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Simple Summary: The presented paper describes the radiation bystander effect: the negative re-
sponse of a non-irradiated cell when its neighbor cell was directly irradiated. The various numerical
biophysical models of the bystander effect were presented in detail and discussed. The last model is
the authors’ own, based on the Monte Carlo technique.

Abstract: It is well known that ionizing radiation can cause damages to cells that interact with
it directly. However, many studies have shown that damages also occur in cells that have not
experienced direct interaction. This is due to the so-called bystander effect, which is observed when
the irradiated cell sends signals that can damage neighboring cells. Due to the complexity of this
effect, it is not easy to strictly describe it biophysically, and thus it is also difficult to simulate. This
article reviews various approaches to modeling and simulating the bystander effect from the point of
view of radiation biophysics. In particular, the last model presented within this article is part of a
larger project of modeling the response of a group of cells to ionizing radiation using Monte Carlo
methods. The new approach presented here is based on the probability tree, the Poisson distribution
of signals and the saturated dose-related probability distribution of the bystander effect’s appearance,
which makes the model very broad and universal.
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1. Introduction

The bystander effect is one of the non-targeted (indirect) effects of ionizing radiation’s
interaction with cells. As a result of its occurrence, various types of damage (including
mutations) appear not only in the directly irradiated cell, but also among its non-irradiated
neighbors. One of the first experiments to confirm the presence of the bystander effect took
place in the early 1990s. It consisted in irradiating 1% of Chinese hamster ovary cells with a
low dose of ionizing radiation. As a result of this irradiation, as much as 30% of cells were
damaged [1,2]. Moreover, by increasing the dose from 0.3 to 2.5 mGy, the number of lesions
increased, while for higher doses, their number remained constant. These results were the
first observations of the bystander effect, although its mechanism was initially not fully
understood. Generally speaking, this phenomenon consists of the appearance of various
types of irradiation effects, such as reduced survival, carcinogenesis or apoptosis, in cells
that have not been directly exposed to ionizing radiation. In irradiated cells, apart from
specific ionization of macromolecules, long-lived radicals (atoms or molecules containing
unpaired electrons) may appear with a half-life of approximately 20 h. Thus, mainly they
can induce DNA damage in bystander (neighboring) cells. Moreover, studies [2] have
shown that nitric oxide also had a significant influence on the irradiation of cells, causing
cell damage. Being a free radical, this molecule plays an important role in many biological
processes, e.g., it stimulates apoptosis.

It is important to clarify, at this point, that the indirectness of the bystander effect (the
use of term “indirect”) means something different than the direct/indirect ionization of the
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DNA molecule. In this case, the ionizing radiation interacts with the cell which is not the
bystander one.

With regard to the mechanism of the propagation of signals of the bystander effect to
other cells, some theoretical models [3] have distinguished two ways in which it occurs, as
follows:

• by the gap junctional pathway, where the signal is transferred by small gaps in the cell
directly to the neighboring cell;

• by signal emission into the surrounding environment (e.g., water) and through acti-
vating the MAP kinase in bystander cells through the cell’s wall [4], which plays a role
in regulating the response to external signals entering the cell in the form of NF-kB
proteins [5], which act as transcription factors (which bind DNA in the appropriate
region).

The process of signals propagation from the irradiated cell to the bystander cell can be
described by the diffusion equation, which is the process of the spontaneous spreading and
permeation of molecules in the medium, which is a consequence of chaotic collisions of
diffusing particles.

The probability of this effect increases quasi-linearly as the dose increases in the low
dose area, and then becomes saturated and constant for the higher doses. The effect is
observed when the cells are irradiated both by low and high linear energy transfer (LET)
radiation [1,6].

The bystander effect can have both positive and negative effects. If healthy cells are
damaged, the effect is negative. It can lead to secondary cancers and other radiation-related
detrimental effects. However, if a bystander cell is a neoplastic one, it will be the most
desirable result. Moreover, the bystander effect may, under certain conditions, lead to an
adaptive response [7–9], commonly regarded as a positive effect.

Interestingly, the bystander effect is observed not only between cells, within one
organism, but also between different organisms. This is evidenced by an experiment in
which a certain proportion of the fish population was exposed to X-rays at a dose of 0.5 Gy.
In the next step, the above group was brought into contact with non-irradiated individuals.
After some time, some radiation effects were noticed among the fish which were not
exposed directly to radiation. This is one of the first indications that the bystander effect
can also occur between different organisms and not, as previously thought, only between
cells within single organism. In this particular case, it is important that the environment
was water, which allowed for the propagation of physicochemical signals to surrounding
organisms, analogically to the signals in the subcellular environment [10].

2. Review of Existing Models

Although the bystander effect is studied primarily by radiobiologists, due to the
specific propagation processes of physicochemical signals that can be expressed mathemat-
ically, physicists also began to deal with this subject. In particular, in recent years, many
biophysical models (see subsections below) have been developed, which, by implementing
biological data and physical mechanisms into computational code, successfully generate
results that help to better understand this relatively recently discovered effect.

The most important models describing the radiation bystander effect are described
below. The method of models’ selection was based on the Google Scholar database, with
the search term “bystander effect”—only the papers that addressed the biophysical or
biomathematical modeling with computational application were taken into consideration.
Additionally, the last item describes our own Monte Carlo model of the bystander effect.

2.1. Chinese Model Xia–Liu–Xue–Wang–Wu

This is one of the first models simulating the response of cells to ionizing radiation,
taking into account the bystander effect using the Monte Carlo technique [11]. It assumes
that a cell that is directly irradiated can send signals to its neighbors, causing them indirect
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damage. The authors call these bystander signals. Their distribution is strictly defined and
described using the simplified Einstein diffusion equation, as follows:〈

r2
〉
= 6D∆t (1)

where D is a translational mobility, ∆t is a time interval and 〈r〉 corresponds to the distance
traveled by the signal after the time interval.

Translational mobility related to signal propagation depends, among other things, on
the mass of the signal-carrying molecule. In the case of the bystander effect, these may
be cytokines [12] with a mass of about 10 kDa [13]. Hence, the translational mobility of D
approximately equals 108 nm2

s .
After the time, ∆t, passes, one assumes that the signal travels a certain distance in any

direction. The signal at the distance, a, from the cell can cause reactions between them. The
model assumes that the distance, a, is equal to the cell size, i.e., approximately 10 µm. In
this case, two possibilities were assumed, as follows:

• the signal hitting a cell (that is already damaged) will disappear from the simulation
due to being absorbed by the cell;

• as soon as a signal hits a cell that is not damaged, it will continue to move in any
direction.

In addition, each cell that comes into contact with the bystander effect signals can
send another signal with the probability Pem. Next, the damage occurs with the probability
denoted as Pdam. The lifetime of a signal (after which it disappears from the simulation) is
also strictly defined. However, from a biological point of view, it has nothing to do with
the lifetime of the cytokine, but is merely a phenomenological assumption of the model.

In the described Chinese model, apart from the damage related to direct irradiation and
as a result of the reaction with the bystander effect signals, the natural damage described
by the Gaussian distribution was also taken into account.

In order to estimate individual parameters, the authors of the model performed
simulations in which the number of generated signals was strictly defined. For each of
them, the probability and lifetime values were adjusted so that their results were consistent
with the experimental data. The values of individual parameters are presented in Table 1.

Table 1. Values of individual parameters for a different number of signals in the Chinese model [11].
Source of the experimental data: [11].

Number of Signals Pdam Pem Lifetime

10 0.0040 0.9 1.5 h
20 0.0018 0.95 1.5 h
30 0.0020 0.15 1.5 h

The simulation results show that damages occur not only among bystander cells,
but also in those distant from each other, which is consistent with the assumptions and
experimental data.

2.2. BSDM Model

The BSDM (Bystander Diffusion Model) is another biophysical model simulating the
appearance of the bystander effect among non-irradiated cells [14–17]. It assumes that only
cells killed by a direct hit of ionizing radiation send molecules called bystander signals to
their neighbors. The way of their propagation is related to diffusion and can be described
by an equation analogous to Equation (1).

The value of mobility is closely related to the mass and size of proteins, as in the
Chinese model. The authors assumed that the mass was from 400 Da to 40 kDa, and the
radius was 0.67–6.7 nm, assuming a spherical shape. Therefore, the value of D has been
estimated between (4− 200); 106 nm2

s . This is a value similar to the one described in the
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previous section. For a typical exposure time, i.e., about 10–15 min, the average distance
traveled by the signal is from 120 to 1000 µm.

Moreover, the model assumes the following:

• that the lifetime of the signals is greater than the expected diffusion time;
• that the reaction between the signal and the cell occurs when the distance between

them is less than half the size of the cell (R);
• that a cell can emit two kinds of bystander effect signals: S-type signals—causing cell

death; T signals—transforming into a cancer cell;
• that bystander effect signals do not react with each other;
• that diffuse cell movements are ignored;
• that neighborhood signals do not react with the cells that emit them.

For the calculation of the fraction of cells that survived irradiation, not only the direct
interaction with radiation, but also the contact with the signals of the bystander effect is
taken into account. This relationship is described by the following equation:

SF = Sd(1− Bs) (2)

where SF is the fraction of survived cells, Sd is the fraction of cells that have survived direct
irradiation with ionizing radiation, i.e., the relative number of recipients of the signals of
the bystander effect, and Bs corresponds to the fraction of cells that received bystander
effect signals and died as a result.

An analytical solution of Equation (2) is rather impossible; however, authors of the
model created a simple algorithm that allows calculation of the values of Sd and BS. By
definition, Formula (2) can be written as follows:

SF =
(N0 − Nd − Nb)

N0
= Sd − B(x) (3)

where N0 is the initial number of cells, Nd is the number of dead cells killed by direct
irradiation and Nb is the number of cells which received the bystander signal.

Knowing the irradiation conditions, the total number of surviving cells and the exact
pattern of signal propagation, it is possible to estimate the function B(x), as follows:

B(x) = c1x + c2x2 (4)

SF = Sd − c1x− c2x2 (5)

with c1 and c2 as so-called expansion coefficients. Assuming that Sd ≡ x = (N0−Nd)
N0

and
using the appropriate substitution, the following equations can be obtained, enabling the
calculation of individual fractions:

SF = (1− c1)Sd − c2S2
d (6)

Sd =

√
(4c2SF + (1− c1)

2)− (1− c1)

2c2
(7)

It follows from the above equations that the fraction of cells that survived both direct
and bystander interaction with radiation is dependent on the fraction of cells hit by the
radiation beam. Therefore, having appropriate data, it is possible to experimentally estimate
the values of the numerical constants c1 and c2.

Referring to the fraction of cells transformed into neoplastic cells, the model assumed
that their density can be given as follows:

TF =
[bDSd + cSdBsSF]

SF
(8)
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where c and b are constants given by the experiment and D is the dose to cell.
Applying the algorithms presented above, the authors of the model performed simu-

lations enabling the calculation of the number of cells that received the bystander effect
signals and the values of B(x). The results are presented in Table 2.

Table 2. The calculated numbers of cells received the bystander effect signals, B(x) and x, for the
BSDM model. Source of the experimental data: [16].

Number of Cells
Which Survived

Direct Irradiation

Number of
Bystander Effect

Signals

Average Number of
Cells Which Received

Bystander Effect
Signal(s)

B(x) x

0 1000 0 0 0
50 1000 16.5 0.0416 0.125

100 1000 33 0.0825 0.25
200 1000 64.9 0.1626 0.5
300 1000 95.8 0.2395 0.75
400 1000 126 0.315 1

Comparison with existing experimental data shows that this model works better for
the dose described by the Poisson distribution than for homogeneous cell irradiation. It is
worth adding that the assumption about the Poisson nature of the dose dependence as a
function of the distance from the beam axis is also reflected in other independent studies
on the bystander effect [18,19].

2.3. BaD Model

The BaD model [20] (Bystander and Direct) is a quantitative model investigating the
bystander and direct effects of ionizing radiation on cells. It places particular emphasis on
the bystander effect and assumes that:

• in the case of neoplastic transformation, the “all or nothing” principle prevails, accord-
ing to which the radiation dose increase does not cause the increase in the observed
neoplastic effects, but only the transformation process itself;

• in the case of a cell hit directly by radiation, the bystander effect is negligible.

The signal propagation mechanism in the BaD model is not described in detail, so it
can be used both for cells which are in contact with, or are distant from each other. The
assumptions of this model were based on the results of three different experiments, as
follows:

• in the first one, a whole group of cells was exposed to ionizing radiation;
• in the second, only 10% of the total cell population was irradiated;
• in the last one, the cells were irradiated, where the dose is described by the Poisson

distribution from the beam axis (irradiated cell).

On this basis, three different methods of calculating both the irradiated cell fraction
and the cell fraction associated with neoplastic transformation were determined. In the
first case, where all cells have been irradiated, the calculation of the fraction of surviving
cells is described by the following:

SF = qN (9)

where q is a probability of cell survival after a single hit by an ionizing particle, and N is
the number of alpha particles which irradiated the cell. Based on experimental data, the
value of q was assessed as q ≈ 0.8. Thus, the fraction of survived cells will decrease when
the number of alpha particles increases.

Next, the fraction of cells which are mutated after irradiation is given by the following:

D = vNqN (10)
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where v is a slope of linear response to the dose. Thus, the ratio of transformed cells to
survived cells equals the following:

TF = vN (11)

which is proportional to the number of α particles interacting with the cell.
In the second case, where 10% of cells were irradiated, the fraction of survived cells is

given by the following:
SF = 0.1qN + 0.9F(N) (12)

where F(N) is a fraction of cells which survived after bystander signal interaction.
As one can see, the first part of Equation (12) is identical to Equation (9), multiplied by

0.1. This is closely related to the fact that only 10% of all cells were irradiated. The second
part is related to the bystander effect. Next, having determined the value of the parameter,
q, knowing the number of particles (N) with which the cell has been irradiated, the value of
F(N) can be determined empirically using Equation (12) which gives the following:

F(N) ≈ exp
(
−0.0034N − 0.0027N2

)
, where (0 ≤ N ≤ 8) (13)

The above function confirms that in the case of cell death caused by signals of the
bystander effect, the aforementioned “all or nothing” rule does not apply, which means
that as the radiation dose increases, the number of dead cells also increases. The fraction of
cells which reacted with both ionizing radiation and bystander effect signals, and survived,
can be described by the following relationship:

D + B = 0.1 vNqN + 0.9 σF(N) (14)

where σ is a scaling constant for number of cancer transformation for low doses. Similarly
to before, the first term of Equation (14) was multiplied by 0.1, as only 10% of cells were
irradiated. The second term applies to the remaining 90% of cells that can be reached by
the bystander effect signals, which is the reason for the value of 0.9.

The fraction of cells that underwent neoplastic transformation is finally presented
as follows:

TF =

[
0.1vNqN + 0.9σF(N)

]
[0.1qN + 0.9F(N)]

(15)

In the case of the last experiment, where the cells were irradiated with the radiation
dose determined by the Poisson distribution, the fraction of surviving cells is presented
as follows:

SF = exp[−(1− q)〈N〉]− exp(−〈N〉)[1− G(〈N〉)] (16)

where G〈N〉 is the fraction of cells surviving after bystander effect signal interaction. As
described in the case of the cell fraction, knowing q, it was possible to determine F(N). Here,
on the basis of experimental data, the value GN was estimated (where 〈N〉 it is the average
number of particles with which the cell has been irradiated) and equals the following:

G〈N〉 ≈ 1, where (0 ≤ 〈N〉 ≤ 8) (17)

The fraction of cells which survived transformation (and assuming the dose given by
Poisson distribution) is given by the following:

D + B = vq〈N〉 exp[−(1− q)〈N〉] + σ exp(−〈N〉) (18)

Thanks to Equations (17) and (19), with the assumption of G = 1, the frequency of
cancer transformation per living cell equals the following:

TF = vq〈N〉+ σ exp(−q〈N〉) (19)
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For large 〈N〉, the second term in Equation (19) can be neglected; therefore, a simple
linear relationship can be used instead, as follows:

TF = vq〈N〉 (20)

In the opposite situation, when 〈N〉 is small, the mentioned second term is significant
and larger than the term connected with direct irradiation.

Equations (14) and (18) show the main assumptions of the presented model, namely
the fact that those cells that are hypersensitive (susceptible) to neoplastic transformations
related to bystander signals are also hypersensitive to death associated with direct radiation.

In order to test the model, the authors of the original paper [20] conducted appropriate
simulations, and their results were compared with the experimental data. The obtained
results show good compliance of the model with real data.

2.4. The Ebert–Suchowerska–Jackson–McKenzie Model

This is a biomathematical model in which it is assumed that the responses of a group of
cells to direct irradiation and to bystander effect signals (resulting from earlier irradiation)
are independent of each other [21].

When a cell is hit (it interacts directly with ionizing radiation), it can send bystander
effect signals. They propagate by diffusion (similar to the previously described models)
and end up in bystander cells that have not been directly irradiated.

According to the information mentioned earlier, as a result of interaction with radiation,
a cell can produce various types of signals. However, this model assumes that this is the sole
type of signal that can cause cell death, cell damages (that can be repaired), and might not
cause any changes. The response to the bystander effect signals is related to the radiation
dose and the number of bystander signals accumulated in the cell, which is described by
the following equation:

ρ =
∫

cell

W
(
r′ − r

)
ρσ(r)dr (21)

where W is a probability of signal diffusion from point r to point r’, and ρσ is a local density
of bystander signals.

The complete response of cells to radiation is related to both direct irradiation and
bystander effect signals, and is given by the following:

Slocal = SR,localSB,local (22)

where Slocal is a fraction of survived cells, SR,local is a fraction of cells survived direct
irradiation and SB,local is a fraction of cells that survived bystander signals interaction.
The first, right hand term of Equation (22) can be described by saturated linear–quadratic
function of dose per cell (dlocal), as follows:

SR,local = e−αRdlocal−βRdlocal
2

(23)

where αR
[
Gy−1] and βR

[
Gy−2] are linear–quadratic parameters.

With regard to the fraction of cells that survived the interaction with the bystander
signals, three different methods of its calculation are considered in the described model.
Before they are presented, first the µ parameter should be defined, which determines the
number of signals of the bystander effect, thanks to which it is possible to calculate the
strength of the produced signals, σlocal , which is proportional to their density.

Method 1:
In the first case, the signal strength is proportional to the fraction of cells which died

after direct irradiation, as follows:

σlocal = µ(1− SR,local) (24)
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Method 2:
In the second case, the signal strength is proportional to the number of cells which

were hit (irrespective of their death), as follows:

σlocal = µe(−λdlocal) (25)

where λ
[
Gy−1] is a probability of radiation interaction of the cell (proportional to the

physical cross section [22]).
Method 3:
In the last case, the signal strength is proportional to the number of cells which

survived direct irradiation, as follows:

σlocal = µe(−λdlocal)SR,local (26)

For each method of calculation of the signal strength, individual parameters were
adjusted so that the simulation results agree with the experimental data. Moreover, in
time-dependent or diffusion-limited experiments, the propagation pattern was the same
as that used in the BSDM model. In this case, the spatially averaged signal density is
considered and can be calculated using the following equation:

σ =

∫
cell σlocaldV∫

cell dV
(27)

Finally, the fraction of cells which survived the interaction with bystander signals, can
be described as follows:

SB,local = e−σW (28)

In both Method 1 and Method 2, the signal strength increases to a certain point and
saturates. However, in Method 3, the maximum value is reached for a particular dose value.
This is because as the number of surviving cells decreases, so does the number of cells that
can receive these signals.

In order to test the model, its authors conducted a series of simulations, during which
they adjusted all parameters so that the results were consistent with the experimental data.
Tables 3 and 4 show the values of individual parameters for NCI-H460 (non-small-cell lung
cancer cells) and MM576 (melanoma cells).

Table 3. Values of the parameters used in the bystander effect simulation model for NCI-H460
cells [21]. Source of the experimental data: [21].

αR[Gy−1] βR[Gy−2] µ.W λ(Gy−1) χ2

Method 1 0.053 0.061 1.28 N/A 0.00062
Method 2 0.00 0.083 6.10 0.033 0.0054
Method 3 0.00 0.13 20.2 0.013 0.015

Table 4. Parameter values in the bystander effect simulation model for MM576 cells [21]. Source of
the experimental data: [21].

αR(Gy−1) βR(Gy−2) µ.W λ(Gy−1) χ2

Method 1 0.014 0.0024 4.71 N/A 0.0041
Method 2 0.00 0.0070 70.12 0.0015 0.029
Method 3 0.00 0.010 55.00 00022 0.052

All three approaches in the model give results that are consistent with the experimental
data. Additionally, Tables 3 and 4 present the results of the chi square test [23]. It shows that
the best compatibility with experimental data was obtained with Method 1, and the least
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satisfactory fit is observed using Method 3. However, as mentioned earlier, all simulation
results agree with the experiment within the limits of uncertainty.

2.5. Japanese Hattori–Yokoya–Watanabe Model

It is another model [3] that simulates the response of cells to ionizing radiation, taking
into account the bystander effect. It is based on a two-dimensional cellular automaton in
which three main components (states) can be distinguished, as follows:

• cells;
• medium (e.g., empty space, water);
• wall (walls of a vessel containing a group of cells or other tissue, e.g., bone).

In practice, each field labeled as a cell can be filled with a culture liquid where the cell
is directly located. However, only the culture liquid is present in the medium state, and the
wall may represent, for example, a container in which the cell culture is located.

The entire simulation algorithm consists of four main components, as follows:

• cell irradiation;
• generating bystander effect signals;
• DNA damage induced by direct irradiation and by bystander signals;
• cell response to induced DNA damage.

The dose absorbed by the irradiated cell can be calculated using the following equation:

Di,j(t) = d1trackKi,j(t) (29)

where d1track is a dose per cel which is a result of single particle track irradiation, and Ki,j(t)
is the number of ionizing radiation tracks in the cell labelled as (i,j) in the moment of time,
t.

It should be mentioned here that the number of radiation tracks in bystander cells is
described by the Poisson distribution, as follows:

Pi,j(n) =
(a)nea

n!
(30)

where Pi,j(n) is a probability of n tracks appearance in the cell (i,j) in the time, t, and a is the
average number of ionizing radiation tracks in the cell (i,j) in the time, t.

Both values d1track and a are different for various types of radiation. For example,
for cells irradiated by gamma radiation of 60Co, both values equal d1track = 1 mGy and
a = 1000 tracks/min, respectively, which was calculated by microdosimetric methods [3].

The irradiated cell can send bystander signal to nearby cells by two ways, as follows:

• through the medium—MDP (medium-mediated pathway);
• by gap junctions—GJP (gap junctional pathway).

Moreover, the model assumes that the signals cannot interact with each other, and
their number is proportional to the dose. The propagation of signals is also strictly defined
and described by the following equation:

Φi,j(t + ∆t) = Φi,j(t) + ∆t
4d2 ΦW2 ∑

k1,l1

(
Φk1,l1(t)−Φi,j(t)

)
+ ∑

k2,l2

(
Φk2,l2(t)−Φi,j(t)

) (31)

where the following are true:

• Φi,j(t) is a bystander signal concentration in the position (i,j) in the time, t;
• ∆t is a time interval (time step);
• d2 is a cell’s two dimensional surface;
• ΦW is a diffusion constant;
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• k1,l1 are coordinates of cells which are located linearly close to the irradiated cell (i,j)
in positions: (i + 1, j), (i − 1, j), (i, j + 1) and (i, j − 1);

• k2,l2 are analogical coordinates but diagonal: (i + 1, j + 1), (i − 1, j − 1), (i − 1, j + 1)
and (i + 1, j − 1);

Due to the fact that the model takes into account two signal propagation paths, two
variables related to the direction of signal diffusion should be defined—MW ′

k,l (related to

MDP) and GW ′
k,l (related to GJP)—the value of which is related to whether the position (k,l)

is a cell, wall or medium. Therefore, we have the following:

• MW ′
k,l = MW , when the position (k,l) is a cell;

• MW ′
k,l = MW , when the position (k,l) is a medium;

• MW ′
k,l = 0, when the position (k,l) is a wall;

• GW ′
k,l = GW , when the position (k,l) is a cell;

• GW ′
k,l = 0, when the position (k,l) is a medium;

• GW ′
k,l = 0, when the position (k,l) is a wall.

The values of the diffusion constants are directly related to the way the signals propa-
gate in two ways, as mentioned. Therefore, if the signal propagates on an MDP path, then
it can appear in the cell and medium; therefore, if the position (k,l) has this status, then
the coefficient MW ′

k,l = MW . In the case of GJP, the signal can appear only in the cell, so if

the position (k,l) has the status of a cell, then GW ′
k,l = GW . In both cases, the signal cannot

appear in the wall. In addition, with the GJP, the signal does not propagate to the medium.
In this case, the diffusion constant is 0, which is equivalent to stopping the signal.

Regarding the number of bystander effect signals produced by MDP and GJP, it can
be calculated using the following equations:

Mi,j(t + ∆t) = MαDi,j(t)− MβDi,j(t) + Mi,j(t) + ∆t
4a2 [2 ∑k1,l1

MW ′
k1,l1

(
Mk1,l1(t)−Mi,j(t)

)
]

+[∑k2,l2
MW ′

k2,l2
(

Mk2,l2(t)−Mi,j(t)
)
]

(32)

Gi,j(t + ∆t) = GαDi,j(t)− GβDi,j(t) + Gi,j(t) + ∆t
4a2 [2 ∑

k1,l1

GW ′
k1,l1

(
Gk1,l1(t)− Gi,j(t)

)
]

+[ ∑
k2,l2

GW ′
k2,l2

(
Gk2,l2(t)− Gi,j(t)

)
]

(33)

where the following are true:

• Mα and Gα are constants related to creation of signals;
• Mβ and Gβ are constants related to reduction (decay) of signals;
• Di,j(t) is a radiation dose to cell.

Knowing the number of signals of the bystander effect produced by the irradiated
cells, it is possible to analyze the induced damage. It was assumed that direct irradiation
and signals of the bystander effect can cause DSBs (double strand breaks), which in turn
can cause, inter alia, cell cycle arrest or cell death. Moreover, the damage caused by direct
radiation and by the bystander effect signals are produced independently, and the number
of DSBs are proportional to the number of bystander effect signals.

The total number of damages is calculated by the following equation:

Zi,j(t + ∆t) = Zi,j(t) + RZ i,j +
MZ i,j +

GZ i,j +
BZ i,j − rZ i,j (34)

where the following are true:

• RZ i,j are damages created by direct irraditation;
• MZ i,j are damages created by MDP signals;
• GZ i,j are damages created by GJP signals;
• BZ i,j are damages created by some other external events;
• rZ i,j are damages already repaired.
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All mentioned terms of Equation (34) can be described by Poisson distribution with:
ZRa i,j =

ZRλ i,jDi,j(t), ZMa i,j =
ZMλ i,j Mi,j(t)∆t, ZGa i,j =

ZGλ i,jGi,j(t)∆t and ZBa i,j =
ZBλ i,j

where ZRa i,j, ZMa i,j, ZGa i,j and ZBa i,j are average values of RZ i,j, MZ i,j, GZ i,j and RZ i,j,
respectively. The coefficient λi,j is constant for each parameter.

The last term of Equation (34), which is related to the probability of DSBs repair, was
simplified and constant for all types of damages, and equals Zrλ i,j.

2.6. Monte Carlo Model

Another model simulating the bystander effect is the Monte Carlo model, based on a
probability tree [24,25], developed at the National Center for Nuclear Research (NCBJ) in
Poland, as part of a larger model describing the behavior of a irradiated group of cells. In
this model, only the negative effects of the bystander effect, consisting in the appearance of
additional damage in the cell, were taken into account.

The aforementioned Monte Carlo model is completely stochastic and describes com-
prehensively, but on a general level, possibly all biophysical phenomena concerning the
irradiated cell, taking into account various factors—e.g., cell death, transformation into
a cancer cell, spontaneous formation of damage, and repair of damage, etc.—which, as
mentioned, uses the Monte Carlo processes and the probability tree in its algorithm.

The model assumes that the probability of the bystander effect appearance is given by
the probability function [24], as follows:

Pb = β1[1− exp(−β2D)] (35)

This is a quasi-linear function related to the dose (D) with scaling constants β1 and
β2, which saturates for high doses. This is fully consistent with many experimental find-
ings [1,6].

The described model treats time as a discrete one, where the i-th cell, in which the by-
stander effect may occur, is taken into account in each time step, according to Equation (35).
In other words, Equation (35) describes whether or not the bystander effect will be initiated
by the i-th cell at a given time step.

Then, if the i-th cell is able to initiate the bystander effect (the probability Pb is met), it
sends signals to the bystander cells that can damage them with a probability expressed as a
distribution of [24] the following:

P′b(r) =
const

r!
(36)

where r is the distance between the i-th cell, i.e., the cell that initiates the bystander effect,
and the j-th cell, where the bystander effect can occur. The factor 1/r! comes from the
Poisson distribution, which has already been discussed many times in other models. The
block diagram of the described bystander effect algorithm is shown in Figure 1.

In order to test the bystander effect, simulations were performed in which 700 healthy
cells were irradiated with a constant radiation dose rate of 1 UAD/step, where the UAD
(unit of absorbed dose) is the uncalibrated unit of the absorbed dose. Its precise determina-
tion can only take place after the model has been calibrated on the experimental data. The
values of the parameters used in the simulations were β1 = 0.001 and β2 = 300, respectively.
In each simulation, the number of cells damaged during a single bystander effect was
counted. Then, on the basis of all the results, the mean was calculated, which was 5 ± 4.
This result is in line with the expectations, as it shows that the bystander effect occurs
mainly for cells closest to the cell initiating the effect.
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Figure 1. Block diagram of the bystander effect algorithm used in a program simulating the response
of a group of cells to ionizing radiation using the Monte Carlo method [26]. The presented probability
functions are given by Equations (35) and (36).

2.7. Models Comparison

The review of some computational models presented in previous sections shows that
there are many possibilities for a detailed description of this interesting radiobiological
phenomenon—the radiation bystander effect. Most models have some common features
(e.g., the use of the diffusion equation to describe the propagation of the bystander signal,
or the Poisson dose distribution from the irradiated cell), but there are also fundamental
differences between them. Of course, each of these models were intended to be applied to a
specific situation, and the exact mathematical formalism was selected by the authors as the
most optimal in the dedicated scope. The presented review does not decide which model is
the best one. Generally, all the presented models describe the effect in a proper way, but
with different approaches. A short comparison of the reviewed models is presented in
Table 5.

Due to the fact that the bystander effect is still investigated and some of its elements
are not fully understood, there is no one universal model of its description. Therefore, the
approach assuming the creation of a dedicated model for a specific application seems to be
the only possible solution, although it essentially narrows the possibilities of using such a
specific solution in a more general aspect.
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Table 5. The comparison of bystander effect computational models described in Section 2.

Model and Its Reference
Source Short Description: Main Technique Used

Chinese Model
Xia–Liu–Xue–Wang–Wu [11]

• distribution of bystander signals is strictly defined and
described using the simplified Einstein diffusion equation;

• a signal hitting a cell that is already damaged will disappear
from the simulation due to the absorption; a signal hitting a cell
that is not damaged will continue to move in any direction;

• cell that comes into contact with the bystander effect signals can
send another signal;

Stochastic model and
Monte Carlo technique

BSDM Model [14–17]

• distribution of bystander signals is strictly defined and
described using the simplified Einstein diffusion equation;

• the reaction between the signal and the cell occurs when the
distance between them is less than half the size of the cell;

• a cell can emit two kinds of bystander effect signals—causing
cell death or cancer transformation;

• diffuse cell movements are ignored;
• presupposes that the exact number of cells has been irradiated;

Deterministic model with
empirical approximations

to the data

BaD Model [20]

• describes bystander and direct irradiation changes in the cell;
• in the case of neoplastic transformation, the “all or nothing”

principle prevails, according to which the radiation dose
increase does not cause the increase in the observed neoplastic
effects, but only the transformation process itself;

• in the case of a cell hit directly by radiation, the bystander effect
is negligible;

• signal propagation mechanism is not described in detail, so it
can be used both for cells which are in contact or in distant from
each other;

• presupposes that the exact number of cells has been irradiated;

Stochastic binary model
with empirical

approximations to the data

The Ebert–Suchowerska–
Jackson–McKenzie Model

[21]

• responses of a group of cells to direct irradiation and to
bystander effect signals (resulting from earlier irradiation) are
independent of each other;

• bystander effect signals propagate by diffusion and end up in
bystander cells that have not been directly irradiated;

• model assumes the solo type of signal that can cause cell death,
cell damages (that can be repaired), and might not cause any
changes;

Wide intercellular
deterministic model with
empirical approximations

to the data

Japanese
Hattori–Yokoya–Watanabe

Model [3]

• simulation is based on a two-dimensional cellular automaton in
which three main components (states) can be distinguished:
cells, medium (e.g., empty space, water), or wall (walls of a
vessel containing a group of cells or other tissue, e.g., bone);

• an irradiated cell can send bystander signal to nearby cells by
two ways: through the medium or by gap junctions;

• model assumes that the signals cannot interact with each other
and their number is proportional to the dose;

Iterative cellular automata
model

Monte Carlo Model [24,25]

• model is completely stochastic and describes comprehensively,
but on a general level, possibly all biophysical phenomena
concerning the irradiated cell, taking into account, e.g., cell
death, transformation into a cancer cell, spontaneous formation
of damage, repair of damage, etc., which, as mentioned, uses the
Monte Carlo processes and the probability tree in its algorithm;

• the probability of the bystander effect appearance is given by
the saturated probability function Pb = β1[1− exp(−β2D)].

Monte Carlo technique
with probability tree

3. Methodology

The review of the existing models presented in the previous section shows that there
are many possibilities for a biomathematical description of the radiation bystander effect.
Biophysical research on the bystander effect, and specifically its computer simulations, was
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also carried out in Poland, including the National Center for Nuclear Research and the
Faculty of Physics of the Warsaw University of Technology. The simulations of the effect
were an element of wider simulations of the influence of ionizing radiation on a group of
cells, in particular the neoplastic processes [27].

3.1. Description of the Algorithm

The aforementioned model of the bystander effect, developed by the authors of
the presented paper, is based on the combination of the last two models described in
the previous section, namely the Monte Carlo model and the Japanese Hattori–Yokoya–
Watanabe model with some modifications. This approach takes into account the most
important features of the bystander effect, namely the following:

• diffusion signal propagation;
• saturation of its probability distribution for a certain dose;
• Poisson shape of the dependence of the number of damages on the distance from the

hit cell.

The Monte Carlo model is based on the dedicated numerical code created by the
authors. This code uses the iterative loops over the probability tree to simulate the behavior
of irradiated cells which are arranged in three-dimensional geometry with appropriate
states up to the Japanese approach. The detailed explanation of the adapted algorithm is
presented below.

In the first stage of the simulation, the individual elements of the three-dimensional
array imitating a group of cells are assigned appropriate statuses (such as medium, i.e., the
intercellular area identical to the lack of a cell, or the cell, which in turn may be healthy,
damaged, mutated or cancerous). Then, at each time step, the number of bystander effect
signals, both MDP and GJP propagating, is calculated using Equations (32) and (33) (see
Japanese model).

The next step is to calculate with the modified formula the total number of dam-
ages occurring in individual cells caused by GJP and MDP signals using the modified
Equation (34):

Zi,j(t + ∆t) = Zi,j +
MZ ij +

GZ ij (37)

where MZ ij = λM Mi,j and GZ ij = λGGi,j. Wherein, λG and λM are constants, while Mi,j
and Gi,j correspond to number of damages created in the MDP and GJP paths, respectively.
The total number of damages, after appropriate rescaling, is treated as a contribution to
the probability of the bystander effect appearance, which is described in detail according
to the diagram in Figure 1. The remaining processes are described according to the afore-
mentioned Monte Carlo model: each cell has its age, number of lesions and a status table,
in which information about the doses with which it was irradiated in a given time step
(history of cell irradiation) is stored. Cells with healthy status have a damage index of 0,
and above this value the status changes to damaged. Unrepaired (or incorrectly repaired)
damage becomes mutation. If a mutation occurs in a cell, it automatically changes its status
to mutated. The accumulation of mutations in the cell leads to the transformation into a
neoplastic cell according to the sigmoid probability distribution [27].

The whole algorithm consists of two iterative instructions (loops). The first one
is a loop through time steps, and the second one follows all the elements of the three-
dimensional array, that is, after all the cells. At each time step, the cell may or may not be
irradiated, which may consequently cause various phenomena, in particular the bystander
effect, described herein.

3.2. Exemplary Results of Simulation

The exemplary input parameters, which can be applied to the bystander effect simula-
tion, are presented in Table 6.
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Table 6. The values of individual parameters used to calculate the number of signals and the number
of damages associated with the bystander effect [3], as well as the probability distribution of its
occurrence [24].

Parameter Exemplary Value

a 10−5

Mw 10−10

Mα 1
Mβ 4.6 × 10−6

Gw 5 × 10−11

Gα 1
Gβ 1.18 × 10−3

λD 60
λM 0.006
λG 0.06
β1 0.001
β2 300

One of the basic elements that can be relatively easily tested by the simulation is the
calculation of the fraction of all damages caused by the bystander signals. For this purpose,
the irradiation of 512 healthy cells with the same radiation dose per one step (i.e., constant
dose rate) for 500 time steps was simulated. Each simulation was repeated 100 times, and
the presented results are the arithmetic mean of the values obtained for three different
variants:

Option 1:

• Dose per step—0.001 Gy;
• damage resulting both from direct irradiation and interaction with bystander signals—

31 ± 1;
• damage caused by bystander signals only—2 ± 0.8.

Option 2:

• Dose per step—0.005 Gy;
• damage resulting both from direct irradiation and interaction with bystander signals—

159 ± 6;
• damage caused by bystander signals only—10 ± 5.

Option 3:

• Dose per step—0.01 Gy;
• damage resulting both from direct irradiation and interaction with bystander—312 ± 9;
• damage caused by bystander signals only—20 ± 7.

It follows from the above that the major part of damages are those caused by direct
irradiation. The damages originating from the bystander signals, regardless of the value of
the dose used, account for about 20% of all damages. The result is therefore in line with
expectations [2].

In the next simulation, the cells were irradiated only in the 5th and 15th time steps
with the dose equal to 0.001 Gy; in the remaining time steps the dose was equal to zero.
Duration of the simulation and the initial number of healthy cells did not change. As
a result, the number of all damages was 0.15 ± 0.05, of which those resulting from the
bystander effect signals were 0.03 ± 0.02.

Another simulation checked the propagation of signals of the bystander effect. For
this purpose, a constant radiation dose rate was used, the value of which was 1 mGy/step,
to irradiate the cell with the coordinates x = 5, y = 5, z = 5. For the remaining cells, the
dose was zero. After the 1st time step, damage occurs only in the directly irradiated cell
with a frequency of 6.52 × 10−6. After the 2nd time step, damage occurred in 7 cells, 1
of them being that which was directly irradiated. The remaining 6 cells were located in
the nearest neighborhood to the directly irradiated cells: most damages occurred in a cell
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with coordinates (x, y, z) = (5,5,5) with the frequency 1.94 × 10−5, and in the other cells
1.78× 10−8. After the third time step, damage appeared in 25 cells. The number of damages
obtained as a result of the simulation was calculated using Equation (37), but in a more
general approach, these values after scaling will be the probability of the appearance of the
bystander effect in a particular cell at a given time step.

In subsequent time steps, the damage appeared to more and more distant cells. After
13 steps, all cells participating in the simulation had a failure frequency different from 0,
which means that with a sufficiently long irradiation, the signals of the bystander effect
can spread even to very distant cells from the irradiation site. The plot of the number of
damaged cells against time is sigmoidal, as shown in Figure 2. It shows that the number
of cells between 4 and 9 times increases quasi-linearly, before the saturation. The best fit
curve turned out to be the Avrami curve of the form a − b·exp (−c·xd) (which was originally
derived from the theory of nucleation and crystal growth [27]); however, this does not
mean that after saturation the frequency of damage in all cells is the same—it follows a
distribution similar to the Poisson one.
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Figure 2. The number of cells with bystander damages in the function of time (black dots). The
Avrami curve with the Equation 512−511.55·exp (−(0.13·x)3,4) [26] was fitted.

At this point, it is worth mentioning that the Poisson nature of the propagation of
signals was checked: simulations were performed when one cell was irradiated with a
dose of 2 UAD in the 1st time step. In the remaining time steps and for the remaining
cells, the dose was 0. Then, the number of signals in all cells was checked after 500 steps.
Figure 3 shows the number of bystander signals in a cell versus the distance from the
directly irradiated cell. It can be seen that the shape is slightly different from the Poisson
curve. This is due to the influence of other cells (including changes in their status) and the
complexity of the full model in relation to the ideally Poisson single cell description [26].

The above simulation results confirm the thesis that damage occurs not only among
directly irradiated cells, but also among their neighbors. In addition, the number of
damages from bystander effect signals is only a part of total damages produced in cells,
which also qualitatively proves the correct operation of the model.
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Figure 3. The number (as fraction) of signals of the bystander effect in the function of the distance
from the irradiated cell (black points), to which the Poisson distribution was fitted (red curve,
R2 = 0.67) [26].

4. Conclusions

The presented paper deals with the quite recently discovered radiobiological phe-
nomenon of the bystander effect, in which non-irradiated cells exhibit some irradiation
characteristics when a bystander (neighboring) cell is irradiated. The bystander effect opens
up a list of the so-called non-targeted effects that may occur in an organism exposed to
ionizing radiation. This effect, very important from the radiotherapy point of view, for
example, has a number of biophysical models in which knowledge in the field of radiobiol-
ogy and radiation biophysics has been combined with the use of simulation tools. A broad
overview of the different models is provided in the first part of this paper. All the selected
and precisely described models were narrowed to biophysical and biomathematical ones
with computer applications. This means that many other models, where some biophysical
theory was well presented [28–30], were intentionally excluded from this review.

One of the advanced models was also developed and described in the second part
of the paper. The model can simulate the impact of low doses of ionizing radiation on
the risk of counseling neoplastic transformation at the cellular level. However, it requires
additional work, e.g., calibration for a specific clinical case. Nevertheless, it can already
be concluded, looking at the proposed approach only qualitatively, that this model takes
into account all the essential features necessary for the correct description of the radiation
bystander effect.
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Hig. Med. Dosw. 2014, 68, 10–22. [CrossRef] [PubMed]
5. Ghosh, S. Handbook of Transcription Factor NF-kB; CRC: Boca Raton, FL, USA, 2006.
6. Prise, K.M.; Folkard, M.; Michael, B.D. A review of the bystander effect and its implications for low-dose exposure. Radiat. Prot.

Dosim. 2003, 104, 347–355. [CrossRef] [PubMed]
7. Lenarczyk, M.; Słoikowska, M.G.; Matjle, T. Indukcja popromiennej odpowiedzi adaptacyjnej w retikulocytach krwi obwodowej
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Jądrowej 2011, 54, 23–37.
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