speed was very close to that of methane,
judging from the similar pressure rise rate. Its lower peak pressure is directly related to
lower volumetric efficiency (i.e., below 60%, compared to around 78% for methane), mainly
due to the presence of CO2 and N2 in its composition. This effect can also be observed in
the maximum pressure at the top dead center, given that the pressure of the mixture with
methane is closer to the motored cycle, while the others are lower. When looking at the
lean cases, differences between methane, syngas 2, and 3 were less evident with λ = 1.2; for
λ = 1.4, the ‘classical’ fuel resulted even slower than the other two. Syngas 1 featured the
lowest pressure peak for all cases, most likely due to its high content of inert gases.

The overall engine output was reduced when switching from methane to syngas
(Figure 4); all fuel types featured an increasing trend of cycle-to-cycle variations (Figure 5)
when lean fueling was employed; this was to be expected, given that high dilution rates
are characterized by increased combustion instability [29].
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An interesting observation is that for the ‘leanest’ cases, syngas generally resulted in
lower CovIMEP. This is most likely related to the presence of hydrogen in its composition,
a component that is known to ensure better combustion stability when approaching the
flammability limit [30].

The observed trends are also reflected in the crank angle durations calculated (Table 5)
at given mass fraction burned levels (i.e., 5%, 10%, and 50%, as representative of the kernel
stage and flame propagation phase). On average, for the three lambdas tested, syngas 3
showed a faster combustion process with 12.0, 14.6, and 29.6 (CAD) for MFB 5%, MFB
10%, and MFB 50%, respectively. After syngas 3, syngas 2 had an average of 0.8 CAD later
than the MFB mentioned, and methane with 2.4 CAD later. The lowest burn rate was for
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syngas 1 with 4.6 CAD later on average. Despite syngas 3 having the lowest hydrogen
concentration of the syngas mixtures, have the highest CO/H2 ratio (2.0 against 0.5), and
together with syngas 1 the lowest DOD in the fuel mixture.

Table 5. CAD displacement from spark to fixed mass fraction burned (MFB) thresholds.

Fuels λ MFB 5% MFB 10% MFB 50%

Methane
1.0 11.3 13.7 26.7
1.2 13.2 16.0 29.7
1.4 17.8 21.4 40.3

Syngas 1
1.0 14.4 17.4 33.4
1.2 14.1 17.1 34.0
1.4 17.3 20.9 41.4

Syngas 2
1.0 11.8 14.5 29.1
1.2 11.7 14.4 29.3
1.4 14.0 17.0 34.1

Syngas 3
1.0 10.3 12.6 25.5
1.2 11.6 14.1 28.6
1.4 14.0 17.1 34.7

Another interesting result from Table 5 is that methane suffers the highest difference in
MFB when the lambda (λ) increases. On average for methane, the MFB between λ = 1.0 and
λ = 1.2 increases by 15%, and the MFB between λ = 1.0 and λ = 1.4 increases by 55%. For
the syngas, this increase is lower than for methane due to the presence of hydrogen. This
can be seen in the increase in MFB between the different syngas mixtures. The increases for
syngas 1 and syngas 2 are almost negligible between λ = 1.0 and λ = 1.2, and 20% between
λ = 1.0 and λ = 1.4. In the case of syngas 3, the effect is larger than the other two syngases,
with 12% from λ = 1.0 to λ = 1.2 and 36% from λ = 1.0 to λ = 1.4. Despite syngas 3 having
the fastest combustion, this mixture has the lowest hydrogen content of the three syngases.
This allows for the highlighting of the fact that the CO/H2 content is important for the
combustion speed, but the total hydrogen content helps to prevent variation when the
mixture is diluted with air.

These results emphasize the much stronger effect of the air–fuel ratio on methane
combustion compared to syngas, especially in the kernel development phase. They also
give an insight into re-calibration procedures that can be considered for adapting ignition
settings for alternative fuels [31] and feedback strategies for real-time engine control.
Nonetheless, as an initial evaluation, even the ‘feed-in and start’ scenario ensures acceptable
engine operations in a relatively wide range of air–fuel ratios.

The fact that power de-rating is due to reduced volumetric efficiency when using
syngas is more evident when looking at the fuel conversion efficiency data (Figure 6).
Overall, efficiency levels were found to be around 20%; even though not directly compara-
ble to figures usually found in the literature (given that optical engines feature increased
blow-by losses and are generally employed at part load to reduce mechanical stress on their
components [32]), the relative trend provides a useful insight into combustion behavior,
with the investigated fuel compositions. One significant factor contributing to the observed
lower efficiency is the presence of heat losses through the transparent windows required
for optical access. These losses, stemming from the transmission of radiant heat through
the windows, represent a considerable portion of the total energy input. As a result, the
effective energy available for combustion and subsequent work output is diminished,
leading to a reduction in fuel conversion efficiency. Furthermore, the presence of crevices
within the engine geometry poses a significant challenge to achieving complete combus-
tion. Crevices create regions where air–fuel mixture combustion is inhibited, resulting in
unburned hydrocarbons and reduced mass fraction burned. In an optical engine setup,
where combustion processes are scrutinized at a detailed level, the impact of crevices on
combustion efficiency becomes more pronounced. Moreover, the constraints imposed
by optical access often necessitate compromises in engine design, particularly regarding



Gases 2024, 4 107

compression ratio optimization. The need to accommodate optical windows and maintain
adequate clearance for visualization can limit the achievable compression ratio, thereby
affecting overall engine efficiency. It is crucial to underscore that while the observed fuel
conversion efficiency in Figure 6 may appear low compared to conventional engine setups,
it reflects the intricacies and challenges specific to optical engine studies.
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The only significant drop in efficiency was recorded for the λ = 1.4 case with syngas
1; this condition was found to have a relatively high CovIMEP as well, thus confirming
that the increased levels of inert gases resulted in poor combustion development. No
evaluation of combustion efficiency could be performed, but based on the readings of
the λ sensor, oxygen utilization was close to maximum levels for all cases. Therefore,
the most likely explanation is that CH4 and intermediate CO oxidation could not be
completed during the power stroke, due to low temperatures reached within the reaction
zone; again, this was due to the relatively high concentrations of CO2 and N2 in the fuel
mix. Another important observation is that the actual power de-rating originated from
decreasing volumetric efficiency and is less related to poor combustion performance. This
suggests that turbo-charged applications (which are the majority of cases in stationary
applications over a certain level [33]) would be more suited for syngas fueling, given that
the drop in volumetric efficiency can be compensated for with increased boosting pressure;
on the other hand, higher overall in-cylinder pressure negatively impacts laminar flame
speed, thus reducing combustion speed [34]. Another option is to increase the compression
ratio. Due to the presence of diluents and high-octane fuels like methane and hydrogen,
it would be possible to increase the CR without knocking. This will directly increase the
brake thermal efficiency and power output of the engine.
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With the more detailed approach that entails modeling blow-by and heat transfer
losses [35], it was possible to identify the contribution of convective heat transfer to overall
engine performance. As expected, the highest heat loss ratio (calculated as the integral heat
loss divided by the fuel’s energy content) was recorded for stoichiometric operation, mainly
due to high burned gas temperature. Syngas 3 featured the peak heat loss value overall;
this was due to its ‘fast’ combustion, included in the model as the effect of flame expansion.
As expected, the lowest ratios were recorded for syngas 1 for all air–fuel settings. Blow-by
losses were found to be similar for all conditions at around 10%, evidently higher for the
cases with increased peak pressure. This analysis gives an idea into the effects of each
fuel type (e.g., for syngas 1, the main reason for reduced engine output was combustion
phasing rather than heat losses) and also provides a basis for a comparison with real-world
applications, for which blow-by losses are relatively insignificant [36].

3.2. Optical Results

Even if the in-cylinder pressure measurements allow a comprehensive analysis of
combustion characteristics, they do not furnish detailed results of the local distribution of
the burned mass, flame behavior inside the combustion chamber, and the speed of flame
propagation. In this sense, cycle-resolved visualization represents a powerful tool for the
quantitative analysis of flame front propagation.

Figures 7 and 8 show selections of images detected during an engine cycle in stoi-
chiometric (λ = 1.0) and lean-burn conditions (λ = 1.4) for all fuels. In all investigated
cases, the flame kernel was well developed only around 5–7 CAD after ignition, due to
the very high luminosity of spark-induced plasma [37,38], as can be noted in the first
frame of each sequence. Upon closer examination, a discernible decrease in luminosity is
observed when transitioning from λ = 1.0 to λ = 1.4, indicative of the leaner combustion
environment. This reduction in luminosity suggests a corresponding decrease in fuel-rich
regions, corroborating the shift towards leaner combustion conditions. Furthermore, the
propagation speed of the flame front exhibits a notable delay in reaching the optical limit at
λ = 1.4 compared to λ = 1.0, manifesting as a slower advancement in the leaner mixture.
Specifically, the optical limit is achieved at approximately 22 CAD after ignition for λ = 1.4,
in contrast to the shorter duration of approximately 17 CAD for λ = 1.0.
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An intriguing observation is the variation in luminosity among different fuel composi-
tions, particularly evident in syngas 2 and syngas 3. The heightened luminosity observed
in these cases may be attributed to factors such as lower degrees of dilution (DODs) or
differing combustion kinetics. Notably, syngas 3 exhibits a pronounced luminosity, possibly
attributed to its elevated CO/H2 ratio, which promotes faster combustion kinetics despite
the leaner conditions. This accelerated combustion process in syngas 3 underscores the
influence of fuel composition on flame characteristics and highlights the interplay between
chemical kinetics and combustion dynamics. In summary, the presented figures encapsu-
late the dynamic evolution of flame propagation under varying combustion conditions
and fuel compositions. The observed trends underscore the intricate interplay between
combustion parameters and fuel characteristics, elucidating valuable insights into the
combustion dynamics within internal combustion engines.

By applying the image processing previously described, the trends of mean diameter
and propagation speed of the flame were obtained. The results reported in Figure 9 are
related to the averaged values over 25 consecutive engine cycles. It is quite evident that
methane flames were always slower than syngas 3, starting with the initial combustion
phase; these findings are in line with the thermodynamic analysis based on in-cylinder
pressure evaluation. The effect was due to the lowest concentration of methane with
a 0.5 CH4/H2 ratio and medium dilution proportion with respect to the other syngas
mixtures. The specific composition determined an improvement in burning speed even
without adjusting the spark advance. In this sense, the effects of other syngas compositions
(1 and 2) were appreciated only in lean-burn cases. In particular, the flame evolution
of syngas 2 resulted quite like methane in stoichiometric conditions and was practically
identical to that of syngas 3 for higher air–fuel ratios. The result can be justified via the
high hydrogen content in the syngas 2 mixture that induced an active improvement in
fuel burning only in higher-dilution conditions, because of the concomitant high methane
content. Syngas 1 combustion resulted in the slowest results, except for λ = 1.4 when
the hydrogen content balanced the high dilution and burn flammability limit of methane.
As a general consideration on the use of syngas mixtures, it is possible to observe that
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the presence of hydrogen improved the flame propagation, compensating the slowdown
effect of dilution through inert gases. These findings are also in line with those of the
thermodynamic analysis.
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Figure 9. Evolution of the flame front mean diameter and propagation speed for selected λ values
(λ = 1.0 (a), λ = 1.2 (b), and λ = 1.4 (c)) obtained using averaged data over 25 consecutive engine cycles.



Gases 2024, 4 111

To better investigate the effect of fuels on the initial flame propagation, the flame
diameter in correspondence with TDC (7 CAD ASOS) and the related coefficient of variation
were calculated over 25 consecutive optical acquisitions, as shown in Figure 10. This
analysis allowed for an intrinsic evaluation of the cycle-by-cycle variability induced on the
flame kernel development via the air–fuel ratio and fuel composition. The largest flame
kernel diameter was measured for syngas 3 in each condition, while for the other syngas
mixtures, an increase in the flame speed during the initial phase of the combustion process
was observed only at high dilution rates. It should be noted that, except for syngases 1 and
2, the kernel size (at a fixed delay) from the spark timing decreased at increasing air–fuel
ratios. This was due to the high concentration of diluents and CH4/H2 ratio in the syngas
mixtures that inhibited the improvement in the fuel burning speed.
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Regarding the spread of the data, as expected, an increase in the variability of the 
flame diameter was observed at increasing λ values. The gap of methane with syngas was 
minimal and the results were significant only for syngas 3, in the leanest burn conditions. 
This demonstrated better stability for the latter, regarding flame propagation during the 
early stage of combustion, even without an optimal spark-advance setting. The coefficient 
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Figure 10. Flame diameter measured at 5 CAD ATDC (12 CAD ASOS) (a) and the coefficient of
variation of the flame diameter (b) obtained using averaged data over 25 consecutive engine cycles.

Regarding the spread of the data, as expected, an increase in the variability of the
flame diameter was observed at increasing λ values. The gap of methane with syngas was
minimal and the results were significant only for syngas 3, in the leanest burn conditions.
This demonstrated better stability for the latter, regarding flame propagation during the
early stage of combustion, even without an optimal spark-advance setting. The coefficient
of variation related to the flame diameter results was linkable to the COV of in-cylinder peak
pressure (CovPmax), as reported in Figure 11, confirming the importance of controlling the
stability of combustion, especially during the flame kernel development stage.
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Figure 11. Coefficient of variation of pressure peak obtained using averaged data over 200 consecutive
engine cycles.

The effect of the fuels and air dilution on the flame front shape was evaluated in
terms of distortion using the ratio between the maximum clamp distance along the y and
x axes. The results reported in Figure 12 clearly demonstrated that during stoichiometric
combustion, the flame propagated quite uniformly in all directions, even if the flame front
of syngas 1 was less ‘circular’. In lean-burn conditions, the simultaneous action of the flow
field and fuel charge distribution determined a strong increase in the flame distortion in
the early combustion stages, even if the effect was feeble for syngas 3.

It is interesting to observe that the air dilution influenced the cyclic variability of the
flame front shape in more ways than just the size. In the case of methane, the low burning
speed at λ = 1.4 determined a distortion that persisted well into the expansion stroke. These
results agree with those obtained using the analysis of the luminous centroid position.
Figure 13 shows luminous centroid values measured for 25 engine cycles in correspondence
with 5% MFB for all fuels in stoichiometric and lean-burn (λ = 1.4) conditions; the spark
plug position is also sketched. It can be noted that for stoichiometric air–fuel ratios, syngas
mixtures (syngas 1 could be considered a bit farther) presented a position closer to the
combustion center and spark plug, compared to that for methane; moreover, an increase in
flame displacement at increasing λ values was observed. Finally, a preferential propagation
towards the intake valves was noted in all the cases, because of the flow field (tumble
motion) on the flame propagation.
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Figure 13. Evolution of the luminous centroid with respect to the geometrical center of the combus-
tion chamber (λ = 1.0 (a) and λ = 1.4 (b)); each step of the path is obtained using averaged data over 
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attributed to its elevated CO/H2 ratio, underscoring the importance of chemical ki-
netics in determining flame characteristics. 

• The examination of the mean diameter and propagation speed of the flame reinforces the 
influence of fuel composition on combustion dynamics. Syngas 3 consistently demon-
strates faster flame propagation compared to methane, indicating the pivotal role of the 
hydrogen content in enhancing burning speed, particularly under lean conditions. 

• Propagation was found to be quite symmetric in all directions, and similar for all 
fuels, suggesting that fluid motion had the most important effect in this sense. These 
results were also confirmed through the evolution of flame centroid displacement. 

• The investigation into the effect of fuels on initial flame propagation reveals intri-
guing insights into cycle-by-cycle variability induced via the air–fuel ratio and fuel 
composition. Syngas 3 consistently exhibits the largest flame kernel diameter across 
all conditions, emphasizing the impact of fuel composition on flame development. 

• The assessment of cyclic variability of the flame front shape underscores the influence 
of air dilution on flame morphology. Syngas mixtures exhibit a preferential propaga-
tion towards intake valves, attributed to flow field dynamics, highlighting the im-
portance of understanding fluid motion in shaping flame behavior. 
Overall, these findings underscore the complex interactions between combustion pa-

rameters and fuel characteristics, providing valuable insights into optimizing engine per-
formance and efficiency. One major conclusion of the analysis was that spark timing re-

Figure 13. Evolution of the luminous centroid with respect to the geometrical center of the combustion
chamber (λ = 1.0 (a) and λ = 1.4 (b)); each step of the path is obtained using averaged data over
25 consecutive engine cycles.
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4. Conclusions

This study provides comprehensive insights into the combustion characteristics of
syngas in spark-ignition engines, elucidating the effects of varying CO/H2 ratios and
diluent proportions on combustion behavior. An experimental study was undertaken to
evaluate the effects of syngas composition on combustion in spark-ignition power units.
To this end, an optically accessible engine was run at 900 rpm and wide-open throttle,
specific for power generation applications. The experimental findings reveal distinct trends
across multiple parameters, shedding light on the intricate interplay between combustion
dynamics and fuel composition.

• The analysis of flame propagation dynamics under varying combustion conditions
highlights the influence of fuel composition on luminosity and flame advancement.
Syngas 3 (highest CO and partially diluted) exhibits accelerated combustion kinetics
attributed to its elevated CO/H2 ratio, underscoring the importance of chemical
kinetics in determining flame characteristics.

• The examination of the mean diameter and propagation speed of the flame reinforces
the influence of fuel composition on combustion dynamics. Syngas 3 consistently
demonstrates faster flame propagation compared to methane, indicating the piv-
otal role of the hydrogen content in enhancing burning speed, particularly under
lean conditions.

• Propagation was found to be quite symmetric in all directions, and similar for all fuels,
suggesting that fluid motion had the most important effect in this sense. These results
were also confirmed through the evolution of flame centroid displacement.

• The investigation into the effect of fuels on initial flame propagation reveals intriguing
insights into cycle-by-cycle variability induced via the air–fuel ratio and fuel com-
position. Syngas 3 consistently exhibits the largest flame kernel diameter across all
conditions, emphasizing the impact of fuel composition on flame development.

• The assessment of cyclic variability of the flame front shape underscores the influence
of air dilution on flame morphology. Syngas mixtures exhibit a preferential prop-
agation towards intake valves, attributed to flow field dynamics, highlighting the
importance of understanding fluid motion in shaping flame behavior.

Overall, these findings underscore the complex interactions between combustion
parameters and fuel characteristics, providing valuable insights into optimizing engine
performance and efficiency. One major conclusion of the analysis was that spark timing
re-calibration is required to fully take advantage of fuel properties such as higher laminar
flame speed and increased stability, especially during lean operation. Moving forward,
further research efforts should focus on refining combustion strategies and leveraging
advanced numerical simulations to enhance engine design and operation in alignment
with sustainability goals.
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