Susceptibility of Different Aesculus Species to the Horse Chestnut Leaf Miner Moth: Chemical Composition and Morphological Features of Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Place of Research and Plant Material
2.2. Estimation of Horse Chestnut Miner Abundance Using Pheromone Traps
2.3. Scanning Electron Microscopy
2.4. Determination of Dry Matter of Leaves
2.5. Determination of Leaf Pigment Content
2.6. Determination of Tannin Content
2.7. Determination of Phenolic Compounds and Flavonoids
2.8. Determination of the Composition of Phenolic Compounds in Chestnut Leaves
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Costa, L.; Koricheva, J.; Straw, N.; Simmonds, M.S.J. Oviposition Patterns and Larval Damage by the Invasive Horse-Chestnut Leaf Miner Cameraria Ohridella on Different Species of Aesculus: Oviposition Patterns and Larval Damage. Ecol. Entomol. 2013, 38, 456–462. [Google Scholar] [CrossRef]
- Chanon, A.M. Studies on the Reproductive Capacity of Aesculus parviflora and Aesculus pavia: Opportunities for Their Improvement through Interspecific Hybridization. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2005; p. 264. [Google Scholar]
- Simova-Tosic, D.; Filev, S. Contribution to the Horse Chestnut Miner. Zast. Bilja 1985, 36, 235–239. [Google Scholar]
- Deschka, G.; Dimić, N. Cameraria ohridella n. sp. aus Mazedonien, Jugoslawien (Lepidoptera, Lithocelletidae). Acta Entomol. Jugosl. 1986, 22, 11–23. [Google Scholar]
- Bogoutdinova, L.R.; Tkacheva, E.V.; Konovalova, L.N.; Tkachenko, O.B.; Olekhnovich, L.S.; Gulevich, A.A.; Baranova, E.N.; Shelepova, O.V. Effect of Sun Exposure of the Horse Chestnut (Aesculus hippocastanum L.) on the Occurrence and Number of Cameraria ohridella (Lepidoptera: Gracillariidae). Forests 2023, 14, 1079. [Google Scholar] [CrossRef]
- Kirichenko, N.I.; Karpun, N.N.; Zhuravleva, E.N.; Shoshina, E.I.; Anikin, V.V.; Musolin, D.L. Invasion genetics of the horse-chestnut leaf miner, Cameraria ohridella (Lepidoptera: Gracillariidae), in European Russia: A case of successful involvement of citizen science in studying an alien insect pest. Insects 2023, 14, 117. [Google Scholar] [CrossRef]
- Anikin, V.V. Present day bio-invasions in the Volga-Ural Region: From the South to the North or from the East to the West? Cameraria ohridella (Lepidoptera: Gracillariidae) in the Lower and Middle Volga. Zootaxa 2019, 4624, 583–588. [Google Scholar] [CrossRef]
- Freise, J.; Heitland, W.; Tosevski, I. Parasitism of the horse chestnut leafminer, Cameraria ohridella Deschka and Dimić (Lep., Gracillariidae), in Serbia and Macedonia. Anz. Schädlingskunde 2002, 75, 152–157. [Google Scholar] [CrossRef]
- Shvydenko, I.M.; Stankevych, S.V.; Zabrodina, I.V.; Bulat, A.G.; Pozniakova, S.I.; Goroshko, V.V.; Matsyura, A.V. Diversity and distribution of leaf mining insects in deciduous tree plantations. A review. Ukr. J. Ecol. 2021, 11, 399–408. [Google Scholar]
- Bačovský, V.; Vyhnánek, T.; Hanáček, P.; Mertelík, J.; Šafránková, I. Genetic diversity of chestnut tree in relation to susceptibility to leaf miner (Cameraria ohridella Deschka & Dimič). Trees 2017, 31, 753–763. [Google Scholar]
- Zdravković-Korać, S.; Milojević, J.; Belić, M.; Ćalić, D. Tissue Culture Response of Ornamental and Medicinal Aesculus Species—A Review. Plants 2022, 11, 277. [Google Scholar] [CrossRef]
- Kulbat, K. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar]
- Oszmiański, J.; Kalisz, S.; Aneta, W. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimić). Molecules 2014, 19, 14625–14636. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Kolniak-Ostek, J.; Biernat, A. The Content of Phenolic Compounds in Leaf Tissues of Aesculus glabra and Aesculus parviflora Walt. Molecules 2015, 20, 2176–2189. [Google Scholar] [CrossRef] [PubMed]
- Weryszko-Chmielewska, E.; Haratym, W. Leaf micromorphology of Aesculus hippocastanum L. and damage caused by leaf-mining larvae of Cameraria ohridella Deschka and Dimic. Acta Agrobot. 2012, 65, 25–33. [Google Scholar] [CrossRef]
- Šefrová, H.; Lastuvka, Z. Dispersal of the horse-chestnut leafminer, Cameraria ohridella Deschka et Dimíc, 1986, in Europe: Its course, ways and causes (Lepidoptera: Gracillariidae). Entomol. Z. 2001, 111, 194–197. [Google Scholar]
- Svatos, A.; Kalinová, B.; Hoskovec, M.; Kindl, J.; Hrdy, I. Chemical communication in horse-chestnut leafminer Cameraria ohridella Deschka & Dimic. Plant. Prot. Sci. 1999, 35, 10–13. [Google Scholar]
- Svatos, A.; Kalinova, B.; Hoskovec, M.; Hovorka, O.; Hrdý, I. Identification of a new lepidopteran sex pheromone in picogram quantities using an antennal biodetector: (8E,10Z)-Tetradeca-8,10-dienal from Cameraria ohridella. Tetrahedron Lett. 1999, 40, 7011–7014. [Google Scholar] [CrossRef]
- Cardé, R.T.; Elkinton, J.S. Field trapping with attractants: Methods and interpretation. In Techniques in Pheromone Research; Springer: New York, NY, USA, 1984; pp. 111–129. [Google Scholar]
- Hardin, J.W. A Revision of the American Hippocastanaceae-II. Brittonia 1957, 9, 173–195. [Google Scholar] [CrossRef]
- Hardin, J.W. Studies in the Hippocastanaceae, V. Species of the Old World. Brittonia 1960, 12, 26–38. [Google Scholar] [CrossRef]
- D’Costa, L.E. Resistance and Susceptibility to the Invasive Leaf Miner Cameraria ohridella within the Genus Aesculus. Ph.D. Thesis, University of London, London, UK, 2014; pp. 495–505. [Google Scholar]
- GOST 31640-2012; Feed. Methods for Determining Dry Matter Content. Russian Technical Standard: Moscow, Russia, 2012; 11p.
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- State Pharmacopoeia of the Russian Federation, 14th ed.; 4 Volumes; Ministry of Health of the Russian Federation: Moscow, Russia, 2018. Available online: https://femb.ru/femb/ (accessed on 27 June 2024).
- Bogoutdinova, L.R.; Khaliluev, M.R.; Chaban, I.A.; Gulevich, A.A.; Shelepova, O.V.; Baranova, E.N. Salt Tolerance Assessment of Different Tomato Varieties at the Seedling Stage. Horticulturae 2024, 10, 598. [Google Scholar] [CrossRef]
- Krasnyuk, I.I. Modifikatsiya metodiki kolichestvennogo opredeleniya flavonoidov v trave zolotarnika kanadskogo (Solidago canadensis). Vestn. Mosk. Univ. Ser. 2 Khimiya 2019, 60, 49–54. [Google Scholar]
- Kashtanova, O.A.; Tkachenko, O.B.; Kondratieva, V.V.; Voronkova, T.V.; Olekhnovich, L.S. Resistance of horse chestnut species (Aesculus L.) to ohrid miner or chestnut miner moth (Cameraria ohridella Deschka & Dimic). Bull. Mosc. Soc. Natur. Biol. Ser. 2020, 125, 45–51. (In Russian) [Google Scholar]
- Jaenike, J. Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst. 1990, 21, 243–273. [Google Scholar] [CrossRef]
- Johne, A.B.; Weissbecker, B.; Schutz, S. Volatile emissions from Aesculus hippocastanum induced by mining of larval stages of Cameraria ohridella influence oviposition by conspecific females. J. Chem. Ecol. 2006, 32, 2303–2319. [Google Scholar] [CrossRef] [PubMed]
- Desurmont, G.A.; Donoghue, M.J.; Clement, W.L.; Agrawal, A.A. Evolutionary history predicts plant defense against an invasive pest. Proc. Natl. Acad. Sci. USA 2011, 108, 7070–7074. [Google Scholar] [CrossRef]
- Underwood, W. The plant cell wall: A dynamic barrier against pathogen invasion. Front. Plant Sci. 2012, 3, 85. [Google Scholar] [CrossRef]
- Evert, R.F. Esau’s Plant Anatomy, Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 323–355. [Google Scholar]
- Weryszko-Chmielewska, E.; Haratym, W. Changes in Leaf Tissues of Common Horse Chestnut (Aesculus hippocastanum L.) Colonised by the Horse-Chestnut Leaf Miner (Cameraria ochridella Deschka and Dimić). Acta Agrobot. 2011, 64, 11–22. [Google Scholar] [CrossRef]
- Holoborodko, K.; Seliutina, O.; Alexeyeva, A.; Brygadyrenko, V.; Ivanko, I.; Shulman, M.; Pakhomov, O.; Loza, I.; Sytnyk, S.; Lovynska, V.; et al. The Impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the State of Aesculus hippocastanum Photosynthetic Apparatus in the Urban Environment. Int. J. Plant Biol. 2022, 13, 223–234. [Google Scholar] [CrossRef]
- Łukasiewicz, S. The influence of urban environment factors on the growth of horse chestnut Aesculus hippocastanum L. Acta Sci. Polonorum. Form. Circumiectus 2022, 21, 17–33. [Google Scholar] [CrossRef]
- Tyapkina, A.P.; Shiryaeva, N.A.; Silaeva, Z.G. Assessment of the condition of horse chestnut (Aesculus hippocastanum L.) plantings at some landscaping sites in Orel. Vestn. Agrar. Nauk. 2022, 1, 38–44. [Google Scholar] [CrossRef]
- Paterska, M.; Bandurska, H.; Wysłouch, J.; Molińska-Glura, M.; Moliński, K. Chemical composition of horse-chestnut (Aesculus) leaves and their susceptibility to chestnut leaf miner Cameraria ohridella Deschka and Dimic. Acta Physiol. Plant. 2017, 39, 105. [Google Scholar] [CrossRef]
- Materska, M.; Pabich, M.; Sachadyn-Król, M.; Konarska, A.; Weryszko-Chmielewska, E.; Chilczuk, B.; Staszowska-Karkut, M.; Jackowska, I.; Dmitruk, M. The Secondary Metabolites Profile in Horse Chestnut Leaves Infested with Horse-Chestnut Leaf Miner. Molecules 2022, 27, 5471. [Google Scholar] [CrossRef] [PubMed]
- Bielarska, A.M.; Jasek, J.W.; Kazimierczak, R.; Hallmann, E. Red horse chestnut and horse chestnut flowers and leaves: A potential and powerful source of polyphenols with high antioxidant capacity. Molecules 2022, 27, 2279. [Google Scholar] [CrossRef]
- D’Costa, L.; Simmonds, M.S.; Straw, N.; Castagneyrol, B.; Koricheva, J. Leaf traits influencing oviposition preference and larval performance of Cameraria ohridella on native and novel host plants. Entomol. Exp. Appl. 2014, 152, 157–164. [Google Scholar] [CrossRef]
- Menkis, A.; Povilaitiene, A.; Marciulynas, A.; Lynikiene, J.; Gedminas, A.; Marciulyniene, D. Occurrence of common phyllosphere fungi of horse-chestnut (Aesculus hippocastanum) is unrelated to degree of damage by leafminer (Cameraria ohridella). Scand. J. For. Res. 2019, 34, 26–32. [Google Scholar] [CrossRef]
Section | Species | GPS of the Location of the Trees in the Chestnut Collection MBG RAS | The Number of Trees in the Collection | Accession Number, MB RAS | Description |
---|---|---|---|---|---|
Aesculus L. | A. hippocastanum L. | 1a-55.845042; 37.599364 1b-55.845123; 37.599442 1c- 54.845057; 37.599240 | 17 pieces | 1950-149710; 1953-149713; 1954-3327; 1959-49734 | Endemic to the Balkan Peninsula, it can be found in Bulgaria, Greece, and Albania. Widely cultivated in Europe and North America. Approximately 25–30 m in height, it has dense white flowers and 5 or 7 cuneate-obovate leaflets. Since 1941, 22 accessions were grown in MBG RAS from seeds obtained from various botanical gardens. |
Pavia (Mill.) Persoon | A. glabra Willd | 2a-55.845395; 37.599834 2b-55.845491; 37.599748 2c-55.845473; 37.599990 | 6 pieces | 1950-3448; 1954-3448/45; 1965-3448/65; 1965-149712 | 10–30 m tall, can be found in Pennsylvania, Iowa, Arkansas, Tennessee, and Alabama. It has yellow flowers. Approximately 5–7 leaflets, oblong-obovate or elliptic-obovate. In dendroculture since 1809, it is widespread in botanical gardens of Europe, Central Asia, and North America. Three accessions were grown from seeds obtained from botanical gardens; there are also plants of the MBS reproduction. |
A. flava Aiton | 3a-55.844992; 37.599775 3b-55.844942; 37.599630 3c-55.844981; 37.599931 | 5 pieces | 1953-4182; 1961-95638 | Distributed in North America, it is 20–30 m tall and has yellow flowers. Leaves have 5 or 7 leaflets. Three accessions were grown from seeds obtained from different botanical gardens, but there were also plants of MBS reproduction. | |
A. pavia L. | 4a-55.845072; 37.600070 4b-55.844966; 37.600172 | 2 pieces | 1961-95641; 1965-31217 | North American species up to 10 m tall have red flowers. Leaves have 5 or 7 leaflets, oblong, obovate, and narrowly elliptic. Since 1950, one accession has been grown in the MBG from seeds obtained from the Trostyanets Arboretum (Ukraine). | |
A. × carnea Hayne | 5a-55.845253; 37.599973 5b-55.845250; 37.6000150 | 3 pieces | 1960-86340 1964-87325 | Tree up to 15 (25) m tall. The hybrid was obtained in culture in 1818. It is found quite often in the south of Europe and North America. In MBS since 1989. Three accessions were grown from seeds received from Holland. | |
Macrothyrsus (Spach) K. Koch | A. parviflora Walter | 6a-55.845078; 37.600515 6b-55.845156; 37.600623 | 2 pieces | No data | North American species, up to 5 m tall. Leaves have 5 or 7 leaflets; elliptic to oblong-obovate. It has white flowers. |
Calothyrsus (Spach) K. Koch | A. chinensis Bunge | 7a-55.845250; 37.600451 7b-55.845340; 37.600585 | 2 pieces | No data | Distributed in China, up to 25 m tall and has white flowers. Leaves have 5–7 leaflets, oblong-lanceolate or oblongoblanceolate |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
Polyphenols | |||||||
Glycerol | 1.91 | 3.92 | 12.03 | 5.17 | 4.45 | 14.49 | 0.01 |
1,2,2-3-Butanetriol | 0.27 | 0.62 | 0.01 | 0.79 | 0.01 | 0.01 | 7.80 |
L-(-)-Arabitol | 1.87 | 4.38 | 8.81 | 0.01 | 2.6 | 3.41 | 0.64 |
D-Fucitol | 0.89 | 0.01 | 0.01 | 6.35 | 0.41 | 2.30 | 4.77 |
D-Mannotol | 0.45 | 0.52 | 0.01 | 0.01 | 0.01 | 0.01 | 2.02 |
1,5-Angidroglucitol | 11.04 | 11.67 | 8.75 | 4.62 | 2.13 | 0.01 | 5.35 |
Scillo-Inositol | 1.75 | 1.72 | 0.00 | 0.20 | 0.95 | 0.01 | 0.01 |
Galactinol | 14.19 | 5.96 | 1.91 | 0.60 | 2.84 | 0.60 | 0.44 |
D-Glucitol | 0.95 | 0.74 | 2.35 | 2.38 | 0.01 | 0.01 | 0.01 |
Maltitol | 2.85 | 2.05 | 0.57 | 0.01 | 0.01 | 0.01 | 0.01 |
Adonitol | 0.01 | 0.01 | 0.01 | 0.01 | 14,11 | 0.01 | 0.01 |
Organic acid | |||||||
Glucopyranuronic acid | 0.38 | 3.97 | 0.01 | 23.22 | 4.45 | 0.01 | 22.26 |
Butanedioic acid | 4.92 | 9.91 | 11.69 | 12.87 | 14.98 | 17.29 | 13.27 |
Quininic acid | 6.18 | 3.65 | 0.78 | 0.12 | 7.47 | 22.50 | 4.96 |
Gluonic acid | 4.09 | 4.67 | 1.30 | 5.07 | 6.63 | 1.70 | 5.10 |
Gallic acid | 0.54 | 0.84 | 0.29 | 0.01 | 0.01 | 0.01 | 6.37 |
Ribonic acid | 0.25 | 0.01 | 1.94 | 0.01 | 1.27 | 0.01 | 0.01 |
D-(+)-Galacturonic acid | 0.45 | 2.29 | 10.35 | 0.01 | 0.01 | 1.05 | 5.64 |
Sugar derivatives | |||||||
D-erythro-2-pentulose | 0.62 | 22.23 | 0.59 | 1.11 | 1.62 | 8.54 | 7.42 |
Methyl-a-D-glucofuranoside | 0.75 | 1.42 | 3.37 | 0.28 | 6.87 | 13.07 | 7.29 |
D-Psicofuranose | 9.30 | 3.72 | 6.43 | 0.01 | 0.82 | 0.25 | 3.37 |
D-(-)-Tagatofuranose | 1.45 | 0.02 | 13.58 | 24.49 | 2.84 | 3.01 | 4.05 |
DL-Arabinofuranoside | 3.05 | 0.01 | 0.01 | 4.33 | 4.86 | 2.97 | 0.42 |
Methyl galactoside | 6.04 | 0.01 | 4.87 | 1.33 | 3.38 | 1.47 | 0.84 |
b-D-(+)-Talophyranose | 2.15 | 0.01 | 2.99 | 0.84 | 0.22 | 0.05 | 0.01 |
Talofuranose | 1.57 | 1.57 | 0.61 | 0.09 | 1.03 | 0.07 | 1.11 |
Deoxyglucose | 0.60 | 13.92 | 0.78 | 0.12 | 2.25 | 0.10 | 0.09 |
a-D-Ribofuranose | 0.25 | 0.99 | 0.01 | 0.05 | 0.77 | 0.05 | 0.01 |
Glucosylspingosine | 6.55 | 0.01 | 0.01 | 0.01 | 1.75 | 3.21 | 1.15 |
D-Turanose | 2.98 | 0.06 | 2.75 | 1.11 | 1.28 | 0.22 | 0.20 |
Methyl-a-N-acetyl-D-galactoside | 4.89 | 0.01 | 3.18 | 0.01 | 0.64 | 0.01 | 0.37 |
D-(-)-Sorbofuranose | 1.68 | 0.01 | 2.63 | 0.01 | 0.75 | 0.01 | 0.18 |
b-Arabinopyranose | 2.07 | 0.01 | 0.01 | 0.01 | 1.63 | 0.01 | 0.01 |
1-c-Octylhexopyranose | 7.31 | 1.01 | 0.94 | 1.21 | 1.16 | 0.01 | 0.11 |
DL-Arabinopyranose | 2.78 | 1.38 | 0.01 | 0.01 | 1.57 | 0.01 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogoutdinova, L.R.; Shelepova, O.V.; Konovalova, L.N.; Tkachenko, O.B.; Gulevich, A.A.; Baranova, E.N.; Mitrofanova, I.V. Susceptibility of Different Aesculus Species to the Horse Chestnut Leaf Miner Moth: Chemical Composition and Morphological Features of Leaves. J. Zool. Bot. Gard. 2024, 5, 691-707. https://doi.org/10.3390/jzbg5040045
Bogoutdinova LR, Shelepova OV, Konovalova LN, Tkachenko OB, Gulevich AA, Baranova EN, Mitrofanova IV. Susceptibility of Different Aesculus Species to the Horse Chestnut Leaf Miner Moth: Chemical Composition and Morphological Features of Leaves. Journal of Zoological and Botanical Gardens. 2024; 5(4):691-707. https://doi.org/10.3390/jzbg5040045
Chicago/Turabian StyleBogoutdinova, Liliya R., Olga V. Shelepova, Ludmila N. Konovalova, Oleg B. Tkachenko, Alexander A. Gulevich, Ekaterina N. Baranova, and Irina V. Mitrofanova. 2024. "Susceptibility of Different Aesculus Species to the Horse Chestnut Leaf Miner Moth: Chemical Composition and Morphological Features of Leaves" Journal of Zoological and Botanical Gardens 5, no. 4: 691-707. https://doi.org/10.3390/jzbg5040045
APA StyleBogoutdinova, L. R., Shelepova, O. V., Konovalova, L. N., Tkachenko, O. B., Gulevich, A. A., Baranova, E. N., & Mitrofanova, I. V. (2024). Susceptibility of Different Aesculus Species to the Horse Chestnut Leaf Miner Moth: Chemical Composition and Morphological Features of Leaves. Journal of Zoological and Botanical Gardens, 5(4), 691-707. https://doi.org/10.3390/jzbg5040045