Flight Initiation Distance in an Urban Bird: Influence of the Number of People, Gaze Orientation, and Bird Behavior
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Area and Animals
2.3. Experimental Protocol
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Cooper, W.E.; Blumstein, D.T. Novel Effects of Monitoring Predators on Costs of Fleeing and Not Fleeing Explain Flushing Early in Economic Escape Theory. Behav. Ecol. 2014, 25, 44–52. [Google Scholar] [CrossRef]
- Eason, P.K.; Sherman, P.T.; Rankin, O.; Coleman, B. Factors Affecting Flight Initiation Distance in American Robins. J. Wildl. Manag. 2006, 70, 1796–1800. [Google Scholar] [CrossRef]
- Ydenberg, R.C.; Dill, L.M. The Economics of Fleeing from Predators. Adv. Study Behav. 1986, 16, 229–249. [Google Scholar] [CrossRef]
- Dumont, F.; Pasquaretta, C.; Réale, D.; Bogliani, G.; von Hardenberg, A. Flight Initiation Distance and Starting Distance: Biological Effect or Mathematical Artefact? Ethology 2012, 118, 1051–1062. [Google Scholar] [CrossRef]
- Blumstein, D.T.; Fernández-Juricic, E.; Zollner, P.A.; Garity, S.C. Inter-Specific Variation in Avian Responses to Human Disturbance. J. Appl. Ecol. 2005, 42, 943–953. [Google Scholar] [CrossRef]
- Clucas, B.; Marzluff, J.M. Attitudes and Actions toward Birds in Urban Areas: Human Cultural Differences Influence Bird Behavior. Auk 2012, 129, 8–16. [Google Scholar]
- Morelli, F.; Mikula, P.; Benedetti, Y.; Bussière, R.; Jerzak, L.; Tryjanowski, P. Escape Behaviour of Birds in Urban Parks and Cemeteries across Europe: Evidence of Behavioural Adaptation to Human Activity. Sci. Total Environ. 2018, 631–632, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wang, C.; Han, W.; Zhang, C. Birds’ Flight Initiation Distance in Residential Areas of Beijing Are Lower than in Pristine Environments: Implications for the Conservation of Urban Bird Diversity. Sustainability 2023, 15, 4994. [Google Scholar] [CrossRef]
- Møller, A.P. Flight Distance of Urban Birds, Predation, and Selection for Urban Life. Behav. Ecol. Sociobiol. 2008, 63, 63–75. [Google Scholar] [CrossRef]
- Ardila-Villamizar, M.; Alarcón-Nieto, G.; Maldonado-Chaparro, A.A. Fear in Urban Landscapes: Conspecific Flock Size Drives Escape Decisions in Tropical Birds. R. Soc. Open Sci. 2022, 9, 221344. [Google Scholar] [CrossRef]
- Bateman, P.W.; Fleming, P.A. Does Human Pedestrian Behaviour Influence Risk Assessment in a Successful Mammal Urban Adapter? J. Zool. 2014, 294, 93–98. [Google Scholar] [CrossRef]
- Mooller, A.P.; Tryjanowski, P. Direction of Approach by Predators and Flight Initiation Distance of Urban and Rural Populations of Birds. Behav. Ecol. 2014, 25, 960–966. [Google Scholar] [CrossRef]
- Mikula, P. Pedestrian Density Influences Flight Distances of Urban Birds. Ardea 2014, 102, 53–60. [Google Scholar] [CrossRef]
- Kalb, N.; Anger, F.; Randler, C. Flight Initiation Distance and Escape Behavior in the Black Redstart (Phoenicurus ochruros). Ethology 2019, 125, 430–438. [Google Scholar] [CrossRef]
- Xu, W.; Gong, Y.; Wang, H. Alert Time Reflects the Negative Impacts of Human Disturbance on an Endangered Bird Species in Changbai Mountain, China. Glob. Ecol. Conserv. 2021, 28, e01709. [Google Scholar] [CrossRef]
- Mikula, P.; Tomášek, O.; Romportl, D.; Aikins, T.K.; Avendaño, J.E.; Braimoh-Azaki, B.D.A.; Chaskda, A.; Cresswell, W.; Cunningham, S.J.; Dale, S.; et al. Bird Tolerance to Humans in Open Tropical Ecosystems. Nat. Commun. 2023, 14, 2146. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Beristain, M.; Rodríguez, Á.; Martínez-Garza, C.; Alcalá, R.E. Relating Flight Initiation Distance in Birds to Tropical Dry Forest Restoration. Zoologia 2018, 35, 12642. [Google Scholar] [CrossRef]
- Teo, J.J.H.; Weston, M.A.; Dingle, C.; Khamcha, D.; Mohd-Azlan, J.; Gale, G.A. Black Is the New Orange: Flight Initiation Distance of a Tropical Forest Bird in Relation to Human Clothing Colour. J. Ecotourism 2024, 1–18. [Google Scholar] [CrossRef]
- Livezey, K.B.; Fernández-Juricic, E.; Blumstein, D.T. Database of Bird Flight Initiation Distances to Assist in Estimating Effects from Human Disturbance and Delineating Buffer Areas. J. Fish Wildl. Manag. 2016, 7, 181–191. [Google Scholar] [CrossRef]
- Braimoh, B.; Iwajomo, S.; Wilson, M.; Chaskda, A.; Ajang, A.; Cresswell, W. Managing Human Disturbance: Factors Influencing Flight-Initiation Distance of Birds in a West African Nature Reserve. Ostrich 2018, 89, 59–69. [Google Scholar] [CrossRef]
- Van Dongen, W.F.D.; Robinson, R.W.; Weston, M.A.; Mulder, R.A.; Guay, P.J. Variation at the DRD4 Locus Is Associated with Wariness and Local Site Selection in Urban Black Swans. BMC Evol. Biol. 2015, 15, 253. [Google Scholar] [CrossRef]
- Carrete, M.; Martínez-Padilla, J.; Rodríguez-Martínez, S.; Rebolo-Ifrán, N.; Palma, A.; Tella, J.L. Heritability of Fear of Humans in Urban and Rural Populations of a Bird Species. Sci. Rep. 2016, 6, 31060. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.P. Life History, Predation and Flight Initiation Distance in a Migratory Bird. J. Evol. Biol. 2014, 27, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Hammer, T.L.; Bize, P.; Saraux, C.; Gineste, B.; Robin, J.P.; Groscolas, R.; Viblanc, V.A. Repeatability of Alert and Flight Initiation Distances in King Penguins: Effects of Colony, Approach Speed, and Weather. Ethology 2022, 128, 303–316. [Google Scholar] [CrossRef]
- Geist, C.; Liao, J.; Libby, S.; Blumstein, D.T.; Libby, S. Does Intruder Group Size and Orientation Affect Flight Initiation Distance in Birds? Anim. Biodivers. Conserv. 2005, 28, 1. [Google Scholar] [CrossRef]
- Piratelli, A.J.; Favoretto, G.R.; de Almeida Maximiano, M.F. Factors Affecting Escape Distance in Birds. Zoologia 2015, 32, 438–444. [Google Scholar] [CrossRef]
- Mbise, F.P.; Fredriksen, K.E.; Ranke, P.S.; Jackson, C.; Fyumagwa, R.; Holmern, T.; Fossøy, F.; Røskaft, E. Human Habituation Reduces Hyrax Flight Initiation Distance in Serengeti. Ethology 2020, 126, 297–303. [Google Scholar] [CrossRef]
- McGowan, M.M.; Patel, P.D.; Stroh, J.D.; Blumstein, D.T. The Effect of Human Presence and Human Activity on Risk Assessment and Flight Initiation Distance in Skinks. Ethology 2014, 120, 1081–1089. [Google Scholar] [CrossRef]
- Holmern, T.; Setsaas, T.H.; Melis, C.; Tufto, J.; Røskaft, E. Effects of Experimental Human Approaches on Escape Behavior in Thomson’s Gazelle (Eudorcas thomsonii). Behav. Ecol. 2016, 27, 1432–1440. [Google Scholar] [CrossRef]
- Fernández-Juricic, E.; Zahn, E.F.; Parker, T.; Stankowich, T. California’s Endangered Belding’s Savannah Sparrow (Passerculus sandwichensis beldingi): Tolerance of Pedestrian Disturbance. Avian Conserv. Ecol. 2009, 4, 1. [Google Scholar] [CrossRef]
- Stankowich, T.; Blumstein, D.T. Fear in Animals: A Meta-Analysis and Review of Risk Assessment. Proc. R. Soc. B 2005, 272, 2627–2634. [Google Scholar] [CrossRef] [PubMed]
- McLeod, E.M.; Guay, P.J.; Taysom, A.J.; Robinson, R.W.; Weston, M.A. Buses, Cars, Bicycles and Walkers: The Influence of the Type of Human Transport on the Flight Responses of Waterbirds. PLoS ONE 2013, 8, e2008. [Google Scholar] [CrossRef] [PubMed]
- Weston, M.A.; Mcleod, E.M.; Blumstein, D.T.; Guay, P.J. A Review of Flight-Initiation Distances and Their Application to Managing Disturbance to Australian Birds. Emu 2012, 112, 269–286. [Google Scholar] [CrossRef]
- Møller, A.P.; Grim, T.; Ibáñez-Álamo, J.D.; Markó, G.; Tryjanowski, P. Change in Flight Initiation Distance between Urban and Rural Habitats Following a Cold Winter. Behav. Ecol. 2013, 24, 1211–1217. [Google Scholar] [CrossRef]
- Morelli, F.; Mikula, P.; Blumstein, D.T.; Díaz, M.; Markó, G.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.L.; Floigl, K.; Zeid, F.A.; Siretckaia, A.; et al. Flight Initiation Distance and Refuge in Urban Birds. Sci. Total Environ. 2022, 842, 156939. [Google Scholar] [CrossRef] [PubMed]
- Shuai, L.Y.; Morelli, F.; Mikula, P.; Benedetti, Y.; Weston, M.A.; Ncube, E.; Tarakini, T.; Díaz, M.; Markó, G.; Jokimäki, J.; et al. A Meta-Analysis of the Relationship between Flock Size and Flight Initiation Distance in Birds. Anim. Behav. 2024, 210, 1–9. [Google Scholar] [CrossRef]
- Lamond, L.M.; Fisher, D.N. The Eyes Have It: The Response of European Herring Gulls Larus Argentatus to Human Eye-Gaze. Bird Study 2023, 70, 178–182. [Google Scholar] [CrossRef]
- Yorzinski, J.L.; Platt, M.L. Selective Attention in Peacocks during Predator Detection. Anim. Cogn. 2014, 17, 767–777. [Google Scholar] [CrossRef]
- Sreekar, R.; Quader, S. Influence of Gaze and Directness of Approach on the Escape Responses of the Indian Rock Lizard, Psammophilus dorsalis (Gray, 1831). J. Biosci. 2013, 38, 829–833. [Google Scholar] [CrossRef]
- Bateman, P.W.; Fleming, P.A. Who Are You Looking at? Hadeda Ibises Use Direction of Gaze, Head Orientation and Approach Speed in Their Risk Assessment of a Potential Predator. J. Zool. 2011, 285, 316–323. [Google Scholar] [CrossRef]
- Slater, C.; Cam, G.; Qi, Y.; Liu, Y.; Guay, P.J.; Weston, M.A. Camera Shy? Motivations, Attitudes and Beliefs of Bird Photographers and Species-Specific Avian Responses to Their Activities. Biol. Conserv. 2019, 237, 327–337. [Google Scholar] [CrossRef]
- Cooper, W.E.; Samia, D.S.M.; Blumstein, D.T. Fear, Spontaneity, and Artifact in Economic Escape Theory: A Review and Prospectus. Adv. Study Behav. 2015, 47, 147–179. [Google Scholar] [CrossRef]
- Pulliam, H.R. On the Advantages of Flocking. J. Theor. Biol. 1973, 38, 419–422. [Google Scholar] [CrossRef]
- de Freitas, A.C.P.; Oviedo-Pastrana, M.E.; Vilela, D.A.d.R.; Pereira, P.L.L.; Loureiro, L.d.O.C.; Haddad, J.P.A.; Martins, N.R.d.S.; Soares, D.F.d.M. Diagnóstico de Animais Ilegais Recebidos No Centro de Triagem de Animais Silvestres de Belo Horizonte, Estado de Minas Gerais, No Ano de 2011. Cienc. Rural 2014, 45, 163–170. [Google Scholar] [CrossRef]
- Cavalcanti, C.d.A.T.; Nunes, V.d.S. O Tráfico Da Avifauna No Nordeste Brasileiro e Suas Consequências Socioambientais. Ver. Cienc. Vet. Saúde Pública 2019, 6, 405–415. [Google Scholar] [CrossRef]
- Martins Neves, F.; D’Avila Erbesdobler, E. Estimativa Do Tráfico de Aves Silvestres No Distrito Federal, Brasil. Biodivers. Bras. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Marcondes-Machado, L.O. Experiência de Repovoamento Com Sicalis Flaveola Brasiliensis (Gmelin, 1789) (Passeriformes, Emberezidae) Em Área Destinada à Pecuária Leiteira. Rev. Bras. Zool. 1988, 5, 193–200. [Google Scholar] [CrossRef]
- Alvarenga, F.B. Demografia e Biologia Reprodutiva de Sicalis flaveola (Aves: Emberizidae) Em Área Rural No Sudeste Do Brasil; Universidade Vila Velha: Vila Velha, Brazil, 2017. [Google Scholar]
- Duarte, R.H.L.; de Oliveira Passos, M.F.; Beirão, M.V.; Midamegbe, A.; Young, R.J.; de Azevedo, C.S. Noise Interfere on Feeding Behaviour but Not on Food Preference of Saffron Finches (Sicalis flaveola). Behav. Processes 2023, 206, 104844. [Google Scholar] [CrossRef] [PubMed]
- Sick, H. Ornitologia Brasileira; Nova Fronteira: Rio de Janeiro, Brazil, 1997. [Google Scholar]
- Runyan, A.M.; Blumstein, D.T. Do Individual Differences Influence Flight Initiation Distance? J. Wildl. Manag. 2004, 68, 1124–1129. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Searle, S.R.; Speed, F.M.; Milliken, G.A. Population Marginal Means in the Linear Model: An Alternative to Least Squares Means. Am. Stat. 1980, 34, 216–221. [Google Scholar] [CrossRef]
- Goumas, M.; Burns, I.; Kelley, L.A.; Boogert, N.J. Herring Gulls Respond to Human Gaze Direction. Biol. Lett. 2019, 15, 20190405. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G.L.; Clayton, N.S. New Perspectives in Gaze Sensitivity Research. Learn. Behav. 2016, 44, 9–17. [Google Scholar] [CrossRef]
- Emery, N.J. The Eyes Have It: The Neuroethology, Function and Evolution of Social Gaze. Neurosci. Biobehav. Rev. 2000, 24, 581–604. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.; Lyons, N.J.; Cole, H.L.; Goldsmith, A.R. Subtle Cues of Predation Risk: Starlings Respond to a Predator’s Direction of Eye-Gaze. Proc. R. Soc. B 2008, 275, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Sol, D.; Lapiedra, O.; González-Lagos, C. Behavioural Adjustments for a Life in the City. Anim. Behav. 2013, 85, 1101–1112. [Google Scholar] [CrossRef]
- Rodriguez-Prieto, I.; Fernández-Juricic, E.; Martín, J.; Regis, Y. Antipredator Behavior in Blackbirds: Habituation Complements Risk Allocation. Behav. Ecol. 2009, 20, 371–377. [Google Scholar] [CrossRef]
- Lima, S.L.; Bednekoff, P.A. Temporal Variation in Danger Drives Antipredator Behavior: The Predation Risk Allocation Hypothesis. Am. Nat. 1999, 153, 649–659. [Google Scholar] [CrossRef]
- Frid, A.; Dill, L. Human-Caused Disturbance Stimuli as a Form of Predation Risk. Ecol. Soc. 2002, 6, 11. [Google Scholar] [CrossRef]
- Van Dongen, W.F.D.; McLeod, E.M.; Mulder, R.A.; Weston, M.A.; Guay, P.J. The Height of Approaching Humans Does Not Affect Flight-Initiation Distance. Bird Study 2015, 62, 285–288. [Google Scholar] [CrossRef]
- Stankowich, T.; Coss, R.G. Effects of Predator Behavior and Proximity on Risk Assessment by Columbian Black-Tailed Deer. Behav. Ecol. 2006, 17, 246–254. [Google Scholar] [CrossRef]
- Samia, D.S.M.; Blumstein, D.T.; Díaz, M.; Grim, T.; Ibáñez-álamo, J.D.; Jokimäki, J.; Tätte, K.; Markó, G.; Tryjanowski, P.; Møller, A.P. Rural-Urban Differences in Escape Behavior of European Birds across a Latitudinal Gradient. Front. Ecol. Evol. 2017, 5, 66. [Google Scholar] [CrossRef]
- Olson, R.S.; Haley, P.B.; Dyer, F.C.; Adami, C. Exploring the Evolution of a Trade-off between Vigilance and Foraging in Group-Living Organisms. R. Soc. Open Sci. 2015, 2, 150135. [Google Scholar] [CrossRef] [PubMed]
- Mosca Torres, M.E.; Puig, S.; Novillo, A.; Ovejero, R. Vigilance Behaviour of the Year-Round Territorial Vicuña (Vicugna vicugna) Outside the Breeding Season: Influence of Group Size, Social Factors and Distance to a Water Source. Behav. Processes 2015, 113, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Burnham, H.; Cruz-Bernate, L. Parental Investment Does Not Directly Affect Reproductive Success in the Saffron Finch. J. Avian Biol. 2020, 51, e02489. [Google Scholar] [CrossRef]
- Lima, S.L.; Dill, L.M. Behavioral Decisions Made under the Risk of Predation: A Review and Prospectus. Can. J. Zool. 1990, 68, 619–640. [Google Scholar] [CrossRef]
- Lima, S.L. Stress and Decision Making under the Risk of Predation: Recent Developments from Behavioral, Reproductive, and Ecological Perspectives. Adv. Study Behav. 1998, 27, 215–290. [Google Scholar] [CrossRef]
- Díaz, M.; Grim, T.; Markó, G.; Morelli, F.; Ibáñez-Alamo, J.D.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.L.; Tätte, K.; Tryjanowski, P.; Møller, A.P. Effects of Climate Variation on Bird Escape Distances Modulate Community Responses to Global Change. Sci. Rep. 2021, 11, 12826. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, A.R.; Levenhagen, M.J.; Wardle, R.; Barber, J.R.; Francis, C.D. First to Flush: The Effects of Ambient Noise on Songbird Flight Initiation Distances and Implications for Human Experiences with Nature. Front. Ecol. Evol. 2017, 5, 67. [Google Scholar] [CrossRef]
- Guay, P.J.; Van Dongen, W.F.D.; McLeod, E.M.; Whisson, D.A.; Vu, H.Q.; Wang, H.; Weston, M.A. Does Zonation and Accessibility of Wetlands Influence Human Presence and Mediate Wildlife Disturbance? J. Environ. Plan. Manag. 2019, 62, 1306–1320. [Google Scholar] [CrossRef]
Explanatory Variable | Beta | 95% CI | p-Value |
---|---|---|---|
Eating/alert | −0.05 | −0.08, −0.03 | <0.001 * |
Eating/moving | 0.02 | −0.02, −0.07 | 0.30 |
Eating/alert/moving | −0.08 | −0.14, −0.02 | 0.005 * |
NPW | −0.04 | −0.06, −0.02 | <0.001 * |
Staring at the birds | −0.03 | −0.05, −0.01 | 0.003 * |
Season: hot and wet | −0.04 | −0.06, −0.01 | 0.008 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Resende, N.C.; Teixeira, C.P.; de Azevedo, C.S. Flight Initiation Distance in an Urban Bird: Influence of the Number of People, Gaze Orientation, and Bird Behavior. Birds 2024, 5, 255-264. https://doi.org/10.3390/birds5020017
de Resende NC, Teixeira CP, de Azevedo CS. Flight Initiation Distance in an Urban Bird: Influence of the Number of People, Gaze Orientation, and Bird Behavior. Birds. 2024; 5(2):255-264. https://doi.org/10.3390/birds5020017
Chicago/Turabian Stylede Resende, Natália Cardoso, Camila Palhares Teixeira, and Cristiano Schetini de Azevedo. 2024. "Flight Initiation Distance in an Urban Bird: Influence of the Number of People, Gaze Orientation, and Bird Behavior" Birds 5, no. 2: 255-264. https://doi.org/10.3390/birds5020017
APA Stylede Resende, N. C., Teixeira, C. P., & de Azevedo, C. S. (2024). Flight Initiation Distance in an Urban Bird: Influence of the Number of People, Gaze Orientation, and Bird Behavior. Birds, 5(2), 255-264. https://doi.org/10.3390/birds5020017