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Simple Summary: Recent advances in artificial intelligence and automated image analysis
have enabled clinicians to extract quantitative features from medical images, such as CT,
MRI, or PET scans, beyond what is perceptible to the human eye. These features, known
as radiomics, provide detailed information about tumor shape, texture, and heterogeneity,
which are relevant to clinical outcomes. Radiomics information can help clinicians predict
tumor response to specific treatments, assess the likelihood of recurrence, and estimate
overall survival outcomes. In this article, we provide an overview of recent studies in the
field of radiomics aimed at guiding personalized radiotherapy in patients with head and
neck cancers.

Abstract: Radiomics and deep learning computer vision algorithms can extract clinically
relevant information from medical images, providing valuable insights for accurate di-
agnosis of cancerous lesions, tumor differentiation and molecular subtyping, prediction
of treatment response, and prognostication of long-term outcomes. In head and neck
squamous cell carcinoma (HNSCC), growing evidence supports the potential role of ra-
diomics and deep learning models in predicting treatment response, long-term outcomes,
and treatment complications following radiation therapy. This is especially important
given the pivotal role of radiotherapy in early-stage and locally advanced HNSCC, as well
as in post-operative and concomitant chemoradiotherapy. In this article, we summarize
recent studies highlighting the role of radiomics in predicting early post-radiotherapy
response, locoregional recurrence, survival outcomes, and treatment-related complications.
Radiomics-guided tools have the potential to personalize HNSCC radiation treatment by
identifying low-risk patients who may benefit from de-intensified therapy and high-risk
individuals who require more aggressive treatment strategies.

Keywords: head and neck tumor; oropharyngeal squamous cell carcinoma; radiomics;
radiation therapy; machine learning

1. Introduction
Most head and neck tumors arise from epithelial cells; consequently, squamous cell

carcinoma accounts for approximately 90% of cancers in head and neck. Head and neck
squamous cell carcinoma (HNSCC) is the seventh most common cancer globally, resulting
in more than 300,000 deaths annually [1]. In recent decades, the incidence of oropharyngeal
squamous cell carcinoma (OPSCC) form has been rising, particularly in Europe and USA,
due to increased rates of Human Papillomavirus (HPV) infection [2,3]. The most recent
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global incidence of OPSCC is estimated at approximately 93,000 new cases per year [4].
According to the most recent (8th) edition of the American Joint Committee on Cancer
(AJCC) staging system, OPSCC is referred to as HNSCC in the posterior one-third and
base of the tongue, tonsils, soft palate, uvula, and the posterior and lateral pharyngeal
walls [5]. Due to their divergent prognosis, the 8th edition of AJCC has categorized OPSCC
into HPV-associated and non-HPV-associated subtypes [5]. Given the favorable response
of primary tumors and cervical lymphadenopathy in HPV-associated OPSCC, radiation
therapy has become the primary treatment modality for small tumors, combined with
surgery for larger or advanced disease, or along with chemotherapy in the case of locally
advanced disease. Thus, there is active research focused at improving radiation treatment
planning, post-therapy surveillance, prediction of locoregional recurrence, and accurate
prognostication in HNSCC, and particularly OPSCC. Radiomics and computer vision have
the capacity to guide precision radiation therapy by extracting biologically relevant imaging
patterns from medical scans that are typically imperceptible to the human eye.

Recent advancements in imaging technology and statistical algorithms have given rise
to radiomics, a field focused on extracting quantitative features, such as shape, intensity,
and texture, from medical imaging modalities like computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET), and ultrasound [6]. While
radiomics extracts imaging features based on predefined algorithms, deep learning com-
puter vision algorithms can identify novel patterns from medical scans through an iterative
training process. A growing body of evidence highlights the capability of radiomics and
deep learning computer vision algorithms in the diagnosis, molecular subtyping, differ-
entiation, and prognostication of HNSCC [7]. In this article, we summarized the most
recent advances in image-guided precision radiation therapy of HNSCC with emphasis on
predicting treatment response, locoregional recurrence, post-radiation complications, and
survival in OPSCC patients.

2. Methods
2.1. Literature Search Strategy

We performed a comprehensive search of the literature in PubMed and Google Scholar
dataset. The primary key search terms included “radiomics”, “radiotherapy”, “oropharyn-
geal”, “head and neck”, and “squamous cell carcinoma”, which are directly related to the
central theme of the review. Additionally, terms like “treatment response”, “post-radiation”,
or “after radiation” were incorporated to target studies focusing on post-radiation outcomes
and prognostic factors. Specific terms like “recurrence” and “locoregional” were employed
to identify studies predicting locoregional recurrence, and terms such as “progression free
survival” and “overall survival” were used to target studies about prediction of overall
survival, adding the terms “complications”, “post-radiation”, and “xerostomia” to identify
challenges occurring in patients due to radiation treatment. Finally, terms like “machine
learning”, “deep learning”, “prediction”, and “hybrid model” were incorporated to identify
different applications and techniques that were used. Boolean operators AND and OR
were utilized to refine search results. For instance, the combination “(radiomics) OR (radio-
therapy) AND ((oropharyngeal) OR (head and neck) OR (squamous cell carcinoma)) AND
(treatment response)” identified papers focusing on radiomics related to oropharyngeal
cancer and how it is affected by radiotherapy treatment. This search string was applied on
the PubMed and Google Scholar databases to search for words in all fields.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria for our review were as follows: articles written in English,
research-focused studies, specifically addressing HNSCC, and employing radiomics or
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deep learning analysis of cross-sectional imaging modalities such as CT, MRI, or PET.
Exclusion criteria were non-research article types such as abstracts, conference proceedings,
or editorials, as well as studies utilizing ultrasound imaging, which lacks the resolution
and detail required for radiomics analysis. Additionally, we excluded studies focused on
metastatic head and neck cancer, as our aim was to explore primary tumors to maintain
a clear and consistent scope. Exclusion criteria were abstract or conference article types,
editorial, ultrasound imaging, and metastatic head and neck cancer. We collected over
43 related papers from 2014 to 2024 to summarize in this review.

2.3. Review Structure

In this review, we have summarized the findings of articles in each subsection and
provided additional details in the corresponding tables. The tables include the year of
publication, total number of subjects, and whether the study focused solely on the OPSCC
subtype or included HNSCC from various subsites. They also summarize the total sample
size, cross-sectional imaging modality, and results of the best-performing models. For ra-
diomics studies, the machine learning models are listed, while models using deep learning
are prefixed with “DL-“. Additionally, we have clearly indicated whether the models were
based solely on radiomics/image inputs or incorporated both radiomics/image and clinical
variables as inputs.

3. Results
3.1. Tumor Characteristics

OPSCC accounted for the majority of HNSCC cases in the articles included in this
review. Six studies focused exclusively on radiomics in OPSCC; two of these studies specif-
ically examined HPV-associated OPSCC, with the largest sample size being 190 patients [8].
Other studies included patients with HNSCC, with the largest sample size reaching 2552 pa-
tients [9], involving two external collaborators. The smallest sample size was 21 patients
with osteoradionecrosis, a condition related to radiation therapy, drawn from a cohort
of 83 OPSCC patients [10]. Notably, one study included both lung and head and neck
cancers [11], exploring a lung-derived radiomic signature for prognostication in head and
neck tumors [11].

3.2. Imaging Modalities

Due to their widespread availability and relatively standardized image intensity values
across different scanners, many studies have utilized CT images for HNSCC radiomics
analysis and deep learning models. Many researchers have used contrast-enhanced CT, as
it inherently provides better visual delineation of tumoral lesions. Additionally, cone-beam
CT and Megavoltage CT scans, used for longitudinal treatment response assessments, can
provide imaging input for prognostic models, although they tend to have lower signal-to-
noise ratio [12,13].

Compared to CT images, which primarily capture the structural or morphological
properties of tumors, PET radiomics provides quantitative metrics of tumor functional or
metabolic activity using radiotracers such as fluorodeoxyglucose (FDG), fluoromisonida-
zole, and fluorothymidine [14–16]. Notably, one study demonstrated that 50% of the
features extracted from 18-FDG PET achieved an intraclass correlation coefficient ≥ 0.8
between manual and various automated segmentation methods in OPSCC, indicating
sufficient reproducibility for radiomics analysis [17]. In addition, PET/CT surveillance is
commonly recommended for assessing treatment response, typically performed at baseline
and during the 3-month post-treatment follow-up [18]. This sequential series of PET/CT
scans provides a valuable resource for radiomics analysis of treatment response in HNSCC.
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However, despite the high sensitivity and negative predictive value, PET/CT has the caveat
of high false positive rates due to post-treatment inflammation [18]. Furthermore, studies
have shown that combining PET and CT radiomic features can more accurately predict
local recurrence than models based on either PET or CT alone [16], even when analyzing
sub-volumes or subregions of tumors [19–21].

MRI is the preferred modality for evaluating soft tissue involvement in HNSCC.
Radiomics features from pre- and post-contrast T1-weighted images have been used in
HNSCC prognostication, predicting HPV status, and radiation-induced xerostomia [22–25].
Diffusion-weighted imaging (DWI), which reflects tumoral cellularity, has also been valu-
able. One study demonstrated that apparent diffusion coefficient (ADC) maps can detect
significant changes in HNSCC heterogeneity and residual disease as early as 6 weeks
post-chemoradiotherapy [26]

Finally, ultrasound scans can provide quantitative parameters that reflect detailed
microstructural information of tissues. Radiomic features extracted from ultrasound images,
such as the spectral intercept from metastatic lymph nodes, can predict treatment response
after chemoradiation in HNSCC [27,28].

3.3. Input for Prognostic Models

Different studies have utilized 2D slices, 3D volume of interests or volumetric patches
from CT, MRI, PET scans, and ultrasound to compute radiomic features or serve as input
for deep learning algorithms in post-radiation prognostication of HNSCC. In radiation
therapy, gross tumor volume (GTV) refers to the volume encompassing the primary tumor
and any involved lymph nodes [19]. Many groups have used the GTV masks as input
for their radiomics and deep learning models. In addition, the planning target volume
(PTV) includes the additional margin besides GTV, considering physiologic organ mobility
during therapy and uncertain positioning [29]. Some authors suggested that both GTV and
PTV radiomics features can provide prognostic information regarding HNSCC recurrence
and survival [30]. Many other studies have used manually or automatically segmented
regions of interest (ROIs) on diagnostic scans as input for their models.

The inclusion of demographic information and clinical risk factors—such as age,
gender, tobacco and alcohol use, HPV status, tumor site, T- and N-stage, and treatment
paradigm—alongside imaging data improves radiomics or deep learning models’ per-
formance compared to using individual inputs alone [8,12,19,23,25,31]. Models using
CT+PET+Clinical, CT+PET+Dose+Clinical, or CT+MR+Dose+Clinical data as input have
demonstrated improved predictions of locoregional recurrence, radiation-induced oral
mucositis, and xerostomia, offering potential for personalized radiotherapy in OPSCC
patients [20,24,32,33].

3.4. Prediction of Early Post-Radiation Treatment Response

Post-radiation treatment response is typically evaluated 3 months after completing
therapy using radiological scans. Locoregional failure is defined when there is less than a
25% decrease in lesion volume from pre-treatment to 3-month post-treatment evaluation
scans, or when local, regional, or distant recurrence, or new disease is confirmed through
histopathology, imaging, and clinical examination [34]. In contrast, locoregional control
is achieved when there is no histopathologically proven local residual tumor, recurrence,
metastatic lymphadenopathy, or metastases [23]. Patients with locoregional control and no
residual disease at the primary tumor site or within lymph nodes are considered to have a
“complete” treatment response. Patients who do not meet the criteria for complete response
or locoregional failure are classified as “partial” responders.
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Although OPSCC patients typically show a high rate of early treatment response to
radiation therapy, a significant number of patients experience residual or recurrent disease,
which can lead to considerable deterioration, toxicity, and mortality. As a result, there
is growing interest in identifying radiomic features that can predict treatment response,
with the goal of improving radiation treatment planning, increasing the rate of complete
responses, and preventing locoregional failure.

Table 1 summarizes recent studies that utilized radiomics to predict early post-
radiation treatment response. One study found that certain CT radiomic features were
predictive of locoregional control, achieving a validation area under the curve (AUC) of 0.78,
while none of the PET features reached this level of predictive accuracy [35]. Another study
demonstrated that PET radiomic models, applied post-chemoradiotherapy, were predictive
of locoregional control in HNSCC, with a validation AUC of 0.76 [36]. Additionally, an
MRI-based radiomics model predicted post-radiation locoregional control with an AUC
of 0.740 [23]. Combination of radiomics and clinical variables substantially improved the
predictive performance of models [12,22,23].

Table 1. Prediction of early post-radiation treatment response.

Author, Year Sample Size Imaging Modality Machine
Learning Model

Input for Model with
Best Performance

Bogowicz et al., 2017 [36] 178 HNSCC 18F-FDG PET PCA, LASSO,
Cox Regression

Radiom
CV-CI: 0.76

Bos et al., 2021 [23] 177 OPSCC contrast-T1W MRI LR Radiom+Clin
Test-AUC: 0.745

Bos et al., 2023 [22] 157 OPSCC contrast-T1W MRI LR Radiom+Clin
CV-AUC: 0.68

Osapoetra et al., 2024 [28] 55 HNSCC QUS SVM, LDA, k-NN,
ANN

Radiom
Test-AUC: 0.77

Sellami et al., 2022 [12] 93 HNSCC CBCT LR Radiom+Clin
CV-AUC: 0.80

Starke et al., 2023 [35] 55 HNSCC CT, FDG-PET CPH Radiom
CV-CI: 0.78

Tran et al., 2019 [27] 32 HNSCC QUS k-NN,
Naive-Bayes, LR

Radiom
AUC: 0.91

Ulrich et al., 2019 [14] 30 HNSCC FLT-PET AP, Cox
regression

Radiom
CI: 0.86

ANN: artificial neural network; AP: affinity propagation; AUC: area under the receiver operating characteristics
curve; CBCT: cone-beam CT; CI: concordance index; Clin: clinical model; CPH: Cox Proportional Hazards;
CT: computed tomography; CV: cross-validation; FDG: fluorodeoxyglucose; FLT: fluorothymidine; HNSCCs:
head and neck squamous cell carcinomas; k-NN: k-nearest neighbors; LASSO: least absolute shrinkage and
selection operator; LDA: linear discriminant analysis; LR: Logistic Regression; MRI: magnetic resonance imaging;
OPSCC: oropharyngeal squamous cell carcinoma; PCA: Principal Component Analysis; PET: positron emission
tomography; QUS: quantitative ultrasound; Radiom: radiomics model; SVM: Support Vector Machine.

Among radiomic features, several common characteristics have emerged as predic-
tive of early post-radiation treatment response. Regarding tumor size and shape, smaller
and more spherical lesions at baseline have been associated with better treatment re-
sponses [14,34,37]. In addition, textural features such as coarseness and grey-level param-
eters of the primary tumor have shown promise in predicting treatment response across
different imaging modalities [12,14,26]. Such textural features have also demonstrated
higher sensitivity and specificity in distinguishing metastatic lymph nodes between com-
plete and partial response groups in HNSCC [27]. Overall, rounder and more homogeneous
tumors are generally associated with more favorable treatment response, while tumors
exhibiting greater heterogeneity and irregularity are linked to poorer outcomes.
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Notably, some studies have proposed delta-radiomics to assess treatment response,
quantifying the temporal evolution of radiomic features by calculating the difference (delta)
or relative change between pre-treatment and inter- or post-treatment scans [38]. Radiomic
features that show significant relative differences—such as those with an AUC > 0.65 at
each time point—are selected as delta-radiomics features. For example, one study found
that HNSCC patients with high coarseness parameters from cone-beam CT images at the
fourth week of treatment were the best responders to radiotherapy [12]. Another study,
using pre-treatment and inter-treatment CT and FDG-PET imaging, demonstrated that CT
and FDG-PET features performed differently in overall discrimination and patient stratifi-
cation during weeks two and three of treatment [35]. Similarly, a quantitative ultrasound
delta-radiomics model from four different classifiers showed improved performance in
predicting 3-month post-treatment response after the first week of radiation in HNSCC
patients [28]. These findings suggest that models trained on delta-radiomics features can
provide earlier and more reliable prognostication, facilitating personalized and timely
treatment strategy modification.

3.5. Prediction of Locoregional Recurrence

Locoregional recurrence refers to the return of HNSCC in the same anatomical region
as the original tumor or in nearby lymph nodes within the regional lymphatic drainage
zone. Table 2 summarizes recent studies utilizing radiomics or deep learning models to
predict post-radiation locoregional recurrence in HNSCC.

Using radiomics from contrast-enhanced CT, Wu et al. achieved an AUC of 0.77
in predicting locoregional recurrence [39], while peritumoral radiomics from contrast-
enhanced CT achieved C-index values ranging from 0.32 to 0.61 [40]. Wang et al. have
developed a multi-classifiers, multi-objectives, and multi-modalities model using delta-
radiomics for prediction of HNSCC locoregional recurrence with an AUC of 0.80 [33,41].
Another model with inputs from CT, PET, dose distribution and clinical factors has achieved
an average AUC of 0.892 by deep learning [19]. One of the most accurate models for
predicting HNSCC recurrence used deep learning artificial neural networks based on GTV
and PTV radiomic features from treatment-planning CT images, reaching an AUC greater
than 0.9 [30]. Furthermore, using an attention-based multiple instance risk prediction
model, Pan et al. quantitatively assessed relevant highest and lowest weighted intra-
tumoral subregions in HNSCC and predicted the risk of locoregional recurrence [19]. Such
an approach can direct precision radiation therapy to high-risk subregions of the tumor.

Locoregional recurrence also refers to the reappearance of tumors in regional lymph
nodes. A recurrent node is defined as a new pathological node emerging after an initial
complete response, in contrast to residual disease, which refers to a persistent pathological
node observed at least 12 weeks post-treatment [42]. By combining several clinical variables
and radiomic features from lymph nodes on pre-treatment contrast-enhanced CT, Zhai
et al. predicted locoregional lymph node recurrence with a C-index of 0.80 in HNSCC [42].
Patients identified as being at higher risk for locoregional recurrence may be candidates for
intensified radiation therapy.
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Table 2. Prediction of locoregional recurrence.

Author, Year Sample Size Imaging
Modality

Machine
Learning Model

Input for Model with
Best Performance

Bogowicz et al., 2021 [21] 40 HNSCC CECT,
FDG-PET/CT LR Radiom

CV-AUC: 0.88

Cong et al., 2021 [16] 298 HNSCC 18F-FDG PET/CT RF Radiom+Clin
CV-AUC: 0.70

Devakumar et al., 2021 [34] 31 HNSCC CT, PET LASSO, LR,
Ridge Regression

CT-Radiom
CV-AUC: 0.79

Fh et al., 2021 [30] 188 HNSCC planning CT DL-ANN Radiom
AUC: 0.956

Gangil et al., 2022 [31] 311 HNSCC CECT RF, KSVM,
XGBoost

Radiom+Clin
Mean-AUC: 0.98

Goncalves et al., 2022 [43] 183 HNSCC CT XGBoost, LR, RF,
DT, MTP

Radiom+Clin
AUC: 0.74

Haider et al., 2021 [8] 190 OPSCC CT, PET RSF Radiom
CV-CI: 0.76

Han et al., 2022 [20] 157 HNSCC CT, PET DL-DNN Radiom+Clin
Mean-AUC: 0.892

Keek et al., 2020 [40] 444 HNSCC CECT CPH, RSF Radiom
CV-CI: 0.74

Pan et al., 2023 [19] 228 HNSCC CT, PET Wilcoxon Radiom+Clin
Test-CI: 0.766

Wang et al., 2020 [33] 277 HNSCC CT, PET SVM, DA, LR Radiom+Clin
Test-AUC: 0.77

Wang et al., 2023 [41] 224 HNSCC FDG-PET/CT SVM, DA, LR Radiom+Clin
AUC: 0.80

Wu et al., 2024 [39] 192 HNSCC CECT SVM Radiom
Test-AUC: 0.770

Zhai et al., 2020 [42] 277 HNSCC CECT CPH Radiom+Clin
CV-CI: 0.80

ANN: artificial neural network; AUC: area under the receiver operating characteristics curve; CECT: contrast-
enhanced CT; CI: concordance index; Clin: clinical model; CPH: Cox Proportional Hazards; CT: computed
tomography; CV: cross-validation; DA: discriminant analysis; DL: deep learning; DNN: deep neural network;
DT: Decision Tree; FDG: fluorodeoxyglucose; HNSCC: head and neck squamous cell carcinoma; KSVM: Kernel
Support Vector Machine; LASSO: least absolute shrinkage and selection operator; LR: Logistic Regression; MRI:
magnetic resonance imaging; MTP: Multilayer Perceptron; OPSCC: oropharyngeal squamous cell carcinoma; PET:
positron emission tomography; Radiom: radiomics model; RF: Random Forest; RSF: random survival forest; SVM:
Support Vector Machine.

3.6. Survival Prognostication

In survival analysis, the time gap from treatment to the occurrence of locoregional
recurrence, distal metastasis, or the last follow-up visit is used to define progression-free
survival [44]. Overall survival (OS) is the time from the first day of treatment until death
for any cause [44], and the proportion of patients surviving after treatment in some defined
or interested year(s) is referred to as overall survival rate. These survival metrics are the
main measures to define anti-cancer treatment efficacy. Image-based prognostic tools can
guide personalized radiation treatment by tailoring the intensity and type of treatment
based on the predicted survival outcomes. Table 3 summarizes recent studies utilizing
radiomics or deep learning models to predict progression-free survival and overall survival
after radiation in HNSCC.

Our team showed that combined CT and PET radiomics can predict OS and PFS more
accurately than AJCC staging in both HPV-associated and non-HPV-associated OPSCC [45].
Notably, the radiomics models usually had more accurate prognostic performance in HPV-
associated OPCSS than the non-HPV-associated form [23]. It is also noteworthy that HPV-
associated OPSCC are more sensitive to radiation therapy, and radiomics-based predictors



Radiation 2025, 5, 7 8 of 14

of survival in HPV can guide (de)intensification of radiotherapy in low-risk cohorts [46].
Overall, models that combine CT/MRI/PET-based radiomics with clinical variables usually
perform better for the prediction of OS than models based on clinical variables or radiomic
features alone [43]. For example, combination of pre-treatment T1-weighted MRI-based
radiomics features with clinical variables improved OS prediction [25]. It is also shown
that radiomic features from both GTV and PTV provide prognostic information regarding
post-treatment survival [29,30]. Finally, it is notable that one study showing shape features
such as sphericity and elongation had higher prognostic importance than texture features
on baseline contrast-enhanced CT [37].

Table 3. Prediction of survival outcomes.

Author, Year Sample Size Imaging Modality Machine
Learning Model

Input for Model with
Best Performance

Abe et al., 2023 [13] 100 HNSCC planning CT LASSO, Cox
regression

Radiom
Test-CI: 0.685

Aerts et al., 2014 [11] 231 HNSCC CT CPH Radiom
CV-CI: 0.69

Bernatz et al., 2023 [37] 157 HNSCC CECT EN, RSF Radiom
Test-AUC: 0.811

Boot et al., 2023 [25] 249 OPSCC T1W-MRI LR, RF Radiom+Clin
CI: 0.72

Bos et al., 2021 [23] 177 OPSCC contrast-T1W MRI LR Radiom+Clin
Test-AUC: 0.744

Fh et al., 2021 [30] 188 HNSCC planning CT DL-ANN Radiom
AUC: 0.9460

Goncalves et al., 2022 [43] 183 HNSCC CT XGBoost, LR, RF,
DT, MTP

Radiom+Clin
AUC: 0.91

Haider et al., 2020 [45] 311 OPSCC PET/CT RSF Radiom
CI: 062

Kazmierski et al., 2023 [9] 2552 HNSCC planning CT DL-MTLR Radiom+Clin
AUC: 0.823

Miller et al., 2019 [46] 38 OPSCC CECT LDA Radiom
AUC: 0.80

Tang et al., 2022 [29] 135 HNSCC planning CT DT, RF, EB, SVM,
GLM (Linear)

Radiom
AUC ≥ 0.920

ANN: artificial neural network; AUC: area under the receiver operating characteristics curve; CECT: contrast-
enhanced CT; CI: concordance index; Clin: clinical model; CPH: Cox Proportional Hazards; CT: computed
tomography; CV: cross-validation; DL: deep learning; DT: Decision Tree; EB: Extreme Boost; EN: elastic net;
GLM (Linear): Generalized Linear Model (Linear); HNSCC: Head and neck squamous cell carcinoma; LASSO:
least absolute shrinkage and selection operator; LDA: linear discriminant analysis; LR: Logistic Regression;
MRI: magnetic resonance imaging; MTLR: Multitask Logistic Regression; MTP: Multilayer Perceptron; OPSCCs:
oropharyngeal squamous cell carcinomas; PET: positron emission tomography; Radiom: radiomics model; RF:
Random Forest; RSF: random survival forest; SVM: Support Vector Machine.

3.7. Prediction of Post-Radiation Complciations

Prediction of radiation-induced toxicities, such as mucositis, xerostomia, and dys-
phagia, can enable tailored treatment plans that minimize exposure to critical organs.
Such predictive tools can guide radiation oncologists to adjust radiation dosage and select
treatment modalities, such as intensity-modulated radiation therapy (IMRT), with lower
likelihood of complications. Additionally, in patients requiring re-irradiation, predictive
models can inform the decision-making process by weighing the risks against the benefits
of radiotherapy. Early identification of high-risk patients also allows for closer moni-
toring, timely interventions and supportive care following radiotherapy. Recent studies
have shown the potentials of radiomics to predict post-radiation toxicity and treatment
complications in HNSCC patients (Table 4).



Radiation 2025, 5, 7 9 of 14

Table 4. Prediction of post-radiation toxicity and complications.

Author, Year Complication,
Sample Size

Imaging
Modality

Machine
Learning Model

Input for Model with
Best Performance

Abdollahi et al., 2023 [47] Xerostomia,
31 HNSCC CT LASSO Radiom

AUC: 0.89

Agheli et al., 2024 [32] Oral mucositis,
49 HNSCC CT RF Radiom+Clin

AUC: 91.7%

Barua et al., 2021 [10] Osteoradionecrosis,
21 OPSCC CECT MFPCA Radiom

AUC: 0.74

Sheikh et al., 2019 [24] Xerostomia,
266 HNSCC

CT, contrast-T1W
MRI LASSO Radiom+Clin

CV-AUC: 0.68
AUC: area under the receiver operating characteristics curve; CECT: contrast-enhanced CT; Clin: clinical model;
CT: computed tomography; CV: cross-validation; HNSCC: head and neck squamous cell carcinoma; LASSO:
least absolute shrinkage and selection operator; MRI: magnetic resonance imaging; OPSCC: oropharyngeal
squamous cell carcinoma; Radiom: radiomics model; RF: Random Forest; MFPCA: Multivariate Functional
Principal Component Analysis.

Radiation-induced oral mucositis is one of the most common treatment complica-
tions affecting more than 90% of HNSCC patients, which can result in severe dysphagia
and weight loss and may limit further treatment [48]. Combining treatment-planning
CT radiomics features with clinical variables, Agheli et al. could predict post-radiation
oral mucositis with AUC = 0.91 [32]. High-risk patients may benefit from prophylactic
supportive care to prevent or alleviate the mucositis symptoms.

Xerostomia is another acute radiation-induced toxicity with 50 to 80% incidence rate in
HNSCC, likely from radiation to salivary glands [49]. In a study on radiotherapy-induced
xerostomia, delta features between mid-treatment and pre-treatment CT combined with
dose parameters achieved an AUC of 0.89 [47]. In another study, the best predictive
performance for post-radiation xerostomia was based on inputs from clinical, dose–volume
histogram, CT and post-contrast T1-weighted MRI radiomic features [24].

Comparatively, osteoradionecrosis is a late complication caused by radiation to the
mandibular bone, followed by reduced blood supply and osseous devitalization with an
incidence between 1 and 16% [50] and variable severity from Grade I to IV [51]. In a cohort
of 21 OPSCC patients, the temporal trajectory of radiomics features from contrast-enhanced
CT achieved an AUC of 0.74 in predicting osteoradionecrosis [10]. They showed that
sequential pre- and post-radiotherapy CT follow-up can provide predictive markers for
radiation-induced mandibular osseous necrosis with potential for earlier intervention [10].

4. Discussion
We summarized the latest advances in the application of radiomics for post-radiation

surveillance and prognostication in HNSCC. Radiomics and deep learning models have
demonstrated considerable accuracy in predicting early post-radiotherapy treatment re-
sponse, locoregional recurrence or failure, progression-free and overall survival, post-
radiation toxicities and complications. Once the generalizability and reliability of such
models are established by external and prospective validation, they can serve as valuable
tools in guiding personalized radiation treatment planning for HNSCC.

Radiotherapy plays a critical role in the treatment of HNSCC, especially HPV-
associated OPSCC, either as a standalone therapy or in combination with chemotherapy
and surgery. Radiotherapy plays a major role as definitive/curative therapy or as an adjunct
to surgery in early-stage and locally advanced HNSCC. In patients with positive surgical
margins or discovery of lymph node involvement in surgery, post-operative radiother-
apy has been shown to improve survival. Concomitant chemoradiotherapy has been the
mainstay treatment for advanced HNSCC. There is also ongoing research into combining
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radiotherapy with newer immunotherapy to improve outcomes. Radiomics-based models
can improve patients’ selection for dose deintensification in low-risk HNSCC versus more
aggressive treatment strategies in high-risk individuals. Predicting post-radiation compli-
cations can guide preventive care or modified treatment strategies. However, it should
be noted that the primary determinant of post-radiation complications is the radiation
dose. Many radiomics studies—cited in this review article—assume that patients receive
the same radiation dose, suggesting that tissue characteristics captured by radiomics can
predict complications. This assumption does not account for the real-world variability in
radiation doses and other confounding factors, limiting the applicability of these findings
to diverse clinical settings. Overall, radiomics-based models have demonstrated significant
potential in guiding precision radiotherapy for HNSCC.

Heterogeneity, resulting from subclones associated with different gene expressions
and molecular phenotypes within subregions of a tumor, is a characteristic of HNSCC and
represents different radiosensitivity or resistance [21,52]. Radiomics features that measure
tumoral lesion texture heterogeneity on medical images reflect such histopathological
variations in tumor subregions [53,54]. Thus, the combination of tumor size and shape
feature and textural heterogeneity can provide prognostic information about treatment
response and long-term outcomes.

A notable trend in many studies is the added value of incorporating multi-modal
inputs into predictive models. Multiple studies have shown that combining radiomics
from different imaging modalities (e.g., CT and PET), integrating clinical variables with
radiomic data, or utilizing changes in radiomic features over time (e.g., delta-radiomics) can
improve the prediction accuracy for different outcome metrics. This approach aligns with
the concept of multi-omics, where abundant information from imaging, laboratory tests,
genetic data, and clinical sources collectively informs personalized treatment strategies for
cancer patients.

Moreover, the choice of imaging modality and input plays a critical role in radiomics
analysis, as it directly impacts the quality and type of features extracted. Modalities
such as CT, MRI, and PET provide distinct information: CT scans offer structural details,
MRIs capture soft tissue properties, and PET scans represent metabolic activity. The
radiomics methodology, including preprocessing, feature extraction, and selection, is
equally important for ensuring reproducibility and robustness. Standardized protocols are
essential to minimize variability and enhance the comparability of results across studies.
Optimizing the synergy between image modality and analysis methodology is crucial for
unlocking the full potential of radiomics in guiding precision HNSCC radiation therapy.

However, there are significant limitations in the adoption of radiomics-based models
in clinical practice. One significant challenge is the heterogeneity of imaging data, which
reduces the generalization of models across different centers. Normalizing signal intensities
to a reference organ has been shown to improve model performance [55]. Another major
limitation is the variability in lesion segmentation, as most radiomics models rely on seg-
mentation masks of the tumor. The accuracy and reliability of segmentation are crucial for
reproducibility of model performance. Some researchers have addressed this by selectively
including radiomic features with strong inter- and intra-reviewer consistency to improve
model generalization [45]. Additionally, the development of radiomics-based machine
learning models requires large training datasets. Models trained on smaller cohorts are
prone to overfitting, which can lead to overestimated accuracy and reduced generalizability.
Finally, the constantly evolving treatment paradigms for HNSCC add another layer of
complexity, requiring training of new models for reliable prognostication of novel therapies.

Our article is inherently limited by the absence of a formal systematic review pro-
cess. However, we employed a transparent search strategy and detailed our inclusion
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and exclusion criteria. Despite this, our comprehensive review lacks the rigorous article
selection methodology and the potential for quantitative synthesis characteristics of sys-
tematic reviews. Major challenges for conducting a systematic review on radiomics-guided
HNSCC radiation therapy are heterogeneity in cancer subsites of patient samples, differ-
ences in statistical comparison methods, inconsistency in validation processes, and variable
outcome metrics. Additionally, there are very few articles addressing radiomics-based
prediction of post-radiation complications. Additionally, although OPSCC, particularly the
HPV-associated subtype, represents a biologically distinct cancer from other HNSCC types
with different treatment responses, many studies did not stratify their results by HNSCC
subsite, as shown in Tables 1–4. This represents a major limitation of the available studies;
however, it may reflect the delayed recognition of OPSCC and the HPV-associated subtype
as distinct cancer entities by the AJCC until 2018 [5]. In addition, there is a general sparsity
of multi-omics analysis in HNSCC. We found no research articles combining radiomics
with transcriptomics or metabolomics addressing HNSCC radiation therapy. However,
Zhi et al. applied spatial transcriptomics and metabolomics to map the spatial location of
cancer cells, fibroblasts, and immune cells in oral submucous fibrosis-derived tissues of oral
squamous cell carcinoma [56]. They found that fibrosis-derived oral HNSCC cells undergo
partial epithelial–mesenchymal transition within in situ carcinoma, eventually acquiring
fibroblast-like phenotypes and contributing to collagen deposition [56]. Additionally, Li
et al. compared metabolomics and transcriptomics of 73 HNSCC patients with 51 healthy
controls, identifying four genes associated with seven differential metabolites [57]. These
findings highlight both the potential and the knowledge gap of multi-omics analysis in
guiding radiation therapy for HNSCC.

5. Conclusions
In summary, the information extracted from medical scans as radiomics or via deep

learning computer vision models offers valuable prognostic markers to guide precision
radiation therapy in HNSCC. Integrating radiomics from multiple imaging modalities, pre-
and post-treatment scans, and incorporating clinical variables can improve the prognostic
performance of these models. However, challenges such as the harmonization of image
processing, lesion segmentation, and feature normalization must be addressed to develop
models that are generalizable to clinical practice. Additionally, these prognostic tools
will require continuous retraining to stay aligned with the evolving treatment paradigms
in HNSCC.
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