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Simple Summary: Radiation readily oxidized Fe3+, which can be used for dosimetric purposes
(i.e., Fricke dosimetry). It has recently been discovered that ironizing radiation can oxdize the
Fe2+ sites of Fe3O4 nanoparticles, which can be detected using electron paramagnetic resonance
spectroscopy. The goal of this study was to interrogate the utility of Fe3O4 nanoparticles as a
dosimetric tool. It was discovered that the unique radiochemical properties, particularly the high
sensitivity to dose rates, limits the utility of Fe3O4 nanoparticles for radiation dosimetry of a pre-
clinical external beam irradiator.

Abstract: Nanotechnology has provided considerable advancements in an array of disciplines.
Recently, it has been shown that ferumoxytol, a magnetite (Fe3O4) nanoparticle, can be oxidized by
ionizing radiation. Ferumoxytol nanoparticles have high stability, and thus can be hypothesized that
they have dosimetric potential. In this study, it has been observed that xylenol orange, a colorimetric
detector of Fe3+ used for conventional Fricke dosimetry, was not able to detect radiolytic changes in
ferumoxtyol. Electron paramagnetic resonance (EPR) spectroscopy was more readily able to evaluate
the oxidation of ferumoxytol. EPR spectroscopy revealed that oxidation of 500 nM ferumoxytol in
H2O was linear up to 20 Gy. This concentration, however, was unable to estimate the delivered dose
from a Small Animal Radiation Research Platform system, as a 6 Gy dose was estimated to be 1.37 Gy,
which represents a 79.2% underestimation of the dose delivered. Thus, while the high stability of
Fe3O4 nanoparticles is attractive for use in pre-clinical radiation dosimetry, further radiochemical
evaluation may be required before considering them for this application.

Keywords: iron oxide nanoparticles; radiation dosimetry; Fricke dosimetry

1. Introduction

Fricke dosimetry, first invented in 1927, is a dosimetry technique that leverages the
radiation-induced oxidation of Fe2+ to assess radiation dose delivery [1]. Following the
radiolysis of H2O (Equation (1)):

H2O + IR → H2O+ + e−aq (1)

where H2O•+ will immediately deprotonate to generate a hydroxyl radical, HO• (Equation (2)):

H2O•+ → HO• + H+
aq (2)

The HO• generated can readily oxidize Fe2+ (Equation (3)):

HO• + Fe2+ → OH− + Fe3+ (3)

Moreover, the aqueous proton generated, Haq
+, can react with molecular oxygen (O2)

to generate a hydroperoxyl radical (i.e., protonated superoxide, HO2
•, Equation (4)):

H+
aq + O2 → HO•

2 (4)
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which can then also go on to oxidize Fe2+ (Equation (5)):

HO•
2 + H+

aq + Fe2+ → Fe3+ + H2O2 (5)

The hydrogen peroxide generated is then able to undergo a Fenton reaction (Equation (6)),
oxidizing another Fe2+ ion:

H2O2 + Fe2+ → Fe3+ + OH− + HO• (6)

From this chemistry, the radiolytic yield (i.e., number of Fe3+ ions generated per 100 eV
of energy deposited, G) can be estimated (Equation (7), [2]):

G (Fe3+ ) = 3G(H•) + 2G(H2O2) + G(HO•) (7)

Thus, Fricke dosimetry directly measures the oxidation of Fe2+ in H2O to estimate
radiation doses. Fricke dosimeters are an attractive means of dose estimation because of
their relative ease, as they consistent of ferrous ammonium sulfate (Fe2+) in H2O in their
simplest form [3,4]. In this case, radiation induces a color shift, changing the solution
from a clear-blue solution to a red (Fe3+) solution where the color change, as measured
by absorbance or optical density, is directly proportional to radiation dose [5,6]. Frick
dosimeters are also generated by embedding the Fe2+ in an agarose gel and measuring
optical density changes, which provides the advantage of measuring geometrically accurate
dose distributions [3,7–9]. However, despite the advantages of Fricke dosimetry being its
ease of use and its simple readout, requiring only an ultraviolet—visible light spectrometer,
there are several limitations to this technique, which have hampered its broad utility.
Fricke dosimeters are often sensitive to metallic impurities, can lack the sensitivity to
measure low-dose radiation (<10–20 Gy), readouts must happen quickly due to ferric ion
diffusion or results will be distorted, and ionic diffusion can also cause a distortion of spatial
information, leading to inaccurate measurements [6]. Taken together, the lack of stability of
traditional Fricke dosimeters suggests that a more stable iteration may be beneficial.

To combat the instability issues associated with traditional Fricke dosimeters, this
has led to the investigation of superparamagnetic iron oxide nanoparticles (SPIONs) as a
modernized alternative iron-dependent dosimetry technique. SPIONs are highly stable
molecules that may exhibit the ability to react with the chemical oxidants generated follow-
ing the radiolysis of H2O. As a proof of concept, this study will utilize ferumoxytol (FMX).
FMX is a useful tool to test SPION chemistry because it is readily available in a soluble
formulation, and thus limiting the burden of chemical synthesis. Most commonly, FMX is a
SPION that is FDA-approved to treat iron deficiency anemia, and it is used as a magnetic
resonance imaging contrast agent, and it is also a potential cancer therapeutic [10–17]. FMX
is a 30 nm SPION with an Fe3O4 core (formally, two Fe3+, one Fe2+ oxide) encapsulated
within a carboxylated polymer coating that can be readily evaluated with electron param-
agnetic resonance (EPR) spectroscopy [18]. Much of the work regarding the anti-neoplastic
activity of FMX points to its ability to catalyze oxidations and generate ROS [17]. However,
robust physiochemical analysis of FMX has been limited. Recently, it has been shown
that the Fe3O4 core of FMX is, in fact, redox-active and can be decomposed by AscH−,
generating excess cytotoxic levels of H2O2 that enhance glioblastoma therapy [19]. This
has led to the induction of a phase 1 clinical trial at the University of Iowa testing the
safety of FMX as a therapeutic agent in glioblastoma (NCT04900792). Consistent with the
redox accessibility of FMX, it has been discovered that ionizing radiation can oxidize the
surface charges of FMX in H2O, resulting in the release of free, catalytically active Fe3+ [18].
This effect is radiation dose-dependent much like iron oxidation (i.e., Fricke dosimetry);
however, FMX has a unique pattern of radiochemical decomposition that is largely driven
by H2O2 as opposed to other oxidizing/reducing byproducts of radiation (e.g., HO•, O2

•−,
HO2

•, eaq
−). Moreover, the high stability of the iron oxide lattice gives rise to relatively

slow redox kinetics relative to individual iron ions [19]. Therefore, due to the high stability
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of iron oxide nanoparticles and their ability to be oxidized by ionizing radiation, it was
hypothesized that FMX may serve as a useful tool to evaluate the application of SPIONs
for radiation dosimetry.

2. Materials and Methods
2.1. Chemical Preparation and Radiation Delivery

Ferumoxytol (Feraheme®; FMX) was diluted to the appropriate concentration from a
30 mg mL−1 stock in either double-distilled H2O or 0.1 mM xylenol orange (Sigma-Aldrich,
St. Louis, MO 52097, USA). Xylenol orange was prepared at an initial concentration of
1 mg mL−1 and titrated to pH = 3.0 before use. Samples were irradiated in solution with a
37Cesium source and a dose rate of 0.6 Gy min−1. Samples were analyzed within 15 min of
irradiation unless otherwise specified.

2.2. Electron Paramagnetic Resonance Spectroscopy

FMX oxidation was evaluated by measuring the peak-to-peak signal intensity of the
EPR spectra of the low-spin Fe3O4 complex at g = 2 as previously described [18]. The
following scan parameters were used: center field = 3508.97 G, sweep rate = 2000 G/42 s,
time constant = 327.68 ms, frequency = 9.85 GHz, power attenuation = 18 dB, modulation
frequency = 100 kHz, and modulation amplitude = 0.7 G, with spectra being generated
from a signal average of 2 scans.

3. Results
3.1. Evaluation of Xylenol Orange Changes Following Nanoparticle Irradiation

Xylenol orange is a colorimetric indicator that is frequently used to detect iron oxida-
tion as it will turn purple with an absorbance at approximately 585 nm [20,21]. For this
reason, xylenol orange is commonly used as an indicator to assess Fricke dosimetry [7,20,21].
Because ionizing radiation has been shown to oxidize the Fe2+ sites of Fe3O4, decompo-
sition of FMX has been shown to release free Fe3+ ions (Figure 1A) [18]; it was initially
hypothesized that xylenol orange could serve as a useful tool to evaluate radiation-induced
FMX decomposition following a single fraction of 4 Gy. A 4 Gy dose was chosen because
FMX radiolysis has previously been shown to be linear up to 10 Gy, and thus 4 Gy would
be within the dynamic range of oxidation [18]. However, initial experiments revealed that
irrespective of FMX concentration, no xylenol orange color shifts were observed (Figure 1B).
Thus, it appears that xylenol orange may not be a useful tool in the context of nanoparticle
decomposition following radiation.
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Figure 1. Evaluation of xylenol orange changes following nanoparticle irradiation. (A). Structural
schematic of the radio-oxidation of Fe3O4. (B). Increasing concentrations of FMX (50 nm–1 µM) were
prepared in a 0.1 mM xylenol orange concentration and irradiated with 4 Gy to determine potential
colorimetric changes associated with the release of Fe3+ from FMX following radiation.
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3.2. Electron Paramagnetic Resonance Evaluation of Nanoparticle Irradiation

Because xylenol orange appeared to have insufficient sensitivity to assess FMX
nanoparticle decomposition following radiation, changes in FMX structure were evaluated
using EPR spectroscopy following a single 4 Gy radiation dose. Consistent with the previ-
ous data, FMX EPR signal intensity increased following radiation (Figure 2A) [18]. When
performed with multiple FMX concentrations, this effect was only observed at 150 nM
and 500 nM concentrations of FMX (Figure 2B,C). Meanwhile, no changes in EPR signal
intensity were observed at 50 nM or 1 µM FMX, suggesting that these concentrations were
not optimal for use due to either concentration limitation (i.e., surface charge availability)
or signal saturation, respectively.
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Figure 2. Electron paramagnetic resonance evaluation of nanoparticle irradiation. Increasing
concentrations of FMX (50 nM–1 µM) were prepared in a 0.1 mM xylenol orange concentration and
irradiated with 4 Gy and evaluated using EPR spectroscopy. (A). Representative EPR spectra of FMX
nanoparticles prior to (blue) and following (red) 4 Gy irradiation. Due to the high iron content of
FMX, signal saturation occurred at 500 nM and 1 µM. Thus, the instrument gain had to be decreased
from 5.02 × 104 to 2 × 104 and 1 × 104, respectively. (B). The peak-to-peak signal intensity of the
major, symmetric peak at g ≈ 2 (≈3500 G) was used for quantification. (C). To quantify the effects of
4 Gy on FMX the change in signal intensity (∆SI = SI(4 Gy) − SI (0 Gy)) was calculated.

3.3. Linearity of Electron Paramagnetic Resonance Spectroscopic Analysis

As it was determined that EPR spectroscopy could detect changes in FMX structure
following radiation (4 Gy) at 150 and 500 nM concentrations, this experiment aimed to
determine if the radiolytic changes in FMX changes can be used for dose estimation. Both
concentrations were evaluated over a range of radiation doses. Previously, it has been
reported that FMX radiolysis is linear up to 10 Gy [18]; however, many studies may
require doses >10 Gy as many normal tissue injury studies leverage doses up to 20 Gy [22].
Therefore, this study extended the analysis of FMX radiolysis using EPR spectroscopy
to up to 20 Gy. When 150 nM FMX was irradiated, EPR signal intensity increased up to
10 Gy; however, no differences were observed from 10 to 20 Gy (Figure 3A). These samples
were analyzed 24 h after irradiation to see if any decomposition processes occur overnight;
however, it appears that there is little difference in EPR signal intensity. This likely indicates
that the surface charges of FMX are initially oxidized and released leaving a slightly
smaller nanoparticle when the system returns to equilibrium. Next, 500 nM FMX was
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irradiated using the same dose range, and a more linear relationship was observed (R2 = 0.9,
slope = 667 A.U. Gy−1, Figure 3B). When the system was allowed to reach equilibrium
overnight, similar to 150 nM, no differences were observed between radiation doses.
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3.4. Evaluating FMX Radiation Dose Prediction with a Pre-Clinical Irradiation System

Following validation that 500 nM FMX exhibits linearity with radiation doses up to
20 Gy, EPR analysis was used to test whether FMX oxidation could accurately predict the
dose delivery from a small animal radiation research platform (SARRP). First, a cone-beam
CT image of a 500 nM FMX sample was gathered to generate a treatment plan using the
Muriplan software 3.0.0 and prescribe the desired dose of 6 Gy (Figure 4A). Following dose
estimation using the Muriplan superposition convolution algorithm, the predicted dose
delivered to the sample was 6.25 Gy. Following irradiation, the sample was analyzed using
EPR spectroscopy compared to an unirradiated sample to calculate the change in signal
intensity (∆SI, Figure 4B). The ∆SI observed was 850 ± 283 A.U. Using a linear extrapolation
method from the previous 0–20 Gy calibration curve (slope = 667 A.U. Gy−1), the dose
estimate was 1.37 Gy. This estimate is 79.2% lower than the dose prediction generated
before irradiation using Muriplan software. As FMX oxidation is highly sensitive to dose
rate [18], this major discrepancy may be largely due to the variable dose rates as the 137Cs
irradiated samples were performed with a 0.6 Gy min−1 beam, and the Xstrahl SARRP for
this treatment (S.S.D ≈ 35 cm) has a dose rate of approximately 2.5 Gy min−1. To account
for this difference in dose rate, a 3-point calibration curve was generated with the SARRP
at this S.S.D., which showed no difference in EPR signal intensity between 10 and 20 Gy
(Figure 4C). Therefore, it appears that FMX has limited utility for SARRP-based dosimetry.
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4. Discussion

The overarching goal of this study was to test the viability of magnetite iron oxide
nanoparticles for radiation dosimetry. The driving principle behind this study is the un-
derstanding that ionizing radiation can oxidize the Fe2+ sites in the Fe3O4 core, facilitating
the release of free Fe3+, an effect that is detectable using EPR spectroscopy [18]. This study
first showed that xylenol orange is unable to detect free Fe3+ release from FMX following
irradiation. This is likely due to the low amounts of Fe3+ released, which have been shown
to be in the order of ≈200 nM. These concentrations of released iron are most likely below
the limit of detection for xylenol orange, which typically detects iron oxidation in tradi-
tional Fricke dosimeters with ferrous ammonium sulfate concentrations of approximately
300 µM [23]. At minimum, this study successfully replicated previous results showing
that EPR spectroscopy can detect FMX oxidation. The previous study where this was
discovered showed radiation dose linearity with 50 nM up to 10 Gy [18]. From this study,
linearity up to 20 Gy was not observed with 150 nM FMX but could be observed with
500 nM. These results suggest that surface charge availability is a major limiting factor
in detecting radiation-induced oxidation. Therefore, these data warrant consideration of
iron oxide nanoparticles with variable sizes, as nanoparticles can range from 5–100 nm.
As it has previously been reported that H2O2 drives the radiolytic oxidation of Fe3O4 [18],
the physiochemical properties of the SPIONs themselves should be considered, as posi-
tively charged SPIONs have been shown to more readily interact with H2O2 [24]. Moving
forward, using EPR spectroscopy to assess radiolytic changes to SPIONs is an important
tool due to its ease of use and high sensitivity, as observed in this study. Several other
clinically relevant dosimetric techniques have relied on EPR spectroscopy (e.g., alanine
and lithium formate), which provide significantly greater sensitivity than colorimetric tech-
niques [5,25,26]. Therefore, if the physiochemical properties of SPIONs can be optimized
for dosimetric purposes, EPR spectroscopic analysis will provide a sensitive and reliable
outlet for clinical purposes.

This study revealed that FMX was unable to adequately estimate the dose from a
SARRP system. The dose was underestimated by approximately 4.63 Gy (≈79%). This
is likely due to the high sensitivity of FMX radiolytic oxidation to changes in dose rate.
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Previously, it has been shown that the radiolytic yield of FMX is maximum at 0.6 Gy min−1

and decreases linearly as a function of dose rate [18]. Therefore, the higher dose rate of the
SARRP (≈2.5 Gy min−1) is suboptimal and provides a significant dose underestimation.
Thus, the high sensitivity to changes in dose rate appears to be a significant limiting
factor for the use of iron oxides in radiation dosimetry. Based on these results, while the
high stability of FMX among other forms of Fe3O4 nanoparticles are attractive for use in
pre-clinical radiation dosimetry, further investigation into the non-trivial radiochemical
properties of SPIONs are required before considering them for this application and may
enhance their utility in more therapeutic settings.

5. Conclusions

Overall, this study was able to confirm the utility of electron paramagnetic resonance
spectroscopy to assess the radiolytic oxidation of FMX nanoparticles. Despite this fact, FMX
SPIONs show limited utility for dose estimation and appear to underestimate doses. This is
likely due to their high dose-rate sensitivity. Future research into the unique radiochemical
properties of SPIONs is required to assess broader applications.
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