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Abstract: The diagnostic utility and reference intervals for blood studies in Aldabra giant
tortoises (Aldabrachelys gigantea) are not well described. Capillary zone electrophoresis
(CZE) has been evaluated in non-mammalian vertebrates and shows a higher fraction
resolution and less overall variation in results than agarose gel electrophoresis. To date,
the investigation of novel biomarkers has been limited in reptiles. MRP-126, a calgranulin
homologue in reptiles, has not been evaluated for its diagnostic potential in tortoises.
The goals of this study were to establish preliminary reference intervals for CZE protein
electrophoresis and to examine MRP-126 as a potential biomarker of inflammation in
Aldabra giant tortoises. In 27 clinically healthy tortoises, CZE resolved seven protein
fractions. In tortoises with an inflammatory or infectious disease process (n = 4), MRP-126
concentrations and CZE fractions did not consistently increase or were abnormal. To
strengthen the understanding of the diagnostic value of CZE and MRP-126 concentration
in this species, future studies should evaluate a larger sample set inclusive of repeated
measures of clinically abnormal tortoises as well as CZE and MRP-126 variations in regard
to additional health conditions, age, sex, season, and geographic location.

Keywords: Aldabra giant tortoise; Aldabrachelys gigantea; biomarker; capillary zone
electrophoresis; MRP-126; protein electrophoresis

1. Introduction
The Aldabra giant tortoise (Aldabrachelys gigantea) is one of the largest species of

tortoise and is classified as vulnerable to extinction [1]. Though relatively common in zoo-
logical collections, there is limited information on the plasma protein electrophoretogram
of this species or its diagnostic value [2]. In addition, no studies have been conducted to
evaluate the specific biomarkers of inflammation in this species.

Hematology has variable utility in the detection of inflammatory or infectious pro-
cesses in many reptile species [3–5]. Studies suggest that plasma protein electrophore-
sis (EPH) may provide a more clinically useful monitoring tool than hematology in
reptiles [6–9]. Agarose gel electrophoresis (AGE) and, to a lesser degree, capillary zone
electrophoresis (CZE), are commonly performed in veterinary laboratories [6]. Typically,
CZE has a higher fraction resolution than AGE, allowing for improved quantitation of
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globulin fractions and less overall variation in results [6,10]. Previous studies have found
plasma protein electrophoretic profiles to be species-specific, requiring the calculation
of reference intervals (RI) by species for improved clinical application of EPH [7,9–18].
Additionally, the bromocresol green (BCG) method of albumin measurement, used in most
chemistry analyzers, has been found to not be valid in chelonian species [19–21].

Acute phase proteins (APP) are part of the innate immune response and can be
biomarkers of inflammation, infection, neoplasia, stress, and trauma [22]. Toll-like re-
ceptors (TLR) are a family of highly evolutionarily conserved transmembrane proteins
involved in cell–cell interactions and signaling within the innate immune system [23–27].
Calgranulins, a class of S100 proteins, are expressed by mammalian white blood cells in
response to TNFα and IL-1β and have high expression under infectious conditions [28,29].
Through the binding of Ca(II), these proteins allow intracellular regulation, facilitate
extracellular cell-to-cell communication, and inhibited microbial growth through trace
element sequestration [28,29]. Calgranulins are not present in birds and reptiles; rather,
MRP-126 is the single calgranulin homologue in these species [27]. In domestic chickens
(Gallus domesticus), MRP-126 has been identified as a homologue to mammalian TLR-4
that restricts microbial growth through calcium-dependent zinc sequestration [27,29,30].
Experimental Salmonella enteritidis infections in chickens resulted in increased MRP-126
concentrations [31–33]. MRP-126 has been identified in green turtles (Chelonia mydas),
and its expression significantly decreased during the rehabilitation of debilitated animals,
suggesting that its expression may be related to disease state [34,35]. A commercial assay is
available for use in sea turtles, making it a readily accessible research tool for projects in
other chelonian species when there is a demonstration of reagent cross reactivity.

The objective of this study was to establish preliminary CZE reference intervals and to
evaluate MRP-126 as a potential biomarker of inflammation in Aldabra giant tortoises.

2. Materials and Methods
Sample Information: Lithium heparinized plasma samples were obtained from clini-

cally healthy Aldabra giant tortoises (n = 27) from 9 zoological institutions. The study popu-
lation age ranged from 1 to 91 years of age with 3 tortoises of unknown age (median = 45 yr,
95% CI: 15.5–58.8 yr) and included 13 male, 11 female, and 3 tortoises of unknown sex. Ani-
mals were deemed clinically healthy by the attending veterinarian at each facility following
a physical examination, complete blood count, and plasma biochemistry at the time of
sample collection. Sample collection and processing were performed according to each insti-
tution’s protocol. Heparinized plasma samples were analyzed prospectively on submission
to the laboratory (University of Miami, Miami, FL 33136, USA) (n = 25) or shared as banked
samples after storage at −80 ◦C for less than 4 years with no previous freeze–thaw cycles
(n = 2). All samples were free from lymph contamination, hemolysis, and lipemia. Samples
were collected between May 2020 and February 2024 with the majority of samples collected
between May 2023 and October 2023. A total of 5 samples from tortoises with infectious or
inflammatory disease processes were evaluated, representing 3 individuals with 1 sampled
serially. The unhealthy animals had an age range of 30–90 years and included 2 males and
1 female. The represented disease processes were two localized infections, hepatic lipidosis,
and follicular stasis. This small number of clinically unhealthy tortoises was used for a
preliminary comparison of electrophoretic changes between diseased and healthy animals,
as well as for the initial evaluation of MRP-126 as a potential marker of inflammation in
this species.

Capillary Zone Protein Electrophoresis: Total protein was determined using the biuret
method on the Vitros 5600 analyzer (Ortho Vitros, Rochester, NY 14626, USA). Samples
were analyzed per manufacturer protocols for urine protein electrophoresis using a Sebia
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Capillarys 2 Flex Piercing system (Sebia, Norcross, GA 30093, USA). Samples were diluted
1:8 with urine running buffer. The dilution was previously optimized by the laboratory for
use in many animal species, including tortoises. The urine buffer was used as it aids in the
fraction migration of avian and reptilian species by placing anodic and cathodic migration
stopping points. Fractions were quantitated as the percentage of total protein, and absolute
values were determined by multiplying these results by the total protein. Albumin was
also determined by the BCG method on the Vitros 5600 analyzer. A coefficient of variation
analysis was conducted for the CZE method. A single sample was run eight times within
one run.

MRP-126 Testing: Samples were analyzed in duplicate using the turtle MRP-126
SPARCL assay (Life Diagnostics, West Chester, PA 19380, USA) per manufacturer recom-
mendations. Analysis was conducted using a FLUOstar Omega reader (BMG LABTECH,
Cary, NC 27513, USA). A coefficient of variation analysis was conducted on a single sample
run eight times within one run.

Statistics: Reference intervals were generated per the American Society for Veterinary
Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards guidelines for
sample sizes of less than 40 using MedCalc software (version 22.009, MedCalc Software,
8400 Ostend, Belgium) [36]. This robust method was used to generate the intervals, and
no outliers were removed. Spearman’s correlation coefficient analyses were conducted to
compare patient age versus protein fraction data. Method comparison analyses for albumin
measured by CZE EPH and BCG were conducted using Passing and Bablok regression and
Bland–Altman analysis [37].

3. Results
A representative plasma capillary zone electrophoretogram of a healthy tortoise is

presented in Figure 1. Capillary zone electrophoresis consistently resolved a minimum of
seven fractions in Aldabra giant tortoises: two prealbumin migrating fractions, albumin, α1-
globulin, α2-globulin, β-globulin, and γ-globulin fractions (Figure 1A). In some clinically
healthy and unhealthy tortoises, additional fractions were observed mostly as shoulders
off the primary fractions for α1, β, and γ-globulins (Figure 1B). The intra-assay coefficient
of variation ranged from 1.7 to 8.6% for albumin and globulin fractions and 18.3 to 29.0%
for the prealbumin fractions. There was no significant correlation between tortoise age and
any CZE measurand (p > 0.05) except for a moderate positive correlation between age and
γ-globulins (r = 0.46, p = 0.03).
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Figure 1. Respective plasma capillary zone electrophoretograms for clinically healthy (A) and
unhealthy ((B); Case 3) Aldabra giant tortoises (Aldabrachelys gigantea). The fractions are prealbumin
1, prealbumin 2, albumin, α1-globulin, α2-globulin, β-globulin, and γ-globulin from left to right.
In (B), note the marked decrease in albumin and increase in prealbumin 2 (arrow) when compared
to (A).

The MRP-126 assay was validated for use in Aldabra giant tortoises. Linearity under
dilution was found by Deming’s regression; the slope included 1, and the y-intercept
included 0. The Runs test did not show a significant deviation from linearity (p = 0.67). The
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mean intra-assay coefficient of variation was 2.3%, and the minimum detection level was
0.1 mg/L.

Reference intervals were calculated using CZE fractional data and MRP-126 concen-
tration from the 27 clinically normal tortoises (Table 1). MRP-126 had a RI of 0–14.4 mg/L;
however, three of the reportedly healthy animals had concentrations outside of the calcu-
lated reference interval, measuring 18.1, 19.9, and 23.4 mg/L.

Table 1. Reference intervals of plasma capillary zone electrophoresis fractions and MRP-126 in healthy
Aldabra giant tortoises (Aldabrachelys gigantea, n = 27). NG = non-Gaussian, G = Gaussian.

Protein Unit Mean SD Median Min Max Normality p-Value Reference
Interval

Lower CI
90%

Upper CI
90%

Total protein g/dL 4.3 1.2 4.0 2.4 7.0 G 0.39 1.6–6.7 1.0–2.3 5.9–7.4

A/G Ratio 0.24 0.05 0.23 0.18 0.41 NG 0.001 0.12–0.34 0.09–0.16 0.3–0.38

Prealbumin 1
g/dL 0.03 0.02 0.03 0.01 0.08 NG 0.015 0–0.07 0-0 0.05–0.08

% 0.7 0.5 0.6 0.2 2.1 NG 0.007 0–1.7 0-0 1.3–2.1

Prealbumin 2
g/dL 0.28 0.29 0.17 0.04 1.32 NG <0.0001 0–0.83 0-0 0.51–1.08

% 6.0 4.4 4.5 1.7 18.9 NG 0.004 0–14 0-0 10.5–17.6

Albumin
g/dL 0.53 0.13 0.53 0.3 0.82 G 0.59 0.23–0.79 0.18–0.32 0.72–0.88

% 12.7 2.2 13 7.6 16.1 G 0.56 8.1–17.5 6.8–9.6 16.4–18.5

α1-globulins g/dL 1.34 0.48 1.28 0.61 2.63 NG 0.004 0.18–2.19 0–0.56 1.85–2.55
% 31 6 30.3 19.6 39.5 G 0.12 18.4–43.9 14.7–21.6 40.4–47.6

α2-globulins g/dL 0.65 0.34 0.53 0.25 1.38 G 0.13 0–1.32 0–0.01 1.04–1.57
% 15.0 5.9 14.0 4.1 28.8 G 0.45 1.9–27 0–5.1 22.8–30.6

β-globulins g/dL 0.81 0.26 0.77 0.42 1.54 G 0.06 0.22–1.34 0.05–0.37 1.14–1.51
% 19.3 4.8 19.3 11.1 26.9 G 0.31 9–29.6 6.7–12.1 27.2–32.2

γ-globulin g/dL 0.65 0.23 0.63 0.31 1.21 G 0.33 0.15–1.1 0.04–0.28 0.96–1.25
% 15.3 3.6 15.2 7.6 20.3 G 0.44 8.1–23 6–10.1 21.3–24.8

MRP-126 mg/L 3.45 6.33 0.86 0.3 23.4 NG <0.0001 0–14.4 0-0 5.4–20

Albumin levels were compared between the BCG method and CZE. The median of
the BCG method was 1.6 g/dL (95% CI: 1.5–1.8) compared to the CZE method median
of 0.52 g/dL (95% CI: 0.48–0.56). The BCG results were found to positively but weakly
correlate with the albumin determined by CZE (r = 0.41, p = 0.0076). The regression equation
was y(BCG) = −0.17 + 3.3x (CZE). Using Passing and Bablok regression, a proportional
error was observed as the slope differed from 1 (0.30, 95% CI: 0.18–0.0.48) (Figure 2).
By Bland–Altman analysis, the BCG method was found to have a mean positive bias of
1.14 g/dL (Figure 2).

The infectious or inflammatory disease processes in the unhealthy tortoises are de-
scribed in Table 2. The sample size was insufficient for statistical analysis by health status.
Cases 1 and 2 were diagnosed on examination, while hepatic lipidosis and follicular stasis
were identified on necropsy of Case 3. There was a mild increase in α2-globulin with a
carapace infection (Case 2). The increase in prealbumin 2 measured at the start of clinical
signs in Case 3 (Case 3B) decreased to within the reference interval in 9 days (Case 3C).
Over 9 days of clinical signs, the electrophoretogram had a 20% decrease in total protein
with a 12.8-fold increase in MRP-126. The electrophoretogram for sample 3C is shown
in Figure 1B. There were no consistent electrophoretic abnormalities in these tortoises,
although mild changes were observed. MRP-126 was increased outside of the RI in two out
of three tortoises.
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Figure 2. Passing–Bablok regression analysis (A) and Bland–Altman plot (B) for the comparison of
albumin measured by CZE and BCG methods in Aldabra giant tortoises (Aldabrachelys gigantea). In
panel (A), the green line is the regression line, and the dotted gray line is the line of identity. The
two dashed lines show the 95% limits of agreement. In panel (B), the mean percentage and limits
of agreement are shown. The green dashed line is the regression line of the differences between
the methods.

Table 2. Case presentations of Aldabra giant tortoises (Aldabrachelys gigantea) with infectious or
inflammatory disease processes. Bolded values fall outside of the reference interval (RI) calculated in
this study. M = male, F = female.

Protein Unit Case 1 Case 2 Case 3A Case 3B Case 3C Reference
Interval

Age/sex Y 90/M 56/M 30/F 33/F 33/F

Clinical finding Chronic limb
infection

Carapace
infection

Clinically
normal

Hepatic lipidosis, follicular
stasis

Total protein g/dL 4.8 5.4 6.2 6 4.6 1.6–6.7

A/G ratio 0.18 0.18 0.19 0.3 0.23 0.12–0.34

Prealbumin 1 g/dL 0.01 0.02 0.03 0.07 0.05 0–0.07

Prealbumin 2 g/dL 0.17 0.29 0.1 0.96 0.58 0–0.83

Albumin g/dL 0.56 0.49 0.87 0.36 0.24 0.23–0.79

α1-globulins g/dL 1.05 1.33 2.98 1.96 1.39 0.18–2.19

α2-globulins g/dL 1.17 1.52 0.61 1.03 0.81 0–1.32

β-globulins g/dL 1.33 0.94 1.05 0.79 1.06 0.22–1.34

γ-globulin g/dL 0.51 0.8 0.55 0.83 0.47 0.15–1.1

MRP-126 mg/L 0.7 19.3 1.5 2.8 33.3 0–14.4

4. Discussion
This study provides the first description of the CZE method of electrophoresis in

Aldabra giant tortoises, which consistently resolved seven fractions. The CZE method with
a different analyzer and protein buffer in spur-thighed tortoises (Testudo graeca) resolved
five fractions, while samples from Hermann’s tortoises (Testudo hermanni), red-eared sliders
(Trachemys scripta elegans), and map turtles (Graptemys spp.) consistently resolved five
fractions often with a split albumin peak (Table 3) [13]. In green turtles, CZE resolved more
fractions than Aldabra tortoises with nine, including three prealbumin migrating fractions
and two γ-globulin fractions [10]. While prealbumin migrating fractions could be resolved,
the utility of these measurements may be limited by the high intra-assay coefficient of
variation in these fractions. The latter finding is common to protein electrophoresis where
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fractions with lower composition show higher variation [6]. The variation observed in the
quantitation of the other fractions is consistent with that commonly reported with CZE
in animal species [6]. While these fractions are labeled as prealbumin because of their
migration characteristics, the composition of the fractions has yet to be determined [6].
Notably, in addition to differences in fraction resolution, the Aldabra tortoise species
exhibits a consistently lower A/G ratio versus other chelonian species (Table 3). This is
related to a > 50% lower albumin fraction and increased globulin expression. As additional
CZE studies are completed in tortoises, it will be of interest to see if the Aldabra tortoise is
unique in this plasma protein composition. The higher globulin component may reflect
the presence of lipoproteins and other acute phase reactants which are present at higher
levels with a clinically normal status. A wide variation in EPH globulin composition is a
characteristic across different taxonomic classes and orders [6]. Phylogenetic studies have
suggested that the tortoise species inhabiting Madagascar and the surrounding islands,
including the Aldabra giant tortoise, split from Geochelone about 14.5–9.5 million years
ago [38]. This evolutionary separation may also contribute to the different electrophoretic
fractions seen in Aldabra giant tortoises.

Table 3. Mean (and standard deviation) values reported as reference intervals for total protein, A/G
ratio, and albumin in chelonian species. Albumin was determined and A/G ratio calculated from
capillary zone electrophoresis (CZE) methodology. Fall season data were selected for consistency of
data presentation; see reference for additional data on spring and summer seasons.

Species [Ref.] Number of Total CZE
Fractions/Globulin Fractions

Experimental
Design

Total Protein,
g/dL A/G Ratio Albumin,

g/dL

Aldabra giant tortoise
(Aldabrachelys gigantea)

[current study]
7/4 Various seasons

and sexes, n = 27 4.3 (1.2) 0.24 (0.05) 0.53 (0.13)

Spur-thighed tortoise
(Testudo graeca) [13] 5/3 Fall season, male 3.6 (0.9) 0.67 (0.24) 1.44 (0.55)

Spur-thighed tortoise
(T. graeca) [13] 5/3 Fall season, female 3.7 (0.8) 0.88 (0.27) 1.71 (0.48)

Hermann’s tortoise
(Testudo hermanni) [14] 5/3 Fall season, male,

n = 80 2.9 (0.9) 0.57 (0.12) 1.01 (0.50)

Hermann’s tortoise
(T. hermanni) [14] 5/3 Fall season, female,

n = 39 3.3 (1.3) 0.91 (0.22) 1.41 (0.64)

Red-eared slider (Trachemys
scripta elegans) [12] 5/3 Fall season, male,

n = 23 4.5 (1.1) 0.38 (0.09) 1.21 (0.31)

Red-eared slider
(T. scripta elegans) [12] 5/3 Fall season, female,

n = 56 4.6 (1.1) 0.49 (0.14) 1.49 (0.51)

Map turtle
(Graptemys spp.) [12] 5/3 Fall season, male,

n = 7 4.4 (0.7) 0.59 (0.19) 1.63 (0.53)

Map turtle
(Graptemys spp.) [12] 5/3 Fall season, female,

n = 22 4.3 (1.3) 0.54 (0.13) 1.50 (0.53)

Green turtles
(Chelonia mydas) [10] 9/5 Various seasons

and sex, n = 21 n/a n/a n/a

In clinically abnormal tortoises, there were no consistent changes in CZE fractions.
Additional repeated measures would have been beneficial for this study, but the preliminary
finding that no single fraction was consistently increased or decreased in tortoises with an
inflammatory disease process suggests variation in protein expression by disease processes
in Aldabra giant tortoises. An analysis of additional abnormal samples with repeated
and additional disease processes is needed to identify any trends. A previous study
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evaluating plasma proteomics of green turtles found a large number of proteins with
variable expression between debilitated and recovered animals [35], and similar variation
in protein expression may be present in Aldabra giant tortoises.

Studies in other chelonian species have found that EPH fractions can vary with sex,
season, age, geographic location, health status, and reproductive status [4,7,9,11–18,20].
Although the sample size across ages was limited in the present study, γ-globulins were
found to increase with age; this finding is consistent with reports in other mammalian
and non-mammalian species [6]. An evaluation for the effects of season, sex, reproductive
status, and geographic location on CZE fractions was outside the scope of this preliminary
study. These factors and the relatively low sample set of 27 individuals may have had a role
in the wide preliminary CZE RI which were calculated for this species. This preliminary
CZE data in Aldabra giant tortoises should provide a foundation for future studies that
investigate the effects of these variables on RI to improve the diagnostic utility of CZE in
this species.

Studies in other non-traditional species, including chelonians, have found that the
BCG method of albumin determination to be invalid and less accurate than EPH due to
the reaction of the BCG dye with globulins [6,19–21]. One study in Hermann’s tortoises
found agreement between albumin concentrations measured using BCG and AGE EPH [16];
however, the BCG method was found to be inaccurate in five species of chelonians, includ-
ing Hermann’s tortoises, and particularly in diseased animals [20,21]. In Aldabra giant
tortoises, the BCG method had a positive bias compared to CZE, as has been documented
in other reptile species [19–21]. Given the BCG reactivity with globulins and the possible
increase in globulins in unhealthy animals, CZE is recommended for albumin measurement
in Aldabra giant tortoises.

This study validated the use of the commercially available MRP-126 assay in Aldabra
giant tortoises and reported reference intervals for this protein. Acute phase proteins may be
positive/increasing or negative/decreasing in response to activation of the innate immune
system [22]. MRP-126 has been found to be a positive APP in domestic chickens and
green turtles [31–35]. Three clinically healthy tortoises had MRP-126 concentrations several
folds higher than the upper limit of the reference interval, but undiagnosed inflammatory
conditions remain a possibility in these individuals. These values were not removed from
RI calculations per ASVCP guidelines and thus may have skewed these preliminary values.
Despite all clinically abnormal tortoises having been diagnosed with disease processes
expected to involve inflammation, MRP-126 was not consistently increased; however, a
12.8-fold increase over the course of 9 days was documented in one tortoise (Table 2, Case
3). This suggests that MRP-126 expression can change over the course of a disease process
in Aldabra giant tortoises. Furthermore, the variation in MRP-126 concentrations between
the clinically abnormal tortoises and the three clinically normal tortoises with increased
MRP-126 concentrations suggests that the expression of MRP-126 is not uniform across
inflammatory disease processes in this species and may not be useful as a diagnostic tool in
this species. Ongoing therapies may have affected both EPH and MRP-126 results; however,
this was outside of the scope of this preliminary study. Additional prospective studies
measuring MRP-126 repeatedly across multiple inflammatory disease processes, both acute
and chronic, may help determine the association between MRP-126 concentration, specific
inflammatory disease processes, and the severity of clinical disease.

The small sample size of clinically abnormal tortoises in this study limited the inter-
pretation of MRP-126 levels in this species. Our preliminary findings suggest that MRP-126
concentration may be a marker of inflammation for some disease processes; however, the
evaluation of additional disease processes, a larger number of samples, and the repeated
sampling of clinically abnormal individuals is required to guide an interpretation of MRP-
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126 concentrations in Aldabra giant tortoises and to better determine its use as a prognostic
indicator. Additional studies should be undertaken to identify and develop reagents for
other possible markers that may have clinical or research applications in tortoise species.
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