Molecular Prevalence and Haematological Assessments of Avian Malaria in Wild Raptors of Thailand
Abstract
:Simple Summary
Abstract
1. Background
2. Methods
2.1. Sample Collection
2.2. Complete Blood Count (CBC) and Microscopic Examination
2.3. DNA Extraction, PCR Amplification and DNA Sequencing
2.4. Sequence Analysis and Phylogenetics
2.5. Statistical Analyses
3. Results
3.1. Molecular Prevalence and Disease Distribution
3.2. Phylogenetic Analyses
3.3. Haematological and Microscopic Examinations
4. Discussion
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamazaki, T.; Nitani, Y.; Murate, T.; Lim, K.C.; Kasorndorkbua, C.; Rakhman, Z.; Supriatna, A.A.; Sundev, G. Field Guide to Raptors of Asia. Vol.1. Migratory Raptors of Oriental Asia; Bildstein, K., Severinghaus, L.L., Yosef, R., Eds.; Asian Raptor Research and Conservation Network: Kyoto, Japan, 2012. [Google Scholar]
- Lepage, D. Avibase—The World Bird Database. Available online: https://edepot.wur.nl/132579 (accessed on 12 January 2023).
- Kasorndorkbua, C.; Chinuparawat, C.; Nualsri, C. A Photographic Guide to the Raptors of Thailand, 1st ed.; Amarin Corporations Public Company Limited: Bangkok, Thailand, 2008. [Google Scholar]
- BirdLife International. Aegypius monachus. Available online: https://www.iucnredlist.org (accessed on 12 April 2023).
- Poharkar, A.; Reddy, P.A.; Gadge, V.A.; Kolte, S.; Kurkure, N.; Shivaji, S. Is malaria the cause for decline in the wild population of the Indian White-backed vulture(Gyps bengalensis)? Curr. Sci. 2009, 96, 553–558. [Google Scholar]
- Valkiūnas, G. Avian Malaria Parasites and other Haemosporidia, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Salakij, J.; Lertwatcharasarakul, P.; Kasorndorkbua, C.; Salakij, C. Plasmodium circumflexum in a Shikra (Accipiter badius): Phylogeny and ultra-structure of the haematozoa. Jpn. J. Vet. Res. 2012, 60, 105–109. [Google Scholar] [PubMed]
- Jakthong, P.; Pornpanom, P.; Panpeth, N.; Kasorndorkbua, C. Avian Malaria and Crop Stasis in a Himalayan Vulture Gyps himalayensis: Case Report. In Proceedings of the 40th International Conference on Veterinary Science, Bangkok, Thailand, 11–13 November 2015; p. 112. [Google Scholar]
- van Riper, C.; van Riper, S.G.; Goff, M.L.; Laird, M. The Epizootiology and Ecological Significance of Malaria in Hawaiian Land Birds. Ecol Monogr. 1986, 56, 327–344. [Google Scholar] [CrossRef]
- Fecchio, A.; Chagas, C.R.F.; Bell, J.A.; Kirchgatter, K. Evolutionary ecology, taxonomy, and systematics of avian malaria and related parasites. Acta Trop. 2020, 204, 105364. [Google Scholar] [CrossRef] [PubMed]
- Huang, X. Assessment of Associations between Malaria Parasites and Avian Hosts-A Combination of Classic System and Modern Molecular Approach. Biology 2021, 10, 636. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.J.; Clegg, S.M.; Lima, M.R. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): New insights from molecular data. Int. J. Parasitol. 2014, 44, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Valkiūnas, G.; Iezhova, T.A. Keys to the avian malaria parasites. Malar J. 2018, 17, 212. [Google Scholar] [CrossRef] [PubMed]
- Isaksson, C.; Sepil, I.; Baramidze, V.; Sheldon, B.C. Explaining variance of avian malaria infection in the wild: The importance of host density, habitat, individual life-history and oxidative stress. BMC Ecol. 2013, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, M.A.; Matta, N.E.; Valkiūnas, G.; Parker, P.G.; Mello, B.; Stanley, C.E., Jr.; Lentino, M.; Garcia-Amado, M.A.; Cranfield, M.; Kosakovsky Pond, S.L.; et al. Mode and Rate of Evolution of Haemosporidian Mitochondrial Genomes: Timing the Radiation of Avian Parasites. Mol. Biol. Evol. 2018, 35, 383–403. [Google Scholar] [CrossRef]
- Bensch, S.; Hellgren, O.; Perez-Tris, J. MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 2009, 9, 1353–1358. [Google Scholar] [CrossRef]
- Pornpanom, P.; Chagas, C.R.F.; Lertwatcharasarakul, P.; Kasorndorkbua, C.; Valkiūnas, G.; Salakij, C. Molecular prevalence and phylogenetic relationship of Haemoproteus and Plasmodium parasites of owls in Thailand: Data from a rehabilitation centre. Int. J. Parasitol. Parasites. Wild. 2019, 9, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Pornpanom, P.; Kasorndorkbua, C.; Lertwatcharasarakul, P.; Salakij, C. Prevalence and genetic diversity of Haemoproteus and Plasmodium in raptors from Thailand: Data from rehabilitation center. Int. J. Parasitol. Parasites. Wild. 2021, 16, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Berger, D.D.; Mueller, H.C. The Bal-chatri: A trap for the birds of prey. Bird-Banding. 1959, 30, 18. [Google Scholar] [CrossRef]
- Gill, F.; Donsker, D.; Rasmussen, P. IOC WORLD BIRD LIST (v13.2). 2023. Available online: https://doi.org/10.14344/IOC.ML.13.2 (accessed on 2 August 2024).
- Seok, S.H.; Jeong, D.H.; Park, S.J.; Lee, S.Y.; Lee, H.C.; Yeon, S.C. Hematologic and Plasma Biochemical Values of Cinereous Vulture (Aegypius monachus). J Zoo Wildl. 2017, 48, 514–517. [Google Scholar] [CrossRef]
- Salakij, C.; Kasorndorkbua, C.; Salakij, J.; Suwannasaeng, P.; Jakthong, P. Quantitative and qualitative morphologic, cytochemical and ultrastructural characteristics of blood cells in the Crested Serpent eagle and Shikra. Jpn. J. Vet. Res. 2015, 63, 95–105. [Google Scholar] [PubMed]
- Salakij, C.; Pornpanom, P.; Lertwatcharasarakul, P.; Kasorndorkbua, C.; Salakij, J. Haemoproteus in barn and collared scops owls from Thailand. J. Vet. Sci. 2018, 19, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Hellgren, O.; Waldenstrom, J.; Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 2004, 90, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Vienna, Austria, 2018. Available online: https://www.r-project.org/ (accessed on 2 August 2024).
- Palinauskas, V.; Krizanauskiene, A.; Iezhova, T.A.; Bolshakov, C.V.; Jonsson, J.; Bensch, S.; Valkiunas, G. A new method for isolation of purified genomic DNA from haemosporidian parasites inhabiting nucleated red blood cells. Exp. Parasitol. 2013, 133, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Pornpanom, P.; Kasorndorkbua, C.; Lertwatcharasalakul, P.; Salakij, C. Hematology, ultrastructure and morphology of blood cells in rufous-winged buzzards (Butastur liventer) from Thailand. Animals 2022, 12, 1988. [Google Scholar] [CrossRef]
- Darbro, J.M.; Harrington, L.C. Avian defensive behavior and blood-feeding success of the West Nile vector mosquito, Culex pipiens. Behav. Ecol. 2007, 18, 750–757. [Google Scholar] [CrossRef]
- Sunantaraporn, S.; Hortiwakul, T.; Kraivichian, K.; Siriyasatien, P.; Brownell, N. Molecular Identification of Host Blood Meals and Detection of Blood Parasites in Culicoides Latreille (Diptera: Ceratopogonidae) Collected from Phatthalung Province, Southern Thailand. Insects 2022, 13, 912. [Google Scholar] [CrossRef]
- Pramual, P.; Jomkumsing, P.; Wongpakam, K.; Vaisusuk, K.; Chatan, W.; Gomontean, B. Population Genetic Structure and Population History of the Biting Midge Culicoides mahasarakhamense (Diptera: Ceratopogonidae). Insects 2022, 13, 724. [Google Scholar] [CrossRef]
- Westerdahl, H.; Waldenstrom, J.; Hansson, B.; Hasselquist, D.; von Schantz, T.; Bensch, S. Associations between malaria and MHC genes in a migratory songbird. Proc. Biol. Sci. 2005, 272, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-López, R.; Gangoso, L.; Martínez-de la Puente, J.; Fric, J.; López-López, P.; Mailleux, M.; Muñoz, J.; Touati, L.; Samraoui, B.; Figuerola, J. Low prevalence of blood parasites in a long-distance migratory raptor: The importance of host habitat. Parasites Vectors 2015, 8, 189. [Google Scholar] [CrossRef] [PubMed]
- Kasorndorkbua, C. Shikra (Accipiter badius). In Field Guide to Raptors of Asia. Vol 1. Migratory Raptors of Oriental Asia, 1st ed.; Bildstein, K., Severinghaus, L.L., Yosef, R., Eds.; Asian Raptor Research and Conservation Network: Kyoto, Japan, 2012; Volume 1, pp. 51–52. [Google Scholar]
- Valkiūnas, G.; Iezhova, T.A.; Križanauskiene, A.; Palinauskas, V.; Sehgal, R.N.M.; Bensch, S. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J. Parasitol. 2008, 94, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
Species a | No. | Prevalence (%) | Haematological Analyses b | ||
---|---|---|---|---|---|
PCV (%) | RBCs (×1012/L) | WBCs (×109/L) | |||
Diurnal raptors (Accipitriformes) | 78 | 3.85% (3/78) | |||
Shikra (Accipiter badius) | 6 | 14.3% (1/7) | 40.7 ± 3.6 (38.0 ± 0.0) c | 4.41 ± 0.4 (2.86 ± 0.35) c | 3.53 ± 2.0 (17.3 ± 4.2) c |
Crested Goshawk (Accipiter trivirgatus) | 1 | 0 | 45 | 3.15 | 4.18 |
Cinereous Vulture (Aegypius monachus) | 1 | 100% (1/1) | (43.0 ± 3) c | (2.39 ± 0.17) c | (19.26 ± 3.09) c |
Steppe Eagle (Aquila nipalensis) | 1 | 0 | 34 | 2.51 | 5.43 |
Booted Eagle (Hieraaetus pennatus) | 1 | 0 | 34 | 2.25 | 5.35 |
Black Baza (Aviceda leuphotes) | 2 | 0 | 38.5 ± 3.84 | 2.0 ± 0.65 | 2.5 ± 2.81 |
Grey-faced Buzzard (Butastur indicus) | 2 | 0 | 42.5 ± 0.41 | 2.72 ± 0.23 | 13.5 ± 4.89 |
Rufous-winged Buzzard (Butastur liventer) | 2 | 0 | 34 ± 1.41 | 2.71 ± 0.13 | 2.03 ± 0.12 |
Himalayan Buzzard (Buteo refectus) | 1 | 0 | 43 | 2.55 | 3.85 |
Pied Harrier (Circus melanoleucos) | 24 | 0 | 41.1 ± 3.31 | 3.02 ± 0.61 | 6.64 ± 4.58 |
Peregrine Falcon (Falco peregrinus) | 2 | 0 | 41.5 ± 0.71 | 3.30 ± 0.21 | 4.48 ± 0.25 |
Himalayan Vulture (Gyps himalayensis) | 2 | 50% (1/2) | 28 (39.1 ± 3.3) d | 2.24 (3.4 ± 1.0) d | 7.5 (11.1 ± 4.3) d |
Brahminy Kite (Haliastur indus) | 1 | 0 | 42 | 1.84 | 7.8 |
Black Kite (Milvus migrans govinda) | 13 | 0 | 38.1 ± 5.12 | 5.48 ± 0.86 | 2.81 ± 1.92 |
Black-eared Kite (Milvus migrans lineatus) | 13 | 0 | 35.8 ± 3.61 | 2.06 ± 0.68 | 4.10 ± 1.32 |
Crested Honey Buzzard (Pernis ptilorhynchus orientalis) | 2 | 0 | 38 ± 2.83 | 2.21 ± 0.13 | 2.40 ± 0.07 |
Red-headed Vulture (Sarcogyps calvus) | 2 | 0 | 46.5 ± 2.12 | NT | NT |
Crested Serpent Eagle (Spilornis cheela burmanicus) | 1 | 0 | 45 | 3.93 | 4.25 |
Nocturnal raptors (Strigiformes) | 31 | 3.23% (1/31) | |||
Spotted Owlet (Athene brama) | 2 | 0 | 41 ± 1.41 | 2.71 ± 0.06 | 5.5 ± 1.41 |
Barred Eagle Owl (Ketupa sumatrana) | 3 | 33.3% (1/3) | 38.0 ± 1.0 (39 ± 5.6) e | 2.17 ± 0.49 (3.3 ± 0.4) e | 3.01 ± 2.16 (9.7 ± 2.6) e |
Buffy Fish Owl (Ketupa ketupu) | 1 | 0 | 34 | 1.87 | 4.05 |
Collared Scops Owl (Otus lettia) | 6 | 0 | 39.2 ± 4.61 | 2.72 ± 0.90 | 4.787 ± 3.74 |
Brown Wood Owl (Strix leptogrammica) | 1 | 0 | 38.5 | 1.63 | 2.85 |
Eastern Barn Owl (Tyto javanica) | 18 | 0 | 39.6 ± 4.48 | 2.68 ± 0.87 | 4.50 ± 3.54 |
Total | 109 | 3.67% (4/109) |
Locality | Species | No. | Prevalence a (%) | Isolate | Lineage b | GenBank |
---|---|---|---|---|---|---|
Northern region | 26 | 0 | ||||
Chiang Mai (n = 2) | Himalayan Buzzard (Buteo refectus) | 1 c | ||||
Buffy Fish Owl (Ketupa ketupu) | 1 c | |||||
Chiang Rai (n = 24) | Pied Harrier (Circus melanoleucos) | 24 d | ||||
Northeastern region | 9 | 0 | ||||
Nakhon Ratchasima (n = 9) | Crested Serpent Eagle (Spilornis cheela burmanicus) | 1 c | ||||
Shikra (Accipiter badius) | 4 c | |||||
Eastern Barn Owl (Tyto javanica) | 2 c | |||||
Crested Honey Buzzard (Pernis ptilorhynchus orientalis) | 2 c | |||||
Eastern region | 1 | 0 | ||||
Prachin Buri (n = 1) | Himalayan Vulture (Gyps himalayensis) | 1 c | ||||
Central region | 65 | 1.56% (1/65) | ||||
Bangkok (n = 3) | Black Baza (Aviceda leuphotes) | 1 c | ||||
Peregrine Falcon (Falco peregrinus) | 1 c | |||||
Black Kite (Milvus migrans govinda) | 1 c | |||||
Nonthaburi (n = 2) | Eastern Barn Owl (Tyto javanica) | 2 c | ||||
Nakhon Nayok (n = 24) | Black Kite (Milvus migrans govinda) | 11 d | ||||
Black-eared Kite (Milvus migrans lineatus) | 13 d | |||||
Nakhon Pathom (n = 28) | Shikra (Accipiter badius) | 3 | 3.57% (1/28) | R191 | MILANS06 | OR066213 |
Crested Goshawk (Accipiter trivirgatus) | 1 c | |||||
Steppe Eagle (Aquila nipalensis) | 1 c | |||||
Spotted Owlet (Athene brama) | 2 c | |||||
Black Baza (Aviceda leuphotes) | 1 d | |||||
Grey-faced Buzzard (Butastur indicus) | 2 d | |||||
Rufous-winged Buzzard (Butastur liventer) | 2 d | |||||
Peregrine Falcon (Falco peregrinus) | 1 c | |||||
Black Kite (Milvus migrans govinda) | 1 c | |||||
Collared Scops Owl (Otus lettia) | 2 c | |||||
Eastern Barn Owl (Tyto javanica) | 12 c | |||||
Pathum Thani (n = 1) | Brahminy Kite (Haliastur indus) | 1 c | ||||
Samut Prakan (n = 1) | Collared Scops Owl (Otus lettia) | 1 c | ||||
Suphan Buri (n = 4) | Collared Scops Owl (Otus lettia) | 1 c | ||||
Eastern Barn Owl (Tyto javanica) | 2 c | |||||
Barred Eagle Owl (Ketupa sumatrana) | 1 c | |||||
Uthai Thani (n = 2) | Red-headed vulture (Sarcogyps calvus) | 2 c | ||||
Western region | 3 | 0 | ||||
Ratchaburi (n = 1) | Collared Scops Owl (Otus lettia) | 1 c | ||||
Kanchanaburi (n = 1) | Collared Scops Owl (Otus lettia) | 1 c | ||||
Phetchaburi (n = 1) | Booted eagle (Hieraaetus pennatus) | 1 c | ||||
Southern region | 5 | 60% (3/5) | ||||
Yala (n = 3) | Barred Eagle Owl (Ketupa sumatrana) | 2 c | 33.3% (1/3) | KU729 | ORW1 | OR066210 |
Brown Wood Owl (Strix leptogrammica) | 1 c | |||||
Surat Thani (n = 1) | Cinereous Vulture (Aegypius monachus) | 1 c | 100% (1/1) | KU851 | MILANS05 | OR066211 |
Ranong (n = 1) | Himalayan Vulture (Gyps himalayensis) | 1 c | 100% (1/1) | KU852 | ORW1 | OR066212 |
Total | 109 | 3.67% (4/109) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subaneg, S.; Sitdhibutr, R.; Pornpanom, P.; Lertwatcharasarakul, P.; Ploypan, R.; Kiewpong, A.; Chatkaewchai, B.; To-adithep, N.; Kasorndorkbua, C. Molecular Prevalence and Haematological Assessments of Avian Malaria in Wild Raptors of Thailand. Birds 2024, 5, 428-439. https://doi.org/10.3390/birds5030029
Subaneg S, Sitdhibutr R, Pornpanom P, Lertwatcharasarakul P, Ploypan R, Kiewpong A, Chatkaewchai B, To-adithep N, Kasorndorkbua C. Molecular Prevalence and Haematological Assessments of Avian Malaria in Wild Raptors of Thailand. Birds. 2024; 5(3):428-439. https://doi.org/10.3390/birds5030029
Chicago/Turabian StyleSubaneg, Sirawit, Ratiwan Sitdhibutr, Pornchai Pornpanom, Preeda Lertwatcharasarakul, Raveewan Ploypan, Aksarapak Kiewpong, Benya Chatkaewchai, Nithima To-adithep, and Chaiyan Kasorndorkbua. 2024. "Molecular Prevalence and Haematological Assessments of Avian Malaria in Wild Raptors of Thailand" Birds 5, no. 3: 428-439. https://doi.org/10.3390/birds5030029
APA StyleSubaneg, S., Sitdhibutr, R., Pornpanom, P., Lertwatcharasarakul, P., Ploypan, R., Kiewpong, A., Chatkaewchai, B., To-adithep, N., & Kasorndorkbua, C. (2024). Molecular Prevalence and Haematological Assessments of Avian Malaria in Wild Raptors of Thailand. Birds, 5(3), 428-439. https://doi.org/10.3390/birds5030029